sustainability
Article
Evaluating Wheat Suppliers Using Fuzzy MCDM Technique
Ghazi M. Magableh
Industrial Engineering Department, Yarmouk University, Irbid 21163, Jordan;
[email protected]
Abstract: Wheat has significantly impacted food security in numerous countries. Like the Middle
East and North Africa (MENA) region, Jordan’s daily diet contains a sizable amount of wheat.
Further, Jordan is dealing with several issues, including rapid population growth, water scarcity,
widespread urbanization, and limited agricultural wheat production. Thus, it imports most of its
wheat and wheat products. Moreover, the method of selecting suppliers in Jordan is unique, as
private importers import for the benefit of the government, and thus, the selection of suppliers is
carried out by importers. This study aims to examine the various supplier selection approaches
to determine Jordan’s primary wheat suppliers and rank them according to specified criteria. The
fuzzy-VIKOR approach was used to assess, select, and rank the best wheat suppliers in Jordan. The
findings suggest that Romania is the best supplier of wheat for Jordan. It is recognized as the most
affordable and trustworthy supplier since it is nearby, has strong links through official channels, and
is flexible. Suppliers are subject to change or adjust their offerings as a result of changes in the global
economy, wheat prices at the source, exchange rates, transportation and handling costs, crises, and
national export levies. This study will help importers, decision-makers, and others concerned with
wheat imports as a strategic commodity identify and select suppliers.
Keywords: wheat supply chain; supplier selection; MCDM; fuzzy VIKOR
1. Introduction
Citation: Magableh, G.M. Evaluating
Wheat Suppliers Using Fuzzy
MCDM Technique. Sustainability
2023, 15, 10519. https://doi.org/
10.3390/su151310519
Received: 28 May 2023
Revised: 27 June 2023
Accepted: 1 July 2023
Published: 4 July 2023
Copyright:
© 2023 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Wheat is a basic product in most countries, especially in the Middle East and Jordan,
where the food table is packed with wheat derivatives. It serves as a regular meal in the
form of bread, pasta, sweets, or many other wheat products. Therefore, it is the main
and most basic commodity that the government manages through the import, storage,
and distribution of wheat. According to the Ministry of Industry and Trade (MITS) [1],
the average monthly consumption of wheat is approximately 90,000 tons. The concerned
government authorities, namely the MITS, periodically initiate invitations to bid/request
for proposal (RFP) for the purchase of wheat under specific conditions and specifications
in cooperation with the Ministry of Agriculture (MOA) [2] and the Jordan Standards
and Metrology Organization (JSMO) [3]. The tender quantity depends on the available
storage capacity, consumption, warehouse management, strategic food security plans, and
storage conditions. The tender is usually delivered to the port of Aqaba or to the storage
warehouses, that is, carriage and insurance paid (CIP). Therefore, the tender includes
the costs of purchase, shipping, transportation, handling, insurance, and other fees and
costs. The import of wheat in Jordan is different, where the concerned authorities in the
government issue an invitation to tender (ITT) and the applicants have to choose the
suppliers according to the announced conditions, meaning that the government does not
directly choose the supplier, but rather, the applicant or bidder chooses it.
The conditions of the tender should be clearly indicated in advance and include specifications, quality, timing, the solvency of the supplier, necessary procedures, contractual
and financial matters, and the necessary tests and acceptance conditions. Post-award of
the tender, the concerned authorities should also follow the specifications for storing and
distributing wheat according to the principles set for this purpose. Furthermore, it should
Sustainability 2023, 15, 10519. https://doi.org/10.3390/su151310519
https://www.mdpi.com/journal/sustainability
Sustainability 2023, 15, 10519
2 of 23
ensure the availability of a strategic stock of this product for certain periods, usually six
months to one year at least.
The main wheat specifications include the origin, protein, test weight, moisture,
virtuousness, fall number, wet gluten, soft grain admixture, foreign matter, and grain
admixture [4,5]. The key processing quality parameters are grain hardness, protein concentration and quality, and gluten strength. Wheat varieties depend on the producers’
classifications, which generally include durum, hard white, soft white, hard red winter,
hard red spring, and soft red winter. Previous studies have not been carried out either for
Jordan or the MENA region that rate or choose the top wheat providers [6–12]. Hence,
this study aims to fill this gap by answering the following research questions: What are
the approaches and stages of supplier selection? Who are the wheat suppliers providing
quality products at the lowest price with flexible delivery? What criteria should be used
to evaluate suppliers? Who are the best wheat suppliers in Jordan based on the current
international environment and situation?
One of the primary challenges in decision-making is to pick the optimal alternative
after considering many selection criteria. Multi-criteria decision-making (MCDM) techniques are commonly used for handling a variety of decision-making criteria. Due to these
techniques’ ability to compute, they have been used extensively in the supply chain field.
The advantage of the VIKOR technique is that it can select a compromise option that
represents the views of the majority of decision-makers. The key phase of this strategy
is selecting and sorting the results according to multiple sets of criteria. The VIKOR
approach was developed to address problems in MCDM, including complex, conflicting,
and unrelated criteria. It is used to gather decision-makers’ viewpoints on supplier selection
(SS) as a group MCDM problem in the form of linguistic words. With the original (provided)
weights, it determines the compromise ranking list and the solution. When there are
competing criteria, this strategy focuses on ranking and choosing from a group of choices.
While there are many methods used to select the best providers, VIKOR was chosen here
because it has been previously used in selecting suppliers and as described in the literature
review section.
The main goal of this study was to employ MCDM techniques to identify the main
wheat suppliers in Jordan and prioritize suppliers based on the identified attributes. The
government is responsible for importing, managing, and storing wheat, which is a key food
commodity in Jordan. This study aimed to explore alternatives for wheat providers based
on accepted norms. To identify suppliers of wheat or other goods, products, or materials
efficiently and lower the risks involved in the selection process, this study presents a
thorough framework for SS. The fuzzy-VIKOR multi-criteria decision-making approach
was utilized to evaluate, select, and rank the best wheat suppliers in Jordan. A numerical
case study was used to identify and analyze the main wheat suppliers to Jordan and select
the best supplier based on the identified attributes.
The rest of the paper is organized as follows: Section 2 presents the literature review
on agri-food supply chains (SCs), wheat suppliers, wheat supplies to Jordan, the MCDM
approach, and the gaps in previous research studies. Section 3 describes the methodology
and solution approach in terms of the SS framework, including strategies and plans, and the
proposed fuzzy-VIKOR technique, which is used to prioritize suppliers based on selection
criteria. Section 4 underlines how the proposed technique can be employed using a realworld example, followed by the presentation of the analysis and the results. Section 5
concludes the study and provides directions for future research.
2. Literature Review
The agri-food supply chain includes the transfer of agricultural products from the
point of production to consumers. The agri-food SC encompasses all the phases of agricultural food production and processing, including production, processing, storage, trading,
distribution, and consumption. The agri-food industry plays a vital role in political and
economic growth and development. It has a significant impact on sustainability in terms
Sustainability 2023, 15, 10519
3 of 23
of meeting human needs, fostering employment and economic growth, and protecting
the environment [13]. All parties involved must work to reduce logistics costs and gain a
competitive advantage in the global market. Consequently, it is crucial to develop excellent
agricultural and food logistics [14]. Further, following COVID-19, agricultural supply
chains (ASCs) have been exposed to sudden disruptions [15]. Therefore, ASC management
is extremely important as it is vulnerable to errors [16]. The future of ASC management
can consider organic agriculture, agricultural technological advancements, the Internet of
Things (IoT), blockchain technology, and smart farming [17].
Wheat is one of the most important agricultural crops worldwide, particularly because
it is consumed directly by people rather than being utilized as livestock feed. Technologies
and management techniques to increase output in a sustainable way while simultaneously
supplying more nutrient-dense food are urgently needed by wheat farming and wheatbased food industries to fulfill the demands of a growing global population [18]. The
supply chain for wheat is controlled by a small number of nations in North America and
Europe [19]. Wheat has been greatly affected by the COVID-19 outbreak because crop
harvesting and lockdown disrupted the supply chain and prices [20]. Wheat cultivation
has a significant role in the sustainability of the wheat supply chain [21]; therefore, for
its success, the supply chain must be committed to and involved in sustainable collective
innovations [22].
Careful selection of suppliers can reduce procurement costs, improve supply quality
and reliability, and increase the company’s profit margins by lowering upstream supply
chain risk. To choose the best suppliers, a decision-maker must compromise between
tangible and intangible criteria [23]. Companies must find and optimize strategic supplier
networks to select cooperative networks and boost supply network competence [24]. Supplier selection is a difficult problem that involves several criteria. In any supply chain,
choosing a supplier and making a purchase choice are crucial because they present opportunities to save expenses and boost revenues [25]. Industry 4.0 and digitalization are making
it increasingly necessary for managers to make judgments on their suppliers quickly and accurately. MCDM approaches are one of the various decision-support technologies available
to managers [26]. Creating an integrated supply chain for wheat-based products would
involve both long-term decisions about choosing a supplier and setting up new silos and
short-term decisions about how to distribute wheat and its products. Any SS model should
choose the suppliers, decide on the quantity of imports, distribute wheat, and produce
products from it [27]. An EBM assessment method can be utilized to evaluate the production efficiency of companies on a micro level [28]. Further, utilizing data analytics and
IoT as a component of meat and poultry farm green supply chain inventory optimization
to evaluate and identify obstacles that must be subjugated through essential suppliers’
collaborations can also be considered [29]. Moreover, introducing a two-stage, multi-criteria
supplier selection model for an uncertain automotive SC can also be contemplated. The
MCDM approach blends the gray complex proportional assessment and the spherical fuzzy
analytical hierarchical process [30]. Another novel MCDM that can be utilized to select
the best suppliers is the BCM. It is used to solve the problem of an incomplete pairwise
comparison matrix and calculate the missing comparison values. It has been proven that
the new techniques are successful in identifying the best alternative solutions [31,32].
Solutions for complex systems can be accomplished using the multi-criteria optimization and compromise solution (VIKOR) approach. When there are competing criteria, this
strategy focuses on ranking and selecting from a group of choices. The fuzzy-VIKOR
algorithm was developed using fuzzy operations and methods to rank fuzzy numbers.
Resolving the issue of evaluating and selecting potential suppliers has recently emerged as
a crucial strategic consideration for corporate organizations. The VIKOR technique was
created to address challenges in MCDM with competing and incommensurable criteria.
It is used to collect the opinions of decision-makers in the form of linguistic terms for SS
as a group MCDM problem [33]. To address the issues with SS, researchers developed
a hierarchical MCDM model based on fuzzy set theory and the VIKOR method [34]. It
Sustainability 2023, 15, 10519
4 of 23
chooses the best supplier using a model that combines fuzzy-VIKOR with an artificial
neural network [35], adjusts the VIKOR approach for intuitionistic fuzzy data for supplier
evaluation and selection while including both the subjective and objective weights of the
criterion [36], and uses fuzzy-VIKOR to evaluate and choose suppliers while taking both
broad and resilient factors into account [37].
Jordanian businesses should concentrate on supply chain procedures by choosing
suppliers based on quality, allowing two-way communication of grievances and ideas
to improve product quality, and involving suppliers in planning and developing new
goods [38]. Successful supply chain performance must be implemented and maintained,
coupled with appropriate coordination and information exchange through the various
stages of the value chain [39]. Strategic relationships with suppliers have the biggest
impact [40]. Knowledge management mediates the ties among suppliers, technological
innovation (TI), and customers [41]. Jordanian businesses’ supply chain flexibility must be
improved because it has a significant impact on customer satisfaction [42].
SCs should constantly use technology to survive conflicts and competitions. Supplier
diversification is a crucial element, and the pandemic and government actions are likely
to usher in a new era of SC localization and regionalization. Increasing SC visibility and
automation require network agility and partners’ integration [43]. The MENA supply
chain is susceptible to numerous disruptions and instabilities that result in unexpected
interferences with decisions and make the SC uneasy. Nervousness decreases effectiveness
and has a detrimental effect on SC performance. Stress has a significant negative impact
on the stability and resilience of the supply chain, thus raising prices and changing the
relationships between suppliers and consumers [44]. The Middle East has long served as
a hub for international trade, promoting economic expansion and stimulating the diversification of new markets. The Middle East is not risk-free. Because of its location near
sanctioned nations and its centuries-old commercial ties, supply chain actors have had
to manage an expanding spectrum of environmental, legal, regulatory, and geopolitical
risks as an indispensable part of doing business [45]. The biggest hurdles in the Middle
Eastern SC are culture, regulatory environment, lack of government backing, and top
management [46]. MENA supply chain workers rely heavily on the do-it-yourself strategy,
which deviates from global trends and appears to have a detrimental influence on service
levels, competitive advantage, and profitability [47].
Approximately 37% of the calories consumed in the MENA region are from wheat.
The MENA region is the world’s largest net importer of wheat [6]. The organization of the
industry is crucial for research on food security in the region and how countries maintain
a sustainable supply of wheat because of the region’s substantial reliance on imported
wheat [7]. As the majority of Jordan’s wheat and barley are imported via the Black Sea,
the Russian War in Ukraine directly affected Jordan. In 2022–2023, Jordan was projected
to produce 30,000 tons of wheat, which is less than the two-week supply of the nation’s
anticipated 960,000 tons of yearly consumption [8]. 34% of Jordan’s total wheat supply
from both domestic production and imports was lost or squandered, costing the nation
approximately USD 105 million annually and contributing to significant losses in natural
resources [9]. Grain prices will rise further because of Russia’s decision to leave the Black
Sea Grain Accord and the global oil crisis. Wheat prices reached an all-time high after the
Russia-Ukraine War. Every month, the kingdom consumes 90,000 tons of wheat. Jordan
imports nearly 95% of the strategic grains it requires [10]. Fueled by fear of war, Jordan’s
wheat imports in 2022/2023 are expected to reach 1.3 million tons [11].
Jordan faces many difficulties, including rapid population expansion and heavy urbanization. Owing to Jordan’s strategic location, environmental factors, including water
scarcity and low soil quality, are harsh realities that cannot be changed. The nation is
experiencing a severe water deficit because of population pressure, which has accelerated
urbanization. Despite the increasing need for food, agriculture is not a promising alternative [12]. Numerous factors affect the choice of supplies, such as the cost of the product
in issue, the number of producers, the cost of inputs, technological advancements, the
Sustainability 2023, 15, 10519
5 of 23
cost of alternative products, and erratic variables such as weather. Although agriculture
does not ensure food security in Jordan, it makes the process exorbitant and ultimately
unsustainable. To the best of our knowledge, there are no studies concerned with ranking or selecting the best wheat suppliers in Jordan or the MENA region. Therefore, this
study seeks to address this gap based on the current situation. Additionally, this study
seeks to identify alternatives to wheat suppliers based on approved standards, especially
because the government is responsible for importing, storing, and managing wheat, which
is considered a strategic commodity for food in Jordan.
3. Methodology and Solution Approach
As shown in Figure 1, the research methodology consists of four main parts. The
first part includes the review and collection of data and information through previous
studies, official data on the websites of various official agencies, personal interviews, and
the inputs of the expert teams formed for evaluating providers. The second part deals
with the development of the framework for the selection of suppliers and consists of the
identification of suppliers and the definition of general criteria, guidelines, stages, steps,
and pillars of the SS process. The third part represents the application of the proposed
method to select the best provider and arrange the suppliers according to priority. It
contains the definition of MCDM and the proposed fuzzy-VIKOR method and reports the
steps and equations accompanying each step. The last section contains a description of the
case study, which represents the selection of the best wheat suppliers to Jordan through the
application of figures and the analysis of results. In all these stages, there was input from a
team of experts who contributed to identifying the main suppliers, determining the criteria,
and conducting evaluations of the suppliers, based on which the necessary calculations
were performed and the best suppliers were selected.
Review and Data Collections
SS Approach
SS Methodology
Numerical Case
Literature Review
Supplier Identification
MCDM
Case Description
Official Data
& Interviews
SS Criteria & Guidelines
FUZZY VIKOR
Numerical Applications
Experts Input
SS Stages, Pillars,
and Steps
Methodology Steps
Results Analysis
Conclusion, Recommendations, and Future Research
Figure 1. Research methodology.
3.1. Suppliers’’ Selection Approach (SSA)
The SSA is a comprehensive framework that can be utilized as a guide to effectively
select suppliers of wheat, other goods, products, or materials, and reduce the risks associated with the SS process. The supplier selection process is a great tool for developing
productive working relationships with vendors, in addition to helping organizations find
the lowest-priced products. Apart from the main issue of basing selection on cost, there
are other considerations as well, such as quality, reliability, punctuality, adaptability, safety,
Sustainability 2023, 15, 10519
6 of 23
ethical principles, and environmental impact. Provider evaluations can be divided into
two categories: quantitative and qualitative. Location, financial standing, facilities and
capacities, technological capability, and quality standards were all considered quantitative,
whereas on-time delivery of goods, data sharing, and communication were considered
qualitative.
Figure 2 shows the import procedures and selection of the main wheat supplier, which
include five main stages: Establishing requirements, defining the selection criteria, identifying possible suppliers, evaluation and selection, and implementation and monitoring.
Each stage contains a set of factors, procedures, and steps that govern or contribute to
effective provider selection. Four main pillars must be considered when choosing suppliers
for a critical product that impacts society: sourcing, planning, strategy, and development;
supplier/contractor management; storage capacity and economy; and SC capability management. Sourcing is the process of evaluating, choosing, and managing suppliers to
obtain the required products and services. As the name implies, sourcing is concerned
with developing sources through which an organization can obtain its goods. Supply
planning is the entire planning process that includes establishing the specifications for the
product and vendor and then creating an RFI, RFQ, or RFP to invite bids. The plan should
include a procedure for finding, assessing, and working with suppliers. A significant
portion of an organization’s financial resources is expended during the SS process, which is
essential for the success of any organization. A good plan should contemplate distribution
and procurement operations according to demand forecasts while considering capacity
constraints and product availability. Important strategies to reduce uncertainty include
SS techniques in terms of technology, quality, cost, and delivery performance. The SS
process includes finding, assessing, and working with suppliers. Supplier management
uses enormous economic resources and plays an essential role in ensuring the success of
contractor management. Storage capacity and the ability to manage inventory within a
specified period must be considered as economic determinants. SC capability describes the
level of inter-organizational activities between a customer and its supplier while reacting
to social concerns.
Supplementary selection steps should include analysis of the needs, collection of data,
defining the criticality of products, building strategy, defining SS criteria, listing potential
suppliers, reviewing RFPs, launching tenders, analyzing suppliers’ capabilities, evaluating
the offers, performing the financial analysis, contract awarding, contract implementation,
setup of the invoices, and monitoring performance. SS criteria include price, quality,
delivery, lead time, responsiveness, capability, and capacity. One of the main stages of SS
is the identification of potential suppliers by utilizing existing networks, online searches,
tradeshows/exhibitions, referrals, and networking.
The main guidelines for selecting suppliers include planning, looking beyond price,
considering the benefits, utilizing technology, and being practical and reasonable. Many
factors must be considered when selecting a reliable supplier. Organizations must consider
the track records of their performances, client satisfaction, costs, delivery, exchange rate,
and other factors. Organizations should plan proactively and review their requirements
and goals before beginning the SS process. One should also consider costs, the variety
of services provided, the quality of goods, the delivery schedule, and accessibility while
assessing vendors. Moreover, technology has simplified tracking and interaction with
potential vendors. There are many Internet resources that help accomplish search and
analysis. One should not count on obtaining all requirements from a single vendor and
should preferably combine multiple goods and services from diverse suppliers.
Sustainability 2023, 15, 10519
7 of 23
SS Guidelines
Define
Selection
Criteria
Identify Potential
Suppliers
Qualifications, Capability,
Commitment
Existing, networks, Online search, Trade shows/exhibitions, Referrals, Networking
Supplier
Selection
Q
u
a
l
Com ity, Cost
s, D
mu
n
i
c
ation elivery,
s, Or
Flex
ib
ig
i
n
,
Reli ility,
abili
ty
n and
Im
uatio n
l
a
v
E
tio
an ple
Selec
d
m
M en
on ta
ito tio
ri n
ng
Sourcing, Planning,
An
Strategy, and Development
cr aly
iti ze
ca bu
lit
y, sine
In ss
ve n
nt eed
or
y m s, R
an isk
ag ap
em pr
en oac
Pl
t, C h,
an
,S
on Pro
ou
str du
rc
ain ct
ing
ts
str
ate
gy
,R
isk
s
Establish
Requirements
Te
r
m
P od s and co
r
uct
n di
Prev charact tions,
i
o
u
s con eristics,
trac
ts
Price, Quality, Delivery, Lead time, Responsiveness, Capability, Capacity
d
ar
Aw ract he
,
on nt k t d
ati , Co trac s an
g
i
t
s
,
or
mi plan ions icat
d
t
d
n n
a
t a io ic In
en nsit mun nce
m
a
ra m m
ss
sse ls, T , Co rfor tives
a
a
ns Pe ec
s,
sk os
Ri rop ratio ey obj
lan es,
p
p de d K
r
n
e
i
tio su nc
ns an
ta mea ma
co ue ,
n
r
e e
l
rfo
em nc
va
pl plia g pe
Im m rin
Co ito
on
M
cial
inan
rs, F
offe tiations
ing
luat s, Nego
Eva
ysi
l
ana
ing,
odel
,
al m enefits
atic
b
ve
and
them
etiti
, Ma tial risk Comp
d
ems
syst t, Poten lity, an
c
king
bi
a
Ran
ontr s, Capa e
ate c
es
valu
Cre nsiven
po
Res
SS Criteria
SC Capability
Management
Identify Potential Suppliers
Plan forward, Look further than price, Consider the benefits, Utilize technology, Be practical and reasonable
Characteristics, Reliability, Operational and
Technical Capability, Stability, and Ease of
Communication at all Levels
Storage Capacity
and Economy
Supplier/ Contractors
Management
SS Steps
Analyze the needs, collect data, define criticality of products, build strategy, define SS criteria, list potential suppliers, review RFPs,
launch tender, analyze suppliers capabilities evaluate the offers, perform financial analysis, contract awarding, contract
implementation, setup the invoices, monitor performance
Figure 2. SS approach.
The five stages of the supplier selection approach are described as follows:
3.1.1. Establishing the Requirements
Specifying these requirements is the first stage of the SS procedure. This entails being
fully aware of what the providers are required to provide. The SS plan is a proactive process
that involves organizing resources to balance supply and demand while optimizing the flow
of products, money, and information. This plan determines the inventory levels and daily
distribution of wheat. It estimates the annual demand and allocates the necessary inventory.
Additionally, any plan should be flexible enough to change as the area experiences crises,
Sustainability 2023, 15, 10519
8 of 23
such as an increase in the number of refugees, which increases the demand for wheat.
The plan outlines the procedures, systems, and communication strategies employed. Any
source strategy should include risks associated with suppliers, such as low quality, delivery
delays, supply interruptions, supplier failures, and technology risks, which can be regarded
as the most pertinent sub-criteria in SS. A sourcing strategy should be in place to assess
and select suppliers who fulfill these requirements.
Reducing purchase risk, increasing buyers’ total value, and fostering intimate and
long-lasting relationships between buyers and suppliers are the primary goals of SS. The
process of identifying and assessing needs is included in the definition of needs analysis.
This is the first step that should be considered to successfully create an effective strategy.
Needs analysis enables companies to proactively address possible problems before they
materialize. Risk management is becoming a crucial issue in supplier choices. Assessing
supplier risk can help avoid detrimental effects on availability. The majority of the risks
that could affect SS can be divided into four major groups: economic, environmental,
political, and ethical. Product criticality is something whose supply is uncertain and for
which there is no simple replacement. Because of the rising dangers associated with wheat
supply and demand, wheat criticality has received attention on a global scale. Wheat
inventory management is one of the most important factors in determining the required
quantities, storage places, storage conditions, dates, and timing of demand. Because wheat
is a strategic product that is imported and managed by the government, the quantities of
stocks and storage conditions are important factors, so there is no stock-out at any moment.
Supplier constraints allow suppliers to let the purchasing organization know how much
they can supply. A cost limitation indicates a limited budget, whereas a time constraint
indicates a deadline for completing the procurement process. Constrained management is
essential for successful selection because most supplier limitations impact each other.
3.1.2. Defining the Selection Criteria
The selected criteria determine whether a supplier satisfies the specified requirements.
To make an effective selection process, each criterion must be precisely specified, and the
weighting for each selection criterion must be determined. Provider selection is based on a
wide range of factors. These include costs, value for money, quality, delivery, reliability,
lead time, responsiveness, flexibility, capability, communication, origin, and reliability.
While some bids may use all these factors, others may only use a few of them. Although
each of these factors may be significant, some are noteworthy. For example, the quality may
be crucial. If costs are important, providers may offer poor quality and long lead times.
The conditions and specifications for the purchase of wheat for Jordan are listed in the
tenders offered by MITS for the purchase of wheat [12]. The full wheat import procedure
by seaports is stated in Jordanian customs [48], and there are some studies regarding the
strategy for food security [49]. The specifications and conditions of the tenders for the
purchase of wheat in Jordan depend on the specifications set by the MITS. Previous bids
and suppliers are also considered in terms of compliance with the supply and quality
specifications of imported or locally produced wheat. The amount of wheat stock or the
quantity to be purchased is determined by the government based on strategic plans and
national food security.
At this stage, the terms and conditions, product characteristics, and lessons learned
from previous contracts should be determined by government authorities. In this study,
among the many wheat characteristics mentioned earlier, the following seven criteria (quality, costs, delivery, flexibility, communication, origin, and reliability) have been identified
by specialists as being crucial to evaluating the main wheat supplier to Jordan.
3.1.3. Identifying Possible Suppliers
The group from which a supplier has to be chosen must be established after the selection criteria are in place. The following should be considered throughout this stage as
sources for locating, researching, and contacting potential vendors: current suppliers, pre-
Sustainability 2023, 15, 10519
9 of 23
vious suppliers, competitors, industry associations, recommendations, previous business
connections, and the Internet. There are several methods to identify possible suppliers, such
as utilizing current networks, online searches, recommendations from respectful people,
networking with other businesses, and checking trade directories.
Supplier qualification can be viewed as a risk analysis technique. It should provide the
right amount of assurance that suppliers, vendors, and contractors can deliver products,
components, and services of consistently high quality while adhering to legal standards.
Supplier qualifications include the ability to provide high-quality products or services
that comply with all requirements, at fair prices, and conditions. Priorities and strategies
determine how to prioritize these factors. As part of a supplier’s qualifications, you should
regularly audit your suppliers. Having competent suppliers can help guarantee output
quality.
Supplier capabilities represent the way suppliers interact with a buyer’s operations
by providing significant inputs regarding the purchase of goods. Supplier capability
evaluation includes determining the critical supplier evaluation criteria for price, quality,
technology, regulatory compliance, economic viability, and stability. To anticipate capacity
disruptions, it is necessary to gather supplier intelligence at the company, product, part, and
process levels. Choose suppliers who share a commitment to sustainability and a shared
commitment to support each other’s long-term goals. A supplier’s strategic commitment to
a buyer has a significant impact on performance. Good suppliers are usually characterized
by reliability, operational and technical capabilities, stability, and ease of communication at
every level. It is necessary to have a long-term relationship, be financially stable, adhere to
a total-quality performance philosophy, and carefully prepare and implement strategies.
Success in this novel and distinctive medium necessitates a multifaceted, multidirectional
strategy.
The supplier’s physical ability to fulfill needs as promised is a key factor in award determination. Reliable suppliers should be characterized by the capacity to deliver frequently
and on time, small exact quantities, sharing data, showing continuous improvements, and
partnerships with simple and open communications at all levels. Suppliers’ operational,
technological, and technical proficiencies should also be assessed as significant skills. Verify
whether a potential provider has the skills, resources, and tools required to meet their
needs. This can be discovered by examining past performance data and active participation
in industrial events. Financial analysis is frequently necessary to satisfy audit compliance
requirements and aids in the assessment of overall supply-based risk concerns. Based
on their financial stability, leverage, and competitive advantage, financial ratios assist
suppliers in choosing and qualifying. Communication is important, particularly when
issues develop. During this period, ensure that the supplier provides adequate feedback.
The finest suppliers also go out of their way to communicate frequently and learn how to
provide better services.
3.1.4. Evaluation and Selection
Every buyer should use an evaluation procedure before choosing an offer to ensure
that all organizational needs are considered and optimized. Examining a supplier’s offer
entails not only assessing its components but also determining whether the seller has the
capacity to speedily deliver the desired quality. One should consider both the benefits
and potential risks while evaluating the proposals. Before choosing and contracting a
supplier, it is necessary to evaluate three important factors: responsiveness, capacity, and
competitive value.
The process of evaluating a new or existing supplier is based on delivery, price, output,
management level, technical expertise, and service. For both current and potential suppliers,
a common methodology for suppliers’ evaluation must be applied in every situation. A
framework for evaluating suppliers can assist in creating a benchmark and formulating
strategies for remedial actions for current providers. The quality of the purchased wheat
should be the primary consideration when choosing a provider. Because product quality
Sustainability 2023, 15, 10519
10 of 23
can directly impact society, it should continuously satisfy set specifications. Additionally,
suppliers’ attributes, such as delivery lead times, should be carefully considered. The
product’s unit price, payment terms, cash discounts, ordering and carrying costs, logistics
and maintenance expenses, and other qualitative factors that could be challenging to
calculate should all be included in the total cost. The discussions should commence only
when the list has been reduced to a manageable number of best possibilities, potentially
just one supplier. One might simply negotiate with the top supplier based on bidding, even
when others are still on the list of potential suppliers, depending on the essential good or
service. Of course, until the conversations and agreements are finalized, the other parties
are not informed that they are not number one. Lawyers may also be involved, depending
on the complexity of the matter.
The evaluation and selection process should include ranking systems, mathematical
modeling, contract creation, potential risks and benefits, responsiveness, capability, and
competitive value. Shortlist the potential providers identified using the data collected during the preliminary research. Choosing the best provider is the final step in the SS process.
The selection of the best supplier depends on various factors, including negotiation results,
prequalification questions, and request for quote (RFQ) requirements. Additionally, as
proof of its capacity to deliver that product, the supplier is required to present information
on its capabilities, capacity, third-party certifications, and so on. The selected vendors are
subsequently added to the organization’s list of authorized suppliers. Supplier selection is
a multicriteria challenge that considers both qualitative and quantitative variables. These
concrete and intangible characteristics, some of which may contradict each other, must be
traded to choose the best suppliers. Buyers usually evaluate and confirm their ranking
system before the bidding process. Mathematical modeling with decision support systems
is an essential part of the evaluation and selection process for final suppliers.
When selecting the main supplier, risks such as non-delivery time, quality, and uncontrolled changes, the speed of the provider’s reaction to these changes, and the mechanism
for dealing with disruptions are all considered. The supplier’s ability to supply the full
quantities required within written timings and standards is most critical. One of the most
important evaluation methods relates to the competitiveness of the provider in terms of
quality, price, and delivery. After selecting the best provider, the process of drafting and
signing the agreement, which includes legal, contractual, technical, financial, operational,
and other conditions, is usually carried out by lawyers.
3.1.5. Implementation and Monitoring
The follow-up and control of supply from the contractor must include implementation
plans, compliance measures, monitoring performance, risk assessment and mitigation,
award proposals, transition plans, contract considerations, communication, tracking value,
and key performance indicators and objectives. Throughout the SS process, performance
must be monitored. Monitoring ensures that you receive the finest-quality service and value
for money. To deploy new products, it is crucial to collaborate with new suppliers using
communication strategies. The potential hazards of this relationship should be determined
and reduced with adequate compliance controls. According to the aforementioned process,
the most important risk variables are low quality, delivery delays, supply interruptions,
supplier failures, and technological risks. Subsequently, a contract should be signed to
formally bind the agreements. Modern technology can automatically construct contracts
using data that has already been entered into the system and from earlier RFPs to guarantee
supplier information accuracy. Key performance indicators and goals should be established
and followed to hold suppliers accountable. Once a provider is selected, an invoicing
procedure must be established. Any new supplier contract offers an opportunity to argue for
invoice automation, especially if the new arrangement generates many invoices. Ongoing
supplier performance tracking should include obtaining timely product deliveries, superior
items, outstanding client service, the right goods, and the legitimate amount listed on
the invoice. To demonstrate to the larger business how these cost-saving initiatives made
Sustainability 2023, 15, 10519
11 of 23
possible by procurement have improved the bottom line, one should keep track of the
savings achieved with the new supplier. Even under the best circumstances, purchasing
is a challenging task. Organizations should be able to skillfully negotiate market shifts,
supply constraints, and changing needs on an ongoing basis if a solid procedure is in place.
The proposed SS approach can be used to build a network that is stable, strong,
and aligned with consumption and goals, and it can help prevent the usual mistakes
committed while choosing suppliers. The SSA considers the dynamic nature of the market
and potential external and internal changes. Therefore, it can prove beneficial by increasing
the stability, adaptability, reliability, and robustness of supplier selection. In addition, the
framework accounts for the planning and management of suppliers, implementation, and
risks and serves as a quick tool for the evaluation and selection process. Establishing
appropriate initial selection criteria and ensuring that the right supplier is selected are
the primary steps in effective sourcing management. The successful establishment of a
supplier selection system requires time and effort. However, if you are successful in putting
it into practice, it will undoubtedly be very beneficial and will increase stability. Inadequate
planning and effort frequently lead to predictable risks in this process, such as the selection
of an incorrect supplier or subpar supplier performance. Therefore, organizations should
thoroughly comprehend the procedures for SS and use them effectively.
3.2. Fuzzy VIKOR Approach
The VIKOR approach, which stands for “VlseKriterijumska Optimizacija I Kompromisno Resenje” (multi-criteria optimization and compromise-solution), was created by
Opricovic in 1998 [50]. The VIKOR approach is either an MCDM or MCDA method. Assuming that a compromise is acceptable for conflict resolution, the decision-maker wants
a solution that is as close to the ideal as possible, and the alternatives are evaluated in
accordance with all established criteria. It was initially developed to resolve decision
problems with conflicting criteria. The compromise option closest to the ideal is identified
by VIKOR after ranking the alternatives [50]. VIKOR is used in different disciplines, such
as engineering, business, environment, and supply chains, and has dozens of applications
in different, complex, and interrelated topics, including SS, management decisions, partner
selection, renewable energy, airport strategies, risk assessment, commerce, and various
aspects of life. In general, the VIKOR is used in problems involving multiple-criteria
evaluation and the selection of alternatives.
The fuzzy set concept presented by Zadeh [51] addresses issues in which a source
of ambiguity exists. A regular number is expanded using a fuzzy number. This refers to
a connected group of potential values rather than a single specific value [51]. To solve
problems in a fuzzy environment, where both criteria and weights can be fuzzy sets, a
fuzzy-VIKOR (F-VIKOR) approach was created. Triangular fuzzy numbers (TFN) were
employed to manage the erroneous numerical values. The foundation of the F-VIKOR is
the fuzzy merit aggregate, which shows how far an imperfect solution is from an ideal
solution. The F-VIKOR algorithm was developed using fuzzy operations and methods to
rank fuzzy numbers. Linguistic variables are phrases or clauses in a language, whether
natural or artificial. The values include language variables rather than numerical variables.
Fuzzy logic specifically handles linguistic variables. The following F-VIKOR steps were
utilized in this study and adopted from [50,52–55].
Steps for Fuzzy-VIKOR
Step 1: Define the attributes. Organize the decision-making team while outlining a
list of pertinent factors. Before establishing evaluation scales to evaluate concepts, the
selection criteria for concept designs must be determined. Identify the objectives of the
decision-making process, create a list of feasible alternatives, find the evaluation criteria, and constitute a group of decision-makers. Suppose there are K decision-makers
( Dt , t = 1, 2, . . . , K ), who are responsible for assessing m alternatives ( Ai , i = 1, 2, . . . , m),
with respect to the importance of each n criterion (Cj , j = 1, 2, . . . , n).
Sustainability 2023, 15, 10519
12 of 23
Step 2: Identify the appropriate linguistic variables. Select the required linguistic
variables and their positive triangular fuzzy values. The important weights of the criteria
and evaluations of alternatives regarding various criteria should be computed using linguistic variables. A triangular fuzzy number (6, 7, 8), for instance, can be used to define the
linguistic variable “very strongly important (Vs)”. To describe these linguistic variables as
positive triangular fuzzy numbers, one must first specify the linguistic variables for the
significant weights of the criteria and the fuzzy rates for the alternatives in relation to each
criterion.
Step 3: The fuzzy importance weights of the evaluation criteria are determined. Many
interpretations of the evaluation criteria cannot be assigned equal weight. Based on the
assumption that there are k specialists in the evaluation group, this study uses an average
approach to integrate the opinions of numerous evaluators. The fuzzy importance weight
e i of criterion Cj will be as expressed in Equation (1) [52].
w
ei =
w
1 1
ei + w
ei2 + i w
eik ,
w
k
(1)
where wik is the criteria Cj ’ is the fuzzy importance weight of criterion Cj , as determined by
eik = lik + mik + uik .
the kth evaluator. Additionally, w
Step 4: Creating a performance rating matrix. To obtain the aggregated fuzzy weighting of the alternatives, the decision-maker must be consulted to generate the fuzzy decision
e Let k be the total number of decision-makers in the group, and let w
e i be the
matrix D.
total fuzzy weights for each criterion. The formula for Cj is shown in step 3, and the
combined fuzzy ratings can be calculated using the following equation. To calculate the
number of possibilities for each criterion, a fuzzy decision matrix is created by analyzing
the judgments of the decision-makers to obtain the aggregated fuzzy weights of the criteria
and alternatives. The following is a formal matrix description of a typical fuzzy MCDM
problem: Assume there are m options for k evaluators to assess in light of n criteria. In the
supplier selection problem, the value of the aggregated weights is expressed in a matrix
format, as shown in Equation (2).
A xe11
A2 xe21
e= .
D
.
..
..
Am xem1
xe12
xe22
..
.
xem2
...
...
..
.
...
xe1n
xe2n
.. ,
.
i = 1, 2, . . . , m;
j = 1, 2, . . . , n
(2)
xemn
where xij is a linguistic variable represented by the triangular fuzzy number (TFN) rating
of alternative Ai , i = 1, 2, . . . , m with respect to criterion Cj (j = 1, 2, . . . , n).
The performance of the feasible alternatives should be assessed or ranked by evaluators to express their preferences because the evaluators’ preferences for alternatives
vary based on their personal experiences, cultural backgrounds, value systems, and educational backgrounds. This study uses the averaging approach to generate the fuzzy
performance value xij for k evaluators, considering the same criterion, Cj [52], as represented by Equation (3).
1 1
xeij + xeij2 + j4e
xijk ,
(3)
xeij =
k
where xijk is the performance rating for alternative A j with respect to the criterion Ci
evaluated by kth expert, and xeijk = lijk + mijk + uijk .
Step 5: Determine
for
each criterion. The fuzzy best
the best and worst−fuzzy−values
− −
∗
∗
∗
∗
value f i = li , mi , ui , and worst value f i = li , mi , ui , can be determined using the
relations [42] depicted in Equations (4) and (5).
fei∗ = max xeij ,
j
fei− = min xeij ,
j
for i f o
(4)
Sustainability 2023, 15, 10519
13 of 23
fei− = max xeij ,
fei∗ = min xeij ,
j
j
for i f o
(5)
where B and C are sets of beneficial and non-beneficial criteria, respectively.
The fuzzy difference deij between xeij and the fuzzy worst value fei− (or the fuzzy best
value fei∗ ) can be calculated using Equations (6) and (7) [53].
deij =
deij =
fei∗ − xeij
ui∗ − li−
xeij − fei∗
ui− − li∗
for i f o
(6)
for i ∈ C.
(7)
,
,
e j . This stage involves measuring the distances
Step 6: Compute the values Sej and R
between alternative A( j) and the fuzzy best value fei∗ and the fuzzy worst value fei− , respectively. These values were assessed using the relationships [53] depicted through
Equations (8) and (9).
n
ei (=) deij ,
w
Sej = ∑
(8)
i =1
where Sej =
criterion Cj .
e j = max w
ei (×) deij ,
R
i
(9)
u , R
e j = Rl , Rm , Ru , and w
e i is the importance weight for the
,
S
Slj , Sm
j
j
j
j
j
ej. Q
ej =
Step 7: Compute the value of Q
Equation (10) [53].
u , can be calculated using
,
Q
Qlj , Qm
j
j
e j = v(Sej (−) Se∗ )/(S−/ − /S∗/ ) (+) (1-v)( R
e j (−) R
e ∗ )/( R−/ − /R∗/ ),
Q
(10)
e* = Min j R
e j , R−u = Max j Ru , v is the weight for
where Se* = Min j Sej , S−u = Max j Suj , R
j
“the majority of the criteria” when making a decision, and (1-v) is the weight for individual
regret, v ǫ {0, 1} with v as typically equal to 0.5 [44]. As v is a weight of the strategy of
maximum group utility, the compromise can be selected with “voting by majority” (v > 0.5),
or “consensus” (v = 0.5), or “veto” (v < 0.5).
e j , Sej , and R
e j , ( j = 1, 2, . . . , j) using the following
Step 8: Defuzzify the values Q
Equation (11) [53]:
e = (u + 2m + l )/4
(11)
crisp N
Step 9: Rank the alternatives by sorting the S, R, and Q values in ascending order.
The alternatives are ranked by sorting the crisp values in ascending order. The results
were as follows: { A}S , { A} R , and { A}Q according to crisp(S), crisp( R), and crisp( Q),
respectively. We ranked the options by arranging the crisp values of S, R, and Q in
ascending order. In other words, the Q value of an option decreases as it improves.
Step 10: Select the best alternative as the compromise solution. This step suggests
a compromise solution, where alternative (A(1) ) is considered to be the best with the
minimum Q value if the next two conditions are satisfied [53].
If the following two conditions are satisfied simultaneously, the scheme with the
minimum value of Q in the ranking is considered the
compromise solution.
optimal
C1: Acceptable benefit, wherein alternative Q A(1) has an acceptable advantage as
presented by Equation (12)
Q A(2) − Q A(1) ≥ DQ,
(12)
Sustainability 2023, 15, 10519
14 of 23
where DQ = 1/(m − 1), m is the number of alternatives and A(2) is an alternative with
second position in the ranking list.
C2: Reasonable decision-making stability, wherein alternative Q A(1) is stable within
the decision-making process; in other words, it holds the top rank in Si (and/or) Ri .
If condition C1 is not satisfied, that means Q (A(m) ) − Q (A(1) ) ≤ DQ, then all the
alternatives A(1) , A(2) , . . . , A(m) are the compromise solution. There is no comparative
advantage of A(1) over others, but in the case of the maximum value, the corresponding
alternative is the compromise (closeness) solution. If Condition C2 is not satisfied, the stability in decision making is deficient, whereas A(1) has a comparative advantage. Therefore,
A(1) and A(2) are the compromised solutions.
4. Case Study Analysis and Discussion
Like the rest of the Middle East, Jordan relies heavily on wheat in its daily diet. Wheat,
flour, and bread are essential items on daily Jordanian tables. The Hauran Plains in northern
Jordan and southern Syria are considered the breadbaskets of the ancient Roman Empire
because of their prolific wheat production. Jordan had a surplus of wheat production until
the end of the 1960s of the last century. Jordan remained between imports and exports
until 1989. According to the Jordanian Ministry of Industry and Trade, Jordan currently
imports approximately 95% of its wheat needs, amounting to approximately 1,100,000 tons
per year. Jordan imports wheat from different countries, and sometimes wheat is supplied
to Jordan in the form of aid, especially from the United States. The MITS issues an annual
tender for the purchase of wheat at the port of Aqaba, carriage and insurance paid (CIP).
The company that wins the tender supplies wheat according to specifications approved
by the MITS, MOA, and JSMO. Thus, the source of wheat depends on the variety, quality,
purchase prices from the source, transportation fees, loading and unloading costs, and
other factors such as delivery periods. Wheat production is seasonal, and storage capacities
are usually limited or just suitable for varying periods. The price of wheat varies globally
according to the type and approved quality standards. Wheat is typically classified as hard
or soft.
To increase their ability to compete in the global market, all SC parties concerned
must endeavor to bring down the cost of logistics. Therefore, it is essential to create
superior agricultural and food logistics [14]. For wheat SS for Jordan, we should take
into consideration that several countries in North America and Europe dominate the
supply chain for wheat [19]. COVID-19 has had a deleterious effect on wheat since it
delayed crop harvesting and the lockdown impacted the supply chain and pricing [20].
The capacity of the wheat supply chain to remain viable is significantly impacted by the
growing of wheat [21]. Therefore, the wheat supply chain must be dedicated to and
participate in sustainable collaborative innovations [22]. All these factors should be taken
into account when analyzing and selecting the main supplier or ranking suppliers for wheat.
Moreover, expected and unexpected changes and risks may affect the future identification
and selection of the main wheat suppliers to Jordan.
The VIKOR-MCDM-making approach was utilized to evaluate and select the top
five wheat suppliers in Jordan. By utilizing linguistic assessment, which converts VIKOR
to fuzzy numbers and refers to them as fuzzy-VIKOR factors, the supplier ratings were
derived. The following steps summarize the numerical assessment of the case based on the
F-VIKOR steps described in the previous section.
Step 1: The main objective of this study was to identify the main supplier of wheat
in line with the available alternatives and approved wheat standards, specifications, and
classifications. A team of twelve experts (K = 12) consisting of specialists, academicians,
and logisticians was formed to define the attributes. Based on the available information, the
experts identified five main countries to import from: Russia, Romania, Ukraine, Australia,
and Syria. Although dozens of countries produce and export wheat, experts chose these
countries for various reasons. Russia, from which imports have been made in recent years,
is one of the largest global exporters of wheat. In recent years, Romania has become the
Sustainability 2023, 15, 10519
15 of 23
main wheat supplier to Jordan and Ukraine, and Jordan has imported varying quantities
of wheat from it in previous years. Australia, as Jordan had previously imported from it.
In addition to them, Syria was also considered because it is a neighboring country and,
therefore, the transportation costs are low compared to other sources.
The criteria approved by the team of specialists included the quality, expenses (price
and costs), delivery (time, place, and amount), origin (source country), flexibility, communication, and reliability/solvency of the importer. The quality, specifications, and
classifications set by the Ministry of Trade, Industry, and Supply, the Jordan Standards
and Metrology Organization, and the Ministry of Agriculture include type, producer, percentage of moisture, percentage of harmful substances, and many other specifications
determined by the concerned parties. Figure 3 below shows the main features of wheat
imports to Jordan, including the goals, criteria, and alternatives. The F-VIKOR technique
was used to identify the main wheat suppliers to Jordan and prioritize them based on the
identified attributes.
Figure 3. Wheat suppliers and their selection criteria.
Step 2: Table 1 shows the necessary linguistic elements and their triangular, fuzzy
positive values. Using linguistic variables, the significant weights of the criteria and
evaluations of alternatives based on numerous criteria were calculated. For example, an
expert can describe the linguistic variable for the importance of criteria “medium high
“
(MH)” as a triangular fuzzy number (0.6, 0.7, 0.8), and the rating for alternative
“good (G)”
”
as
a
triangular
fuzzy
number
(0.6,
0.7,
0.8),
and
the
rating
for
alternative
“good
as TFN (0.5, 0.65, 0.8).
(G)” as
TFN
(0.5, 2 shows the fuzzy importance weights of the evaluation criteria. Based
Step
3: Table
on the expert group evaluation, this study used the average approach to combine the views
of many evaluators. The average criteria weights were computed using Equation (1).
Sustainability 2023, 15, 10519
16 of 23
Table 1. Linguistic scales and their corresponding TFNs.
Importance of Criteria
Ratings of Alternatives
Linguistic
Variables
Abbr.
Corresponding
TFNs
Linguistic
Variables
Abbr.
Corresponding
TFNs
Very low (VL)
VL
(0.0, 0.0, 0.1)
Very poor
VP
(0.0, 0.1, 0.2)
Low (L)
L
(0.0, 0.1, 0.2)
Poor
P
(0.1, 0.2, 0.3)
Medium low (ML)
ML
(0.2, 0.3, 0.4)
Medium poor
MP
(0.2, 0.35, 0.5)
Medium (M)
M
(0.4, 0.5, 0.6)
Fair
F
(0.4, 0.5, 0.6)
Medium high (MH)
MH
(0.6, 0.7, 0.8)
Good
G
(0.5, 0.65, 0.8)
High (H)
H
(0.7, 0.8, 0.9)
Very good
VG
(0.7, 0.8, 0.9)
Very high (VH)
VH
(0.8, 0.9, 1.0)
Excellent
E
(0.8, 0.9, 1.0)
Step 4: Analysis of makers’ assessments yields the combined fuzzy weights of the
criteria and options, which are then used to form the fuzzy decision matrix. Each expert
evaluated the alternatives according to each criterion. Table 3 shows a sample of the twelveexpert evaluation of alternative ( A1 : RU ) with respect to criteria (C1 : Q), their linguistic
variables, and the corresponding triangular fuzzy numbers (TFN). The aggregated fuzzy
weights of the criteria and alternatives were then calculated using Equations (2) and (3).
The results are shown in the performance rating matrix, depicted in Table 4.
Step 5: The fuzzy best value fei∗ and fuzzy worst value fei− for each criterion were
calculated using Equations (4) and (5). “NB” represents the non-beneficial values and “B”
represents beneficial values. The fuzzy difference deij between xeij and the fuzzy worst value
fei− and the fuzzy best value fei∗ were computed using Equations (6) and (7). Table 5 shows
the best and worst fuzzy values.
The separation between the alternatives and the fuzzy best and worst values (deij ) was
computed using Equation (6) for beneficial criteria and Equation (7) for non-beneficial
criteria. Table 6 shows the separation between the alternatives and the best and worst fuzzy
values.
e j using Equations (8) and (9).
Step 6: Table 7 lists the calculated values of Sej and R
e
Step 7: Using Equation (10), the value of Q j , where v = 0.5 was calculated. The results
are shown in Table 8.
e j , Sej and R
e j using Equation (11).
Step 8: Table 9 shows the defuzzification of the values Q
Step 9: The S, R, and Q values of each choice were sorted in ascending order for
ranking. Table 10 shows the ranking list according to the crisp values.
Step 10: Select the best alternative as a compromise solution based on conditions C1
(Equation (12)) and C2. Table 11 shows that alternative A2 has the minimum Q value and
satisfies the first condition, C1. In addition, as A2 is top-ranked based on the R values, A2
is the best solution, as specified by the second criterion, C2. Thus, A2 was considered the
optimal compromise solution.
Sustainability 2023, 15, 10519
17 of 23
Table 2. Fuzzy importance weights of the criteria.
Dt/Ci
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
ei
w
Q
E
D
S
F
C
R
VH
VH
H
H
VL
L
H
(0.8, 0.9, 1)
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.7, 0.8, 0.9)
(0, 0, 0.1)
(0, 0.1, 0.2)
(0.7, 0.8, 0.9)
H
VH
H
MH
L
H
MH
(0.7, 0.8, 0.9)
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.6, 0.7, 0.8)
(0, 0.1, 0.2)
(0.7, 0.8, 0.9)
(0.6, 0.7, 0.8)
VH
H
VH
MH
ML
MH
H
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.8, 0.9, 1)
(0.6, 0.7, 0.8)
(0.2, 0.3, 0.4)
(0.6, 0.7, 0.8)
(0.7, 0.8, 0.9)
VH
MH
MH
VH
L
VL
VH
(0.8, 0.9, 1)
(0.6, 0.7, 0.8)
(0.6, 0.7, 0.8)
(0.8, 0.9, 1)
(0, 0.1, 0.2)
(0, 0, 0.1)
(0.8, 0.9, 1)
VH
VH
MH
VH
L
L
VH
(0.8, 0.9, 1)
(0.8, 0.9, 1)
(0.6, 0.7, 0.8)
(0.8, 0.9, 1)
(0, 0.1, 0.2)
(0, 0.1, 0.2)
(0.8, 0.9, 1)
H
VH
H
H
VL
L
H
(0.7, 0.8, 0.9)
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.7, 0.8, 0.9)
(0, 0, 0.1)
(0, 0.1, 0.2)
(0.7, 0.8, 0.9)
VH
VH
H
H
VL
ML
H
(0.8, 0.9, 1)
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.7, 0.8, 0.9)
(0, 0, 0.1)
(0.2, 0.3, 0.4)
(0.7, 0.8, 0.9)
VH
H
MH
MH
L
ML
VH
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.6, 0.7, 0.8)
(0.6, 0.7, 0.8)
(0, 0.1, 0.2)
(0.2, 0.3, 0.4)
(0.8, 0.9, 1)
H
H
MH
H
ML
ML
MH
(0.7, 0.8, 0.9)
(0.7, 0.8, 0.9)
(0.6, 0.7, 0.8)
(0.7, 0.8, 0.9)
(0.2, 0.3, 0.4)
(0.2, 0.3, 0.4)
(0.6, 0.7, 0.8)
MH
VH
H
VH
ML
H
H
(0.6, 0.7, 0.8)
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.8, 0.9, 1)
(0.2, 0.3, 0.4)
(0.7, 0.8, 0.9)
(0.7, 0.8, 0.9)
VH
VH
H
MH
L
VL
MH
(0.8, 0.9, 1)
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.6, 0.7, 0.8)
(0, 0.1, 0.2)
(0, 0, 0.1)
(0.6, 0.7, 0.8)
VH
H
VH
H
VL
ML
MH
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0.8, 0.9, 1)
(0.7, 0.8, 0.9)
(0, 0, 0.1)
(0.2, 0.3, 0.4)
(0.6, 0.7, 0.8)
(0.76, 0.86, 0.96)
(0.75, 0.85, 0.95)
(0.68, 0.78, 0.88)
(0.69, 0.79, 0.89)
(0.05, 0.12, 0.22)
(0.23, 0.32, 0.42)
(0.69, 0.79, 0.89)
Table 3. Expert evaluation of alternative A1 with respect to criterion C1 .
Equivalent TFNs
RU-Q
(A1-C1)
Linguistic
Scale
l
m
u
Expert 1
L
0.1
0.2
0.3
Expert 2
ML
0.2
0.35
0.5
Expert 3
L
0.1
0.2
0.3
Expert 4
M
0.4
0.5
0.6
Expert 5
L
0.1
0.2
0.3
Expert 6
M
0.4
0.5
0.6
Expert 7
M
0.4
0.5
0.6
Expert 8
L
0.1
0.2
0.3
Expert 9
MH
0.5
0.65
0.8
Expert 10
L
0.1
0.2
0.3
Expert 11
M
0.4
0.5
0.6
ML
0.2
0.35
0.5
0.25
0.3625
0.475
Expert 12
Average xeij
Sustainability 2023, 15, 10519
18 of 23
Table 4. The aggregated fuzzy performance rating matrix.
Q
E
D
S
F
C
R
RU
(0.25, 0.36, 0.48)
(0.23, 0.36, 0.49)
(0.25, 0.38, 0.5)
(0.27, 0.38, 0.48)
(0.27, 0.39, 0.51)
(0.25, 0.38, 0.5)
(0.22, 0.34, 0.46)
(0.3, 0.41, 0.53)
RO
(0.33, 0.44, 0.54)
(0.38, 0.5, 0.62)
(0.31, 0.43, 0.54)
(0.25, 0.38, 0.5)
(0.41, 0.53, 0.64)
(0.36, 0.48, 0.59)
AU
(0.26, 0.39, 0.52)
(0.27, 0.38, 0.48)
(0.42, 0.54, 0.66)
(0.45, 0.56, 0.68)
(0.27, 0.38, 0.48)
(0.31, 0.43, 0.54)
(0.38, 0.5, 0.63)
UA
(0.38, 0.5, 0.63)
(0.38, 0.5, 0.62)
(0.29, 0.41, 0.53)
(0.22, 0.34, 0.46)
(0.35, 0.48, 0.6)
(0.46, 0.58, 0.69)
(0.42, 0.54, 0.66)
SY
(0.28, 0.4, 0.53)
(0.34, 0.46, 0.58)
(0.33, 0.44, 0.55)
(0.35, 0.48, 0.6)
(0.29, 0.41, 0.53)
(0.3, 0.41, 0.53)
(0.23, 0.35, 0.47)
Table 5. The fuzzy best and worst values.
fei∗
fei−
Q
E
D
S
F
C
R
NB
B
NB
B
B
B
B
(0.25, 0.36, 0.48)
(0.38, 0.5, 0.62)
(0.25, 0.38, 0.5)
(0.45, 0.56, 0.68)
(0.41, 0.53, 0.64)
(0.46, 0.58, 0.69)
(0.42, 0.54, 0.66)
(0.38, 0.5, 0.63)
(0.23, 0.36, 0.48)
(0.42, 0.54, 0.66)
(0.22, 0.34, 0.46)
(0.27, 0.38, 0.48)
(0.25, 0.38, 0.5)
(0.22, 0.34, 0.46)
Table 6. Fuzzy differences.
Q
E
D
S
F
C
R
RU
(0, 0, 0)
(0.23, 0.36, 0.46)
(0, 0, 0)
(0.21, 0.31, 0.43)
(0.27, 0.36, 0.43)
(0.25, 0.38, 0.5)
(0.22, 0.34, 0.46)
RO
(0.22, 0.24, 0.24)
(0, 0, 0)
(0.11, 0.13, 0.14)
(0.21, 0.31, 0.4)
(0, 0, 0)
(0.17, 0.24, 0.31)
(0.18, 0.26, 0.35)
AU
(0.02, 0.07, 0.14)
(0.21, 0.34, 0.48)
(0.42, 0.54, 0.66)
(0, 0, 0)
(0.27, 0.38, 0.48)
(0.22, 0.32, 0.42)
(0.08, 0.09, 0.1)
UA
(0.38, 0.5, 0.63)
(0, 0, 0)
(0.07, 0.1, 0.11)
(0.22, 0.34, 0.46)
(0.14, 0.16, 0.16)
(0, 0, 0)
(0, 0, 0)
SY
(0.06, 0.11, 0.18)
(0.09, 0.13, 0.15)
(0.15, 0.17, 0.17)
(0.15, 0.18, 0.21)
(0.24, 0.31, 0.36)
(0.23, 0.34, 0.46)
(0.21, 0.33, 0.45)
ej.
Table 7. The calculated values of Sej and R
Slj
Sm
j
Suj
Rlj
Rm
j
Ruj
RU
1.17619
1.742708
2.274905
0.266667
0.375
0.5
RO
0.891425
1.177218
1.445826
0.222222
0.3125
0.403846
AU
1.208088
1.736364
2.296598
0.416667
0.5375
0.658333
UA
0.808701
1.091026
1.353509
0.375
0.5
0.625
SY
1.128242
1.560875
1.970866
0.240196
0.335156
0.456522
e∗
Se∗ , R
0.808701
1.091026
1.353509
0.222222
0.3125
0.403846
1.208088
1.742708
2.296598
0.416667
0.5375
0.658333
e−
Se− , R
Table 8. Q j values.
Qlj
Qm
j
Quj
RU
0.574353
0.638889
0.677416
RO
0.103563
0.066131
0.048944
AU
1
0.995132
1
UA
0.392857
0.416667
0.434509
SY
0.446258
0.410837
0.430799
Sustainability 2023, 15, 10519
19 of 23
Table 9. Crisp values.
Alternative
Sj
Rj
Qj
RU
A1
1.734128
0.379167
0.632387
RO
A2
1.172922
0.312767
0.071192
AU
A3
1.744353
0.5375
0.997566
UA
A4
1.086065
0.5
0.415175
SY
A5
1.555215
0.341758
0.424683
Table 10. Ranks based on crisp, S, R, and Q values.
Rank Based on
Q
Rank Based on
R
Rank Based on
S
A2
A2
A4
A5
A4
A2
A1
A5
A5
A4
A1
A1
A3
A3
A3
Table 11. Compliance with conditions/checking the two condition and select the optimal solution.
2
Q(A4)
0.415175
1
Q(A2)
0.071192
Q(A4)-Q(A2)
0.343983
DQ
0.25
Condition 1
OK
A2 is best ranked based on
R
A2
Condition 2
OK
The best Alternative
A2
Figure 4 shows the rankings of the suppliers based on the Q-value, ordered as Romania,
Ukraine, Syria, Russia, and Australia. New sources may be considered in the future to
include other suppliers from Europe and Central Asia and suppliers from South America
and China.
Based on the current criteria considered by MITS, MOA, and JSMO, Romania is the
best supplier of wheat to Jordan based on the attributes under consideration. To this extent,
this assessment aligns with the assessment of the experts. This assessment is commensurate
with the current situation, where Romania is considered a reliable, close source with good
communication, exchange rates through official channels, flexibility, and the least expensive.
This was due to the Russia-Ukraine war, the increase in taxes and fees for Russian exports,
the long distance and limited availability of wheat from Australia, and Syria’s inability to
supply Jordan with wheat due to the lack of reliability resulting from the civil war and
the current poor economic situation. Additionally, contractors who apply for tenders to
import wheat from Romania offer the lowest prices according to the required specifications;
therefore, this source is considered appropriate in the current situation. Suppliers are
subject to changes according to the new global environment, wheat prices from the source,
robustness, shipping and handling prices, and taxes imposed by the exporting countries.
Sustainability 2023, 15, 10519
20 of 23
1.2
Q value
1
0.8
0.6
0.4
0.2
Supplier
0
RO
UA
SY
RU
AU
Suppliers’ ranking
Figure 4. Suppliers’
rankingbased
basedon
onQQ-value.
5. Conclusions
In most nations, including the Middle East and Jordan, where meal tables hardly ever
go without wheat derivatives, wheat is a basic and important product. Therefore, through
the import, storage, and distribution of wheat, the government manages a steady supply.
The wheat supply chain has a significant impact on sustainability and food security as well.
Moreover, Jordan faces several challenges, such as a rapidly growing population, extensive
urbanization, water scarcity, and poor soil quality. Agriculture is not a plausible solution,
’
despite the growing demand for food. Further, supply selection is influenced by a wide
range of factors, including the price of the product in question, the number of producers,
the cost of inputs, technological improvements, the cost of substitute products, and unpredictable phenomena such as weather. This study fills the knowledge gap regarding ranking
or choosing top wheat suppliers, whether for Jordan or the MENA region. As wheat is
regarded as a key food commodity in Jordan, this study identifies alternatives to wheat
providers based on recognized requirements. This is especially important given that the
government is in charge of importing, managing, and storing wheat.
Identifying Jordan’s primary wheat suppliers and ranking them according to specified criteria was the major objective of this study. The alternatives for wheat suppliers
were investigated based on established standards. The study develops a comprehensive
framework for SS stages and activities to efficiently discover wheat suppliers and reduce
the risks associated with the selection process. Further applying the fuzzy-VIKOR method,
the primary wheat suppliers to Jordan were identified, evaluated, and ranked based on the
identified features using a numerical case.
Although many nations produce and export wheat, depending on various factors,
the specialists’ panel chose five key nations to import from: Russia, Romania, Ukraine,
Australia, and Syria. Quality, cost, delivery, origin, flexibility, communication, and importer
dependability were the various criteria accepted by the committee of experts for the
selection of wheat suppliers. Based on the outcomes, it can be concluded that Romania is the
best supplier of wheat to Jordan. This evaluation is in line with that of the specialists. In the
current scenario, Romania is seen as a trustworthy, close source with good communication,
exchange rates through official channels, flexibility, and being the least expensive. This was
due to the conflict between Russia and Ukraine, rising taxes and fees on Russian exports,
the difficulty of obtaining wheat from Australia due to its distance and scarcity, and Syria’s
inability to supply Jordan with wheat due to its unreliability because of the civil war and
the country’s current dire economic situation. Additionally, suppliers who submit bids
Sustainability 2023, 15, 10519
21 of 23
to import wheat from Romania offer the lowest costs in accordance with the necessary
requirements; thus, the source is deemed appropriate given the current circumstances.
Suppliers may alter in response to changes in the global economy, wheat prices at the
source, exchange rates, transportation and handling costs, and national export taxes.
This study will assist traders, decision-makers, and those concerned with wheat
imports as a strategic commodity in identifying and selecting suppliers. This study also
suffers from some innate limitations, as it evaluates only five suppliers, which could be
increased to include all countries that export wheat. The members of the expert committee
and the number of criteria used in the evaluation could also have been increased to obtain
more objective and accurate results. It is also possible to include more than one country or
region in the supplier evaluation process. The currency exchange rate and the proximity
of the provider can also be considered additional criteria. Future studies can include the
Middle East in general and compare all suppliers in the region based on cost, quality, and
reliability to identify and rank suppliers according to the specified criteria. Other MCDM
methods can be used in combination, and their results can be compared.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The relevant data can be found in this article.
Conflicts of Interest: The author declares no conflict of interest.
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Ministry of Industry. TRADE and SUPPLY. Available online: https://www.mit.gov.jo/Default/En (accessed on 15 June 2023).
Ministry of Agriculture. Available online: https://moa.gov.jo/Default/EN (accessed on 15 June 2023).
Jordan Standards and Metrology Organization (JSMO). Available online: http://www.jsmo.gov.jo/en/Pages/default.aspx
(accessed on 15 June 2023).
GrainFlow. Wheat Standards 2022–2023. Available online: https://www.grainflow.com.au/doc/1432173166045/grainflowwheat-receival-standards.pdf (accessed on 15 June 2023).
GrainCorp. Wheat Standards 2022–2023. Available online: https://grains.graincorp.com.au/wp-content/uploads/2022/10/
Wheat-Standards-2022_23.pdf (accessed on 15 June 2023).
Ahmed, G.; Hamrick, D.; Guinn, A.; Abdulsamad, A.; Gereffi, G. Wheat value chains and food security in the Middle East and
North Africa region. Soc. Sci. Res. 2013, 1, 1–51.
Reidy, J. Jordan Wheat Imports to Reach 1.3 Million Tonnes. 2022. Available online: https://www.world-grain.com/articles/1677
5-jordan-wheat-imports-to-reach-13-million-tonnes (accessed on 15 June 2023).
Khader, B.F.Y.; Yigezu, Y.A.; Duwayri, M.A.; Niane, A.A.; Shideed, K. Where in the value chain are we losing the most food? The
case of wheat in Jordan. Food Secur. 2019, 11, 1009–1027. [CrossRef] [PubMed]
Mustafa, M.I. Russia-Ukraine Tensions to Push Grain Prices up—Economist. Jordan Times. 15 June 2022. Available online:
https://jordantimes.com/news/local/russia-ukraine-tensions-push-grain-prices-%E2%80%93-economist (accessed on 15 June
2023).
White House; United States Embassy. Grain and Feed Annual; United States Embassy: New York, NY, USA, 2018.
Kumaraswamy, P.R.; Singh, M. Jordan’s food security challenges. Mediterr. Q. 2018, 29, 70–95. [CrossRef]
Ministry of Trade. Industry, and Supply, Tender Invitation Announcement No. (29/2020/50). Available online: https://www.mit.
gov.jo/Ar/ArchivedTendersDetails/%D8%A5%D8%B9%D9%84%D8%A7%D9%86_%D8%B7%D8%B1%D8%AD_%D8%B9
%D8%B7%D8%A7%D8%A1_%D8%B1%D9%82%D9%85_%D8%B4%D8%B1%D8%A7%D8%A1_%D9%82%D9%85%D8%AD
(accessed on 15 June 2023).
Iakovou, E.; Bochtis, D.; Vlachos, D.; Aidonis, D. Supply Chain Management for Sustainable Food Networks; John Wiley & Sons:
Hoboken, NJ, USA, 2016.
Gebresenbet, G. Logistics and Supply Chains in Agriculture and Food; Swedish University of Agricultural Sciences: Uppsala, Sweeden,
2012.
Sharma, R.; Shishodia, A.; Kamble, S.; Gunasekaran, A.; Belhadi, A. Agriculture supply chain risks and COVID-19: Mitigation
strategies and implications for the practitioners. Int. J. Logist. Res. Appl. 2020, 2020, 1830049. [CrossRef]
Sudha, V.; Akiladevi, R.; Roopa, S.N.; Nancy, P. A study of blockchain technology in agriculture supply chain. In Proceedings of
the International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA),
Coimbatore, India, 8–9 October 2021; pp. 1–4. [CrossRef]
Sustainability 2023, 15, 10519
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
22 of 23
Khandelwal, C.; Singhal, M.; Gaurav, G.; Dangayach, G.S.; Meena, M.L. Agriculture supply chain management: A review
(2010–2020). Mater. Today Proc. 2021, 47, 3144–3153. [CrossRef]
Kephart, K.D.; Srivastava, A.; Willis, M.; Djonovic, S.; Jackson, A.A. Harnessing microbial and agricultural systems to transform
the wheat supply chain. Cereal Foods World 2018, 63, 6.
Raj, S.; Brinkley, C.; Ulimwengu, J. Connected and extracted: Understanding how centrality in the global wheat supply chain
affects global hunger using a network approach. PLoS ONE 2022, 17, e0269891. [CrossRef]
Cariappa, A.A.; Acharya, K.K.; Adhav, C.A.; Sendhil, R.; Ramasundaram, P.; Kumar, A.; Singh, S.; Singh, G.P. COVID-19 induced
lockdown effect on wheat supply chain and prices in India–Insights from state interventions led resilience. Socio-Econ. Plan. Sci.
2022, 84, 101366. [CrossRef]
Deng, L.; Zhang, H.; Wang, C.; Ma, W.; Zhu, A.; Zhang, F.; Jiao, X. Improving the sustainability of the wheat supply chain through
multi-stakeholder engagement. J. Clean. Prod. 2021, 321, 128837. [CrossRef]
Stanco, M.; Nazzaro, C.; Lerro, M.; Marotta, G. Sustainable collective innovation in the Agri-food value chain: The case of the
“Aureo” wheat supply chain. Sustainability 2020, 12, 5642. [CrossRef]
Mukherjee, K. Modeling and optimization of traditional supplier selection. In Studies in Systems, Decision and Control; Springer:
New Delhi, India, 2017; Volume 88, pp. 31–58. [CrossRef]
Xu, X.; Lin, J. Strategic supplier network for supplier selection. J. Comput. 2010, 5, 979–986. [CrossRef]
Pitchipoo, P.; Venkumar, P.; Rajakarunakaran, S.; Ragavan, R. Decision model for supplier evaluation and selection in process
industry: A hybrid DEA approach. Int. J. Ind. Eng. 2018, 25, 1343.
Resende, C.H.L.; Geraldes, C.A.S.; Lima, F.R.L. Decision models for supplier selection in industry 4.0 era: A systematic literature
review. Procedia Manuf. 2021, 55, 492–499. [CrossRef]
Gholamian, M.R.; Taghanzadeh, A.H. Integrated network design of wheat supply chain: A real case of Iran. Comput. Electron.
Agric. 2017, 140, 139–147. [CrossRef]
Nguyen, V.T.T.; Wang, C.; Yang, F.; Vo, T.M.N. Efficiency evaluation of cyber security based on EBM-DEA model. Epstem 2022, 17,
38–44. [CrossRef]
Kler, R.; Gangurde, R.; Elmirzaev, S.; Hossain, M.S.; Vo, N.V.T.; Nguyen, T.V.T.; Kumar, P.N. Optimization of meat and Poultry
farm inventory stock using data analytics for green supply chain network. Discret. Dyn. Nat. Soc. 2022, 2022, 8970549. [CrossRef]
Dang, T.; Nguyen, N.; Nguyen, V.; Dang, L. A two-stage multi-criteria supplier selection model for sustainable automotive supply
chain under uncertainty. Axioms 2022, 11, 228. [CrossRef]
Haseli, G.; Sheikh, R.; Sana, S.S. Base-criterion on multi-criteria decision-making method and its applications. Int. J. Manag. Sci.
Eng. Manag. 2020, 15, 79–88. [CrossRef]
Haseli, G.; Sheikh, R. Base-criterion method (BCM). In Multiple Criteria Decision Making: Techniques, Analysis and Applications;
Springer: Berlin/Heidelberg, Germany, 2022. [CrossRef]
Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M.J. A fuzzy VIKOR method for supplier selection based on entropy measure for
objective weighting. Expert Syst. Appl. 2011, 38, 12160–12167. [CrossRef]
Sanayei, A.; Farid Mousavi, S.F.; Yazdankhah, A. Group decision making process for supplier selection with VIKOR under fuzzy
environment. Expert Syst. Appl. 2010, 37, 24–30. [CrossRef]
Bahadori, M.; Hosseini, S.M.; Teymourzadeh, E.; Ravangard, R.; Raadabadi, M.; Alimohammadzadeh, K. A supplier selection
model for hospitals using a combination of artificial neural network and fuzzy VIKOR. Int. J. Healthc. Manag. 2020, 13, 286–294.
[CrossRef]
Zhao, J.; You, X.Y.; Liu, H.C.; Wu, S.M. An extended VIKOR method using intuitionistic fuzzy sets and combination weights for
supplier selection. Symmetry 2017, 9, 169. [CrossRef]
Sahu, A.K.; Datta, S.; Mahapatra, S.S. Evaluation and selection of resilient suppliers in fuzzy environment: Exploration of
fuzzy-VIKOR. Benchmarking 2016, 23, 651–673. [CrossRef]
Jum’a, L.; Zimon, D.; Ikram, M. A relationship between supply chain practices, environmental sustainability and financial
performance: Evidence from manufacturing companies in Jordan. Sustainability 2021, 13, 2152. [CrossRef]
Mazzawi, R.; Alawamleh, M. The impact of supply chain performance drivers and value chain on companies: A case study from
the food industry in Jordan. Int. J. Netw. Virtual Organ. 2013, 12, 122–132. [CrossRef]
Al-Nawafah, S.S.; Al-Shorman, H.M.; Aityassine, F.L.Y.; Khrisat, F.A.; Hunitie, M.F.A.; Mohammad, A.; Al-Hawary, S.I.S. The
effect of supply chain management through social media on competitiveness of the private hospitals in Jordan. Uncertain Supply
Chain. Manag. 2022, 10, 737–746. [CrossRef]
Ayoub, H.F.; Abdallah, A.B.; Suifan, T.S. The effect of supply chain integration on technical innovation in Jordan: The mediating
role of knowledge management. BIJ 2017, 24, 594–616. [CrossRef]
Hawary, S.I.S.A.; Mohammad, A.S.; Mohammad, A.A.S.; Alsarahni, A.H.H. Supply chain flexibility aspects and their impact on
customers satisfaction of pharmaceutical industry in Jordan. IJBPSCM 2017, 9, 326–343. [CrossRef]
Magableh, G.M.; Mistarihi, M.Z. Applications of MCDM approach (ANP-TOPSIS) to evaluate supply chain solutions in the
context of COVID-19. Heliyon 2022, 8, e09062. [CrossRef]
Magableh, G.M.; Mistarihi, M.Z. Causes and effects of supply chain nervousness: Mena case study. Acta Logist. 2022, 9, 223–235.
[CrossRef]
Sustainability 2023, 15, 10519
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
23 of 23
CLYDE&CO. Managing the Risk of Supply Chain Disruption in the Middle East of the Middle East Insurance Review, 2021st ed.; Clyde &
Co.: New York, NY, USA, 2021.
Josaiman, S.K.; Faisal, M.N.; Talib, F. Social sustainability adoption barriers in supply chains: A middle east perspective using
interpretive structural modeling. Int. J. Oper. Quant. Manag. 2021, 27, 61–80. [CrossRef]
Ferrer, M.; Santa, R.; Almadani, S.A. The interplay between competitive drivers, outsourcing and supply chain performance: The
case of middle east supply chains. Int. J. Acc. Inf. Sci. Leadersh. 2013, 6, 107–117.
Jordan Trade Portal. Jordan Trade Facilitating Portal-Jordan Customs. Available online: https://tradeportal.customs.gov.jo/
procedure/921?l=en (accessed on 15 June 2023).
Ministry of Industry. TRADE and SUPPLY, 2022 Jordan Emergency Food Security Project: Draft Stakeholders Engagement Plan; Ministry
of Industry: Amman, Jordan, 2022.
Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998; Volume 2,
pp. 5–21.
Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
Chang, T.H. Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. Inf. Sci. 2014, 271, 196–212.
[CrossRef]
Opricovic, S. Fuzzy VIKOR with an application to water resources planning. Expert Syst. Appl. 2011, 38, 12983–12990. [CrossRef]
Salimi, A.H.; Noori, A.; Bonakdari, H.; Masoompour Samakosh, J.; Sharifi, E.; Hassanvand, M.; Gharabaghi, B.; Agharazi, M.
Exploring the role of advertising types on improving the water consumption behavior: An application of integrated fuzzy AHP
and fuzzy VIKOR method. Sustainability 2020, 12, 1232. [CrossRef]
Kim, Y.; Chung, E.S. Fuzzy VIKOR approach for assessing the vulnerability of the water supply to climate change and variability
in South Korea. Appl. Math. Modell. 2013, 37, 9419–9430. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.