Academia.eduAcademia.edu

Sustainable Use of Renewable Resources

1998, Springer eBooks

Munich Personal RePEc Archive Sustainable use of renewable resources, Chapter 2.1 Graciela Chichilnisky and Andrea Beltratti and Geoffrey Heal 1998 Online at http://mpra.ub.uni-muenchen.de/8815/ MPRA Paper No. 8815, posted 22. May 2008 05:46 UTC Sust ai nabi l i t y : Dynami cs and Uncer t ai nt y Gr aci el a Chi chi l ni sy, Geof f r ey Heal , and Al l essandr o Ver cel l i Edi t or s Kl uwer Academi c Publ i sher s, 1998 ANDREA BELTRATTI , GRACI ELA CHI CHI LNI SKY ANDGEOFFREY HEAL 2 . 1 . Sust ai nabl e Use of Renewabl e Resour ces 1. I nt r oduct i on We consi der her e opt i mal use pat t er ns f or r enewabl e r esour ces . Many i mpor t ant r esour ces ar e i n t hi s cat egor y : obvi ous_, ones ar e f i sher i es and f or est s . Soi l s, cl ean wat er , l andscapes, and t he capaci t i es of ecosyst ems t o assi mi l at e and degr ade wast es ar e ot her l ess obvi ous exampl es . ' Al l of t hese have t he capaci t y t o r enew t hemsel ves, but i n addi t i on al l can be over used t o t he poi nt wher e t hey ar e i r r ever si bl y damaged. Pi cki ng a t i me- pat h f or t he use of such r esour ces i s cl ear l y i mpor t ant : i ndeed, i t seems t o l i e at t he hear t of any concept of sust ai nabl e economi c management . We addr ess t he pr obl em of opt i mal use of r enewabl e r esour ces under a var i et y of assumpt i ons bot h about t he nat ur e of t he economy i n whi ch t hese r esour ces ar e embedded and about t he obj ect i ve of t hat economy. I n t hi s second r espect , we ar e par t i cul ar l y i nt er est ed i n i nvest i gat i ng t he consequences of a def i ni t i on of sust ai nabi l i t y as a f or mof i nt er t empor al opt i mal i t y r ecent l y i nt r oduced by Chi chi l ni sky [ 7] , and compar i ng t hese consequences wi t h t hose ar i si ng f r om ear l i er def i ni t i ons of i nt er t empor al opt i mal i t y. I n t er ms of t he st r uct ur e of t he economy consi der ed, we r evi ew t he pr obl emi ni t i al l y i n t he cont ext of a model wher e a r enewabl e r esour ce i s t he onl y good i n t he economy, and t hen subsequent l y we ext end t he anal ysi s t o i ncl ude t he accumul at i on of capi t al and t he exi st ence of a pr oduct i ve sect or t o whi ch t he r esour ce i s an i nput . Al t hough we f ocus her e on t he t echni cal economi c i ssues of def i ni ng and char act er i zi ng pat hs whi ch ar e opt i mal , i n var i ous senses, i n t he pr esence of r enewabl e r esour ces, one shoul d not l oose si ght of t he ver y r eal mot i vat i on under l yi ng t hese exer ci ses : many of t he ear t h' s most i mpor t ant bi ol ogi cal and ecol ogi cal r esour ces ar e r enewabl e, so t hat i n t hei r management we conf r ont ' Thi s paper dr aws heavi l y on ear l i er r esear ch by one or mor e of t he t hr ee aut hor s, namel y Bel t r at t i , Chi chi l ni sky andHeal [ 1- 3] , Chi chi l ni sky [ 7, 81, and i n par t i cul ar many of t he r esul t s her e wer e pr esent ed i n Heal [ 18] . 49 G. Chi chi l ni sky et al . ( eds . ) . Sust ai nabi l i t y : Dynami cs and Uncer t ai nt y, 49- 76. © 1998 Kl uwer Academi c Publ i sher s . Pr i nt ed i n t he Net her l ands . 50 A. Bel t r at t i et al . t he f undament al choi ce whi ch under l i es t hi s paper , namel y t hei r ext i nct i on, or t hei r pr eser vat i on as vi abl e speci es . I n t hi s cont ext t he r ecent di scussi on of sust ai nabi l i t y or sust ai nabl e management of t he ear t h' s r esour ces i s cl osel y r el at ed t o t he i ssues of concer n t o us . ( For a mor e compr ehensi ve di scussi on of i ssues r el at i ng t o sust ai nabi l i t y and i t s i nt er pr et at i on i n economi c t er ms, see [ 18] . For a r evi ew of t he basi c t heor y of opt i mal i nt er t empor al use of r esour ces, see [ 10, 11, 15] . ) We assume, as i n [ 19] and i n ear l i er wor k by some or al l of us [ 1- 3] t hat t he r enewabl e r esour ce i s val ued not onl y as a sour ce of consumpt i on but al so as a sour ce of ut i l i t y i n i t s own r i ght : t hi s means t hat t he exi st i ng st ock of t he r esour ce i s an ar gument of t he ut i l i t y f unct i on . The i nst ant aneous ut i l i t y f unct i on i s t her ef or e u ( c, s) , wher e c i s consumpt i on and s t he r emai ni ng st ock of t he r esour ce . Thi s i s cl ear l y t he case f or f or est s, whi ch can be used t o gener at e a f l ow of consumpt i on vi a t i mber , and whose st ock i s a sour ce of pl easur e . Si mi l ar l y, i t i s t r ue f or f i sher i es, f or l andscapes, and pr obabl y f or many mor e r esour ces . I ndeed, i n so f ar as we ar e deal i ng wi t h a l i vi ng ent i t y, t her e i s a mor al ar gument , whi ch we wi l l not eval uat e her e, t hat we shoul d val ue t he st ock t o at t r i but e i mpor t ance t o i t s exi st ence i n i t s own r i ght and not j ust i nst r ument al l y as a sour ce of consumpt i on . The Hami l t oni an i n t hi s case H= u ( ct , st ) e -i t Maxi mi zat i on wi t h r espect t c mar gi nal ut i l i t y of consumpt i l evel s : uC ( ct , SO = Xt and t he r at e of change of t he ( , Xt e- i t ) = [u To si mpl i f y mat t er s we shal and s : u ( c, s) = ul ( c) + u2 di f f er ent i abl e . I n t hi s case a ui ( ct ) = st = r ( st ) ~t - JAt = - u2 ( St I n st udyi ng t hese equat i ons, t hen exami ne t he dynami cs c 2. The Ut i l i t ar i an Case wi t hout Pr oduct i on We begi n by consi der i ng t he si mpl est case, t hat of a convent i onal ut i l i t ar i an obj ect i ve wi t h no pr oduct i on : t he r esour ce i s t he onl y good i n t he economy. For t hi s f r amewor k we char act er i ze t he ut i l i t ar i an opt i mum, and t hen ext end t hese r esul t s t o ot her f r amewor ks . The maxi mand i s t he di scount ed i nt egr al of ut i l i t i es f r omconsumpt i on and f r omt he exi st ence of a st ock, f o u ( c, s) e- bt dt , wher e S > 0 i s a di scount r at e . As t he r esour ce i s r enewabl e, i t s dynami cs ar e descr i bed by ht = r ( st ) - ct . Her e r i s t he gr owt h r at e of t he r esour ce, assumed t o depend onl y on i t s cur r ent st ock . Mor e compl ex model s ar e of cour se possi bl e, i n whi ch sever al such syst ems i nt er act : a wel l - known exampl e i s t he pr edat or - pr ey syst em. I n gener al , r i s a concave f unct i on whi ch at t ai ns a maxi mumat a f i ni t e val ue of s, and decl i nes t her eaf t er . Thi s f or mul at i on has a l ong and cl assi cal hi st or y, whi ch i s r evi ewed i n [ 11] . I n t he f i el d of popul at i on bi ol ogy, r ( st ) i s of t en t aken t o be quadr at i c, i n whi ch case an unexpl oi t ed popul at i on ( i . e . , ct = 0 dt ) gr ows l ogi st i cal l y. Her e we assume t hat r ( 0) = 0, t hat t her e exi st s a posi t i ve st ock l evel s at whi ch r ( s) = 0 Vs >_ s, and t hat r ( s) i s st r i ct l y concave and t wi ce cont i nuousl y di f f er ent i abl e f or s E ( 0, s) . The over al l pr obl emcan now be speci f i ed as max f 00 u ( c, s) e - at dt s . t . ht = r ( s t ) - ct , so gi ven. 0 2. 1 . St at i onar y Sol ut i ons At a st at i onar y sol ut i on, by addi t i on, t he shadow pr i ce i s Sui ( ct ) = u2 ( st ) + Hence: PROPOSI TI ON 1 . A st at i onc ( 2) sat i sf i es r ( st ) = ct - J - r ' ( st ) u~( st ) u; ( t =t ) The f i r st equat i on i n ( 3) j us t he cur ve on whi ch consun t hi s i s obvi ousl y a pr er equi s r el at i onshi p bet ween t he sl o: t he sl ope of t he r enewal f i u cur ve cut s t he r enewal f unct i Fi gur e 1 . Thi s i s j ust t he r est equal t he di scount r at e i f r ' [ 17, 18] . Sust ai nabl e Use of Renewabl e Resour ces Japer , namel y t hei r ext i nct i on, ont ext t he r ecent di scussi on of i e ear t h' s r esour ces i s cl osel y or e compr ehensi ve di scussi on r pr et at i on i n economi c t er ms, opt i mal i nt er t empor al use of ~y some or al l of us [ 1- 3] t hat our ce of consumpt i on but al so ans t hat t he exi st i ng st ock of i on. The i nst ant aneous ut i l i t y zmpt i on and s t he r emai ni ng or f or est s, whi ch can be used nd whose st ock i s a sour ce of l andscapes, and pr obabl y f or -e deal i ng wi t h a l i vi ng ent i t y, - val uat e her e, t hat we shoul d >t ence i n i t s own r i ght and not 51 The Hami l t oni an i n t hi s case i s [r . ct ] H= u ( ct , st ) e- at + At e- 6t ( St ) Maxi mi zat i on wi t h r espect t o consumpt i on gi ves as usual t he equal i t y of t he mar gi nal ut i l i t y of consumpt i on t o t he shadow pr i ce f or posi t i ve consumpt i on l evel s : uc ( ct , SO = At and t he r at e of change of t he shadow pr i ce i s det er mi ned by ( , \ t e- 5t ) - bt =[ us ( ct , st ) e- bt + at e r ( st ) ] . To si mpl i f y mat t er s we shal l t ake t he ut i l i t y f unct i on t o be separ abl e i n c and s : u ( c, s) = ui ( c) + u2 ( s) , each t aken t o be st r i ct l y concave and t wi ce di f f er ent i abl e . I n t hi s case a sol ut i on t o t he pr obl em ( 1) i s char act er i zed by ui ( ct ) = Xt st = r ( st ) - ct at - b,\ t = - u2 ( st ) - At r ' ( St ) ( 2) I n st udyi ng t hese equat i ons, we f i r st anal yze t hei r st at i onar y sol ut i on, and t hen exami ne t he dynami cs of t hi s syst em away f r omt he st at i onar y sol ut i on. t of a convent i onal ut i l i t ar i an ) nl y good i n t he economy. For t i mum, and t hen ext end t hese i e di scount ed i nt egr al of ut i l ) f a st ock, J u ( c, s) e- 6t dt , r enewabl e, i t s dynami cs ar e 2. 1 . St at i onar y Sol ut i ons At a st at i onar y sol ut i on, by def i ni t i on s i s const ant so t hat r ( St ) = ct : i n addi t i on, t he shadow pr i ce i s const ant so t hat o` zmed t o depend onl y on i t s se possi bl e, i n whi ch sever al t he pr edat or - pr ey syst em. I n naxi mumat a f i ni t e val ue of a l ong and cl assi cal hi st or y, at i on bi ol ogy, r ( s t ) i s of t en : d popul at i on ( i . e. , ct = 0 b' t ) 0, t hat t her e exi st s a posi t i ve r ( s) i s st r i ct l y concave and ' he over al l pr obl em can now ct , so gi ven. 8ui ( ct ) = u2 ( St ) + ui ( ct ) r ( st ) Hence: PROPOSI TI ON 1 . A st at i onar y sol ut i on t o t he ut i l i t ar i an opt i mal usepat t er n ( 2) sat i sf i es r = ct ( st ) . ( 3) u' =b- r ' ( St ) ~ u, ( at ) The f i r st equat i on i n ( 3) j ust t el l s us t hat a st at i onar y sol ut i on must l i e on t he cur ve on whi ch consumpt i on of t he r esour ce equal s i t s r enewal r at e : t hi s i s obvi ousl y a pr er equi si t e f or a st at i onar y st ock. The second gi ves us a r el at i onshi p bet ween t he sl ope of an i ndi f f er ence cur ve i n t he c- s pl ane and t he sl ope of t he r enewal f unct i on at a st at i onar y sol ut i on : t he i ndi f f er ence cur ve cut s t he r enewal f unct i on f r om above. Such a conf i gur at i on i s shown i n Fi gur e 1 . Thi s i s j ust t he r esul t t hat t he sl ope of an i ndi f f er ence cur ve shoul d equal t he di scount r at e i f r ' ( s) = 0 Vs, i . e . , i f t he r esour ce i s non- r enewabl e [ 17, 18] . 52 A. Bel t r at t i et al . S 3 . on t he cur ve r ( s) = c, s i s 4. f r om( 2) , t he r at e of chang. ui ( c) 6 = ui ( c) [ b - r ' The f i r st t er mher e i s nega negat i ve and l ar ge f or sma c i s r i si ng f or smal l s and , when t he r at e of change o of posi t i ve sl ope cont ai ni n 5 . by l i near i zi ng t he syst em ui ( c) = ui ( c) [ E - s ht = r ( st ) ar ound t he st at i onar y sol ut poi nt . The det er mi nant of Fi gur e 1. Dynami cs of t he ut i l i t ar i an sol ut i on. Ther e i s a st r ai ght f or war d i nt ui t i ve i nt er pr et at i on t o t he second equat i on i n ( 3) . Consi der r educi ng consumpt i on by an amount Ac and i ncr easi ng t he st ock by t he same amount . The wel f ar e l oss i s Ocui : t her e i s a gai n f r om i ncr easi ng t he st ock of Acu' , whi ch cont i nues f or ever , so t hat we have t o comput e i t s pr esent val ue. But we al so have t o r ecogni ze t hat t he i ncr ement t o t he st ock wi l l gr ow at t he r at e r ' : hence t he gai n f r omt he i ncr ease i n st ock i s t he pr esent val ue of an i ncr ement whi ch compounds at r at e r ' . Hence t he t ot al gai n i s Ac Jo 00 u2er ' t e- at dt = u20c/ ( r ' - 8) . When gai ns and l osses j ust bal ance out , we have ui +u2/ ( r ' - S) =0 whi ch i s j ust t he second equat i on of ( 3) . So ( 3) i s a ver y nat ur al and i nt ui t i ve char act er i zat i on of opt i mal i t y. r ( s) { b - r ( s) } - ui whi ch i s negat i ve f or an) sust ai nabl e yi el d. Hence t he dynami cs of pat h mal i t y ar e as shown i n f i gur e I PROPOSI TI ON2. 2 For smal l , t he der i vat i ves r ' , r " or ui , al , t end t o t he st at i onar y sol ut i on or der condi t i ons ( 2) , andf ol l oi Fi gur e 1 l eadi ng t o t he st at i ona so, t her e i s a cor r espondi ng v. of t he st abl e br anches l eadi ng st at i onar y sol ut i on depends or , of t he st at i onar y st ock as t hi s t ends t o a poi nt sat i sf yi ng u2/ an i ndi f er ence cur ve of u ( c, s gr aph of t he r enewal f unct i on . 2. 2 . Dynami c Behavi or What ar e t he dynami cs of t hi s syst em out si de of a st at i onar y sol ut i on? These ar e al so shown i n Fi gur e 1 . They ar e der i ved by not i ng t he f ol l owi ng f act s : 1 . beneat h t he cur ve r ( s) = c, s i s r i si ng as consumpt i on i s l ess t han t he gr owt h of t he r esour ce . 2. above t he cur ve r ( s) = c, s i s f al l i ng as consumpt i on i s gr eat er t han t he gr owt h of t he r esour ce . Thi s r esul t char act er i zes opt i n t he exi st ence of such pat hs . T l i shes t hat an opt i mal pat h exi char act er i zed i n t hi s paper . Not e t hat i f t he i ni t i al r esow consumpt i on, st ock and ut i l i t y t hat because t he r esour ce i s r e Sust ai nabl e Use of Renewabl e Resour ces 53 3. on t he cur ve r ( s) = c, s i s const ant . 4. f r om( 2) , t he r at e of change of c i s gi ven by ui ( c) c = ui ( c) [ ~ Ut i l i t ar i an st at i onar y sol ut i on r (s)] - u2 ( s) . The f i r st t er m her e i s negat i ve f or smal l s and vi ce ver sa: t he second i s negat i ve and l ar ge f or smal l s and negat i ve and smal l f or l ar ge s . Hence c i s r i si ng f or smal l s and vi ce ver sa: i t s r at e of change i s zer o pr eci sel y when t he r at e of change of t he shadowpr i ce i s zer o, whi ch i s on a l i ne of posi t i ve sl ope cont ai ni ng t he st at i onar y sol ut i on. 5 . by l i near i zi ng t he syst em ui ( c) c = ui ( c) [ b - r ' ( s) ] - u2 ( s) ht = r ( st ) - ct r ent al st ock s r i an sol ut i on . t at i on t o t he second equat i on t mount Ac and i ncr easi ng t he . s Ocui : t her e i s a gai n f r om s f or ever , so t hat we have t o r ecogni ze t hat t he i ncr ement ; si n f r omt he i ncr ease i n st ock upounds at r at e r ' . Hence t he re i s a ver y nat ur al and i nt ui t i ve a st at i onar y sol ut i on? These y not i ng t he f ol l owi ng f act s : consumpt i on i s l ess t han t he ) nsumpt i on i s gr eat er t han t he ar ound t he st at i onar y sol ut i on, one can show t hat t hi s sol ut i on i s a saddl e poi nt . The det er mi nant of t he mat r i x of t he l i near i zed syst em i s r ( s) t a - r ( s) } - u, { ui r " + u2} I whi ch i s negat i ve f or any st at i onar y st ock i n excess of t he maxi mum sust ai nabl e yi el d. Hence t he dynami cs of pat hs sat i sf yi ng t he necessar y condi t i ons f or opt i mal i t y ar e as shown i n f i gur e 1, and we can est abl i sh t he f ol l owi ng r esul t : PROPOSI TI ON 2. 2 For smal l val ues of t he di scount r at e E or l ar ge val ues of t he der i vat i ves r ' , r " or ui , al l opt i mal pat hs f or t he ut i l i t ar i an pr obl em ( 1) t end t o t he st at i onar y sol ut i on ( 3) . They do so al ong apat h sat i sf yi ng t hef i r st or der condi t i ons ( 2) , andf ol l ow one of t he t wo br anches of t he st abl e pat h i n Fi gur e I l eadi ng t o t he st at i onar y sol ut i on. Gi ven any i ni t i al val ue of t he st ock so, t her e i s a cor r espondi ng val ue of co whi ch wi l l pl ace t he syst em on one of t he st abl e br anches l eadi ng t o t he st at i onar y sol ut i on . The posi t i on of t he st at i onar y sol ut i on depends on t he di scount r at e, and moves t o hi gher val ues of t he st at i onar y st ock as t hi s decr eases. As b - + 0, t he st at i onar y sol ut i on t ends t o a poi nt sat i sf yi ng u2/ ui = r ' , whi ch means i n geomet r i c t er ms t hat an i ndi f f er ence cur ve of u ( c, s) i s t angent t o t he cur ve c = r ( s) gi ven by t he gr aph of t he r enewal f unct i on . Thi s r esul t char act er i zes opt i mal pat hs f or t he pr obl em( 1) . I t does not pr ove t he exi st ence of such pat hs . The Appendi x gi ves an ar gument whi ch est abl i shes t hat an opt i mal pat h exi st s f or al l of t he pr obl ems whose sol ut i ons ar e char act er i zed i n t hi s paper . Not e t hat i f t he i ni t i al r esour ce st ock i s l ow, t he opt i mal pol i cy r equi r es t hat consumpt i on, st ock and ut i l i t y al l r i se monot oni cal l y over t i me . The poi nt i s t hat because t he r esour ce i s r enewabl e, bot h st ocks and f l ows can be bui l t up 54 A. Bel t r at t i et al . over t i me pr ovi ded t hat consumpt i on i s l ess t han t he r at e of r egener at i on, i . e. , t he syst em i s i nsi de t he cur ve gi ven by t he gr aph of t he r enewal f unct i on r ( s) . I n pr act i ce, unf or t unat el y, many r enewabl e r esour ces ar e bei ng consumed at a r at e gr eat l y i n excess of t hei r r at es of r egener at i on : i n t er ms of Fi gur e 1, t he cur r ent consumpt i on r at e ct i s much gr eat er t han r ( st ) . So t aki ng advant age of t he r egener at i on possi bi l i t i es of t hese r esour ces woul d i n many cases r equi r e shar p l i mi t at i on of cur r ent consumpt i on. Fi sher i es ar e a wi del y- publ i ci zed exampl e: anot her i s t r opi cal har dwoods and t r opi cal f or est s i n gener al . Soi l i s a mor e subt l e exampl e: t her e ar e pr ocesses whi ch r enew soi l , so t hat even i f i t suf f er s a cer t ai n amount of er osi on or of depl et i on of i t s val uabl e component s, i t can be r epl aced. But t ypi cal l y human use of soi l s i s depl et i ng t hemat r at es f ar i n excess of t hei r r epl eni shment r at es . Pr oposi t i on 2 gi ves condi t i ons necessar y f or a pat h t o be opt i mal f r om pr obl em ( 1) . Gi ven t he concavi t y of u ( c, s) and of r ( s) , one can i nvoke st andar d ar gument s t o show t hat t hese condi t i ons ar e al so suf f i ci ent ( see, f or exampl e, [ 22] ) . 3. Renewabl e Resour ces and t he Gr een Gol den Rul e We can use t he r enewabl e f r amewor k t o ask t he quest i on : what conf i gur at i on of t he economy gi ves t he maxi mumsust ai nabl e ut i l i t y l evel ? 3 Ther e i s a si mpl e answer . Fi r st , not e t hat a sust ai nabl e ut i l i t y l evel must be associ at ed wi t h a sust ai nabl e conf i gur at i on of t he economy, i . e . , wi t h sust ai nabl e val ues of consumpt i on and of t he st ock. But t hese ar e pr eci sel y t he val ues t hat sat i sf y t he equat i on ct = r ( st ) f or t hese ar e t he val ues whi ch ar e f easi bl e and at whi ch t he st ock and t he consumpt i on l evel s ar e const ant . Hence i n Fi gur e 1, we ar e l ooki ng f or val ues whi ch l i e on t he cur ve ct = r ( s t ) . Of t hese val ues, we need t he one whi ch l i es on t he hi ghest i ndi f f er ence cur ve of t he ut i l i t y f unct i on u ( c, s) : t hi s poi nt of t angency i s shown i n t he f i gur e. At t hi s poi nt , t he sl ope of an i ndi f f er ence cur ve equal s t hat of t he r enewal f unct i on, so t hat t he mar gi nal r at e of subst i t ut i on bet ween st ock and f l ow equal s t he mar gi nal r at e of t r ansf or mat i on al ong t he cur ve r ( s) . Hence: PROPOSI TI ON 3. 4 The maxi mumsust ai nabl e ut i l i t y l evel ( t he gr een gol den r ul e) sat i sf i es U, ( 80 ui ( ct ) Recal l f r om ( 3) t hat as t he di scount r at e goes t o zer o, t he st at i onar y sol ut i on t o t he ut i l i t ar i an case t ends t o such a poi nt . Not e al so t hat any pat h whi ch appr oaches t he t ange t i on f unct i on, i s opt i mal acc( or l ong- r un ut i l i t y. I n ot her m t he l i mi t i ng behavi or of t he appr oached. Thi s cl ear l y i s t he gr een gol den r ul e, some woul d l i ke t o knowwhi ch of a best . I t t r anspi r es t hat i n g 3. 1 . Ecol ogi cal St abi l i t y An i nt er est i ng f act i s t hat di scount r at es t he ut i l i t ar i an i n excess of t hat gi vi ng t he t he st ock at whi ch t he max onl y r esour ce st ocks i n exc ar e st abl e under t he nat ur a ar e ecol ogi cal l y st abl e . To t he r esour ce dynami cs i s j u s =r ( s ) - d. For d < max, r ( s) , t her e a t o t hi s equat i on, as shown Cl ear l y f or s > s2, s < 0. as shown i n Fi gur e 2. Onl y yi el d i s st abl e under t he na r at es, and ut i l i t ar i an opt i n an ar gument of t he ut i l i t ; maxi mumsust ai nabl e yi el 4. The Rawl si an Sol ut i c Consi der t he i ni t i al st ock t hi s i s t o f ol l ow t he pat h t consumpt i on, st ock and u l east wel l of f , i s t he f i r st pr esent model , wi t h i ni t i set t i ng c = r ( s 1) f or eve hi ghest ut i l i t y l evel f or t h bei ng no l ower . Thi s r er r associ at ed wi t h t he gr een en r ul e i s a Rawl si an opt i Sust ai nabl e Use of Renewabl eResour ces t he r at e of r egener at i on, i . e . , ) f t he r enewal f unct i on r ( s) . i r ces ar e bei ng consumed at i on : i n t er ms of Fi gur e 1, t he ( st ) . So t aki ng advant age of woul d i n many cases r equi r e i es ar e a wi del y- publ i ci zed cal f or est s i n gener al . Soi l i s i r enew soi l , so t hat even i f i t i o f i t s val uabl e component s, i l s i s depl et i ng t hemat r at es a pat h t o be opt i mal f r om i d of r ( s) , one can i nvoke s ar e al so suf f i ci ent ( see, f or I en Rul e l uest i on : what conf i gur at i on l e ut i l i t y l evel ? 3 Ther e i s a st be associ at ed wi t h a suss sust ai nabl e val ues of conl y t he val ues t hat sat i sf y t he at whi ch t he st ock and t he ; 1, we ar e l ooki ng f or val ues aes, we need t he one whi ch y f unct i on u ( c, s) : t hi s poi nt t he sl ope of an i ndi f f er ence at t he mar gi nal r at e of subgi nal r at e of t r ansf or mat i on t i l i t y l evel ( t he gr een gol den o zer o, t he st at i onar y sol unt . Not e al so t hat any pat h 55 whi ch appr oaches t he t angency of an i ndi f f er ence cur ve wi t h t he r epr oduct i on f unct i on, i s opt i mal accor di ng t o t he cr i t er i on of maxi mi zi ng sust ai nabl e or l ong- r un ut i l i t y. I n ot her wor ds, t hi s cr i t er i on of opt i mal i t y onl y det er mi nes t he l i mi t i ng behavi or of t he economy : i t does not det er mi ne how t he l i mi t i s appr oached. Thi s cl ear l y i s a weakness : of t he many pat hs whi ch appr oach t he gr een gol den r ul e, some wi l l accumul at e f ar mor e ut i l i t y t han ot her s . One woul d l i ke t o know whi ch of t hese i s t he best , or i ndeed whet her t her e i s such a best . I t t r anspi r es t hat i n gener al t her e i s not . We r et ur n t o t hi s l at er. 3 . 1 . Ecol ogi cal St abi l i t y An i nt er est i ng f act i s t hat t he gr een gol den r ul e, and al so f or l ow enough di scount r at es t he ut i l i t ar i an sol ut i on, r equi r e st ocks of t he r esour ce whi ch ar e i n excess of t hat gi vi ng t he maxi mum sust ai nabl e yi el d, whi ch i s of cour se t he st ock at whi ch t he maxi mumof r ( s) occur s . Thi s i s i mpor t ant because onl y r esour ce st ocks i n excess of t hat gi vi ng t he maxi mumsust ai nabl e yi el d ar e st abl e under t he nat ur al popul at i on dynami cs of t he r esour ce [ 21] : t hey ar e ecol ogi cal l y st abl e. To see t hi s, consi der a f i xed depl et i on r at e d, so t hat t he r esour ce dynami cs i s j ust s =r ( s ) - d . For d < max, r ( s) , t her e ar e t wo val ues of s whi ch gi ve st at i onar y sol ut i ons t o t hi s equat i on, as shown i n Fi gur e 2. Cal l t he smal l er s 1 and t he l ar ger s2 . Cl ear l y f or s > 82, s < 0, f or sl < s < s2, s > 0, and f or s < s I , s < 0, as shown i n Fi gur e 2. Onl y t he st ock t o t he r i ght of t he maxi mumsust ai nabl e yi el d i s st abl e under t he nat ur al popul at i on adj ust ment pr ocess : hi gh di scount r at es, and ut i l i t ar i an opt i mal pol i ci es when t he st ock of t he r esour ce i s not an ar gument of t he ut i l i t y f unct i on, wi l l gi ve st at i onar y st ocks bel ow t he maxi mumsust ai nabl e yi el d. 4. The Rawl si an Sol ut i on Consi der t he i ni t i al st ock l evel sl i n Fi gur e 1 : t he ut i l i t ar i an opt i mum f r om t hi s i s t o f ol l ow t he pat h t hat l eads t o t he saddl e poi nt . I n t hi s case, as not ed, consumpt i on, st ock and ut i l i t y ar e al l i ncr easi ng . So t he gener at i on whi ch i s l east wel l of f , i s t he f i r st gener at i on . What i s t he Rawl si an sol ut i on i n t he pr esent model , wi t h i ni t i al st ock sl ? I t i s easy t o ver i f y t hat t hi s i nvol ves set t i ng c = r ( s 1) f or ever : t hi s gi ves a const ant ut i l i t y l evel , and gi ves t he hi ghest ut i l i t y l evel f or t he f i r st gener at i on compat i bl e wi t h subsequent l evel s bei ng no l ower. Thi s r emai ns t r ue f or any i ni t i al st ock no gr eat er t han t hat associ at ed wi t h t he gr een gol den r ul e : f or l ar ger i ni t i al st ocks, t he gr een gol den r ul e i s a Rawl si an opt i mum. For mal l y, 56 A. Bel t r at t i et al . max a f 0 u ( ct , st ) s . t . At = I wher e f ( t ) i s a f i ni t e count ab' The change i n opt i mal pol i opt i mal i t y i s qui t e dr amat i c . N f ( t ) gi ven by an exponent i al sol ut i on t o t he over al l opt i mi z t akes a di f f er ent , non- expont r at e whi ch t ends asympt ot i cE i n an unexpect ed way wi t h r e t he f ut ur e : t her e i s empi r i cal choi ces act as i f t hey have n t i me . For mal l y: PROPOSI TI ON 5. 6 The pr ob pat t er n of use of a r enewabl e a const ant di scount r at e. Pr oof . Consi der f i r st t he p Fi gur e 2. The dynami cs of t he r enewabl e r esour ce under a const ant depl et i on r at e . 00 max v. ( ct , st ) e0 PROPOSI TI ON 4. For an i ni t i al r esour ce st ock sl l ess t han or equal t o t hat associ at ed wi t h t he gr een gol den r ul e, t he Rawl si an opt i mumi nvol ves set t i ng c = r ( s ) f or ever . For s 1 gr eat er t han t he gr een gol den r ul e st ock, t he gr een gol den r ul e i s a Rawl si an opt i mum. 5. Chi chi l ni sky' s Cr i t er i on Next , we ask howt he Chi chi l ni sky cr i t er i on ( 7, 8) al t er s mat t er s when appl i ed t o an anal ysi s of t he opt i mal management of r enewabl e r esour ces . Recal l t hat Chi chi l ni sky' s cr i t er i on r anks pat hs accor di ng t o t he sumof t wo t er ms, one an i nt egr al of ut i l i t i es agai nst a f i ni t e count abl y addi t i ve measur e and one a pur el y f i ni t el y addi t i ve measur e def i ned on t he ut i l i t y st r eam of t he pat h . The f or mer i s j ust a gener al i zat i on of t he di scount ed i nt egr al of ut i l i t i es ( gener al i zed i n t he sense t hat t he f i ni t e count abl y addi t i ve measur e need not be an exponent i al di scount f act or ) . The l at t er t er m can be i nt er pr et ed as a sust ai nabl e ut i l i t y l evel : Chi chi l ni sky shows t hat any r anki ng of i nt er t emp . or al pat hs whi ch sat i sf i es cer t ai n basi c axi oms must be r epr esent abl e i n t hi s way . The pr obl emnow i s t o pi ck pat hs of consumpt i on and r esour ce accumul at i on over t i me t o : The dynami cs of t he sol ut i o: ur e 3 . I t di f f er s f r om t he pr obl e i n l i mi t i ng ut i l i t y i n t he ma Fi gur e 3. Pi ck an i ni t i al va saddl e- poi nt , and f ol l ow t he condi t i ons gi ven above: ui ( c) b = ui ( c) ( 6 At = r ( St ) Denot e by vo t he 2- vect or c { ' Et , st } ( vo) . Fol l ow t hi s pat ] t he gr een gol den r ul e, i . e . , 9t , = s* , and t hen at t = t ' t o t he gr een gol den r ul e, i . ( because ct < r ( s t ) al ong For mal l y, t hi s pat h i s ( c t , s st , = s* , and ct = r ( s* ) , st Any such pat h wi l l sat i sf 3 up t o t i me t ' and wi l l l ea( t her ef or e at t ai n a maxi mum However , t he ut i l i t y i nt egr a Sust ai nabl e Use of Renewabl e Resour ces 57 00 max a ~ u ( ct , st ) f ( t ) dt + ( I - a) sl i m u ( ct , st ) ( 4) s . t . ht = r ( st ) - ct , so gi ven. Ut i l i t ar i an st at i onar y i ol ut i on ar mgown r uk ader a const ant depl et i on r at e. sl l ess t han or equal t o t hat i an opt i mumi nvol ves set t i ng gol den r ul e st ock, t he gr een al t er s mat t er s when appl i ed ; wabl e r esour ces . Recal l t hat o t he sumof t wo t er ms, one y addi t i ve measur e and one . e ut i l i t y st r eam of t he pat h. ; ount ed i nt egr al of ut i l i t i es abl y addi t i ve measur e need t er m can be i nt er pr et ed as a any r anki ng of i nt er t empor al ) e r epr esent abl e i n t hi s way. i and r esour ce accumul at i on wher e f ( t ) i s a f i ni t e count abl y addi t i ve measur e . The change i n opt i mal pol i cy r esul t i ng f r omt he change i n t he cr i t er i on of opt i mal i t y i s qui t e dr amat i c . Wi t h t he Chi chi l ni sky cr i t er i on and t he measur e f ( t ) gi ven by an exponent i al di scount f act or , i . e . , f ( t ) = e- bt , t her e i s no sol ut i on t o t he over al l opt i mi zat i on pr obl ems Ther e i s a sol ut i on onl y i f f ( t ) t akes a di f f er ent , non- exponent i al f or m, i mpl yi ng a non- const ant di scount r at e whi ch t ends asympt ot i cal l y t o zer o . Chi chi l ni sky' s cr i t er i on t hus l i nks i n an unexpect ed way wi t h r ecent di scussi ons of i ndi vi dual at t i t udes t owar ds t he f ut ur e : t her e i s empi r i cal evi dence t hat i ndi vi dual s maki ng i nt er t empor al choi ces act as i f t hey have non- const ant di scount r at es whi ch decl i ne over t i me . For mal l y : PROPOSI TI ON 5 . 6 Thepr obl em( 4) has no sol ut i on, i . e. , t her e i s no opt i mal pat t er n of use of a r enewabl e r esour ce usi ng t he Chi chi l ni sky cr i t er i on wi t h a const ant di scount r at e. Pr oof . Consi der f i r st t he pr obl em max f 0" u ( ct , s t ) e- bt dt s . t . st = r ( s t ) - ct , s o gi ven . 0 The dynami cs of t he sol ut i on i s shown i n Fi gur e 1, r epr oduced her e as Fi gur e 3 . I t di f f er s f r om t he pr obl em under consi der at i on by t he l ack of t he t er m i n l i mi t i ng ut i l i t y i n t he maxi mand. Suppose t hat t he i ni t i al st ock i s so i n Fi gur e 3 . Pi ck an i ni t i al val ue of c, say co, bel ow t he pat h l eadi ng t o t he saddl e- poi nt , and f ol l ow t he pat h f r om co sat i sf yi ng t he ut i l i t ar i an necessar y condi t i ons gi ven above: u" ( c) c = ui ( c) [ b - r ' ( s) ] - u' ( s) , St = r ( st ) - ct Denot e by vo t he 2- vect or of i ni t i al condi t i ons : v0 = ( co, so) . Cal l t hi s pat h { ct , st } ( vo) . Fol l ow t hi s pat h unt i l i t l eads t o t he r esour ce st ock cor r espondi ng t he gr een gol den r ul e, i . e. , unt i l t he t ' such t hat on t he pat h { ct , st } ( vo) , s t , = s* , and t hen at t = t ' i ncr ease consumpt i on t o t he l evel cor r espondi ng t o t he gr een gol den r ul e, i . e . , set ct = r ( s* ) f or al l t > t ' . Thi s i s f easi bl e because ct < r ( st ) al ong such a pat h. Such a pat h i s shown i n Fi gur e 3. For mal l y, t hi s pat h i s ( ct , st ) = { at , st } ( vo) dt <_ t ' wher e t ' i s def i ned by st , =s* , and ct =r ( s* ) , st =s* ` dt >t ' . Any such pat h wi l l sat i sf y t he necessar y condi t i ons f or ut i l i t ar i an opt i mal i t y up t o t i me t ' and wi l l l ead t o t he gr een gol den r ul e i n f i ni t e t i me. I t wi l l t her ef or e at t ai n a maxi mumof t he t er m l i mt , u ( ct , st ) over f easi bl e pat hs . However , t he ut i l i t y i nt egr al whi ch const i t ut es t he f i r st par t of t he maxi mand mu~i 58 A. Bel t r at t i et al . Hence t her e i s no sol ut i on t o I nt ui t i vel y, t he non- exi st ence t o post pone f ur t her i nt o t he f cost i n t er ms of l i mi t i ng ut i l i t of ut i l i t i es . Thi s i s possi bl e be i s no equi val ent phenomenon 5. 1 . Decl i ni ng Di scount Rat e Wi t h t he Chi chi l ni sky cr i t er i c f 0 00 ' u ( ct , st ) e - qt ,r Fi gur e 3. A sequence of consumpt i on pat hs wi t h i ni t i al st ock so and i ni t i al consumpt i on l evel bel ow t hat l eadi ng t o t he ut i l i t ar i an st at i onar y sol ut i on and conver gi ng t o i t . Once t he st ock r eaches s* consumpt i on i s set equal t o r ( s* ) . The l i mi t i s a pat h whi ch appr oaches t he ut i l i t ar i an st at i onar y sol ut i on and not t he gr een gol den r ul e . t her e i s no sol ut i on t o t he pi r esour ce . I n f act as not ed t he d f unct i on of t i me . The cr i t er i on i s st i l l consi st ent wi t h Chi chi l sol vi ng t he r enewabl e r esour c t hat we have not ed bef or e, n, t he di scount r at e goes t o zer o, r ul e . We shal l , t her ef or e, con a can be i mpr oved by pi cki ng a sl i ght l y hi gher i ni t i al val ue co f or consumpt i on, agai n f ol l owi ng t he f i r st or der condi t i ons f or opt i mal i t y and r eachi ng t he gr een gol den r ul e sl i ght l y l at er t han t ' . Thi s does not det r act f r om t he second t er m i n t he maxi mand. By t hi s pr ocess i t wi l l be possi bl e t o i ncr ease t he i nt egr al t er m i n t he maxi mand wi t hout r educi ng t he l i mi t i ng t er m and t hus t o appr oxi mat e t he i ndependent maxi mi zat i on of bot h t er ms i n t he maxi mand : t he di scount ed ut i l i t ar i an t er m, by st ayi ng l ong enough cl ose t o t he st abl e mani f ol d l eadi ng t o t he ut i l i t ar i an st at i onar y sol ut i on, and t he l i mi t ( pur el y f i ni t el y addi t i ve) t er m by movi ng t o t he gr een gol den r ul e ver y f ar i nt o t he f ut ur e . Al t hough i t i s possi bl e t o appr oxi mat e t he maxi mi zat i on of bot h t er ms i n t he maxi mand i ndependent l y by post poni ng f ur t her and f ur t her t he j ump t o t he gr een gol den r ul e, t her e i s no f easi bl e pat h t hat act ual l y achi eves t hi s maxi mum. The supr emum of t he val ues of t he maxi mand over f easi bl e pat hs i s appr oxi mat ed ar bi t r ar i l y cl osel y by pat hs whi ch r each t he gr een gol den r ul e at l at er and l at er dat es, but t he l i mi t of t hese pat hs never r eaches t he gr een gol den r ul e and so does not achi eve t he supr emum. Mor e f or mal l y, consi der t he l i mi t of pat hs ( ct , st ) _ { ct , st } ( vo) b' t _< t ' wher e t ' i s def i ned by s t , = s* , and ct = r ( s* ) , s t = s* bt > t ' as co appr oaches t he st abl e mani f ol d of t he ut i l i t ar i an opt i mal sol ut i on. On t hi s l i mi t i ng pat h s t < s* Vt . f 00 0 u ( ct , SO A( t ) wher e A( t ) i s t he di scount f a r at e q ( t ) at t i me t i s t he pr op and we assume t hat t he di sco 0. t ~~ q ( t ) = So t he over al l pr obl em i s noN max a f 00 0 u ( ct , st ) s . t . ht = wher e t he di scount f act or A r at e goes t o zer o i n t he l i mi t sol ut i on: i n f act , i t i s t he sol u t he f i r st t er m i n t he above ma: t he ut i l i t y f unct i on t o be sepa For mal l y, Sust ai nabl e Use of Renewabl e Resour ces Hence t her e i s no sol ut i on t o ( 4) . i vn s ut i ons r y I* i m st ock so and i ni t i al consumpt i on i n and conver gi ng t o i t . Once t he ni t i s a pat h whi ch appr oaches t he d val ue co f or consumpt i on, Lal i t y and r eachi ng t he gr een r act f r omt he second t er m i n t o i ncr ease t he i nt egr al t er m r mand t hus t o appr oxi mat e maxi mand : t he di scount ed t he st abl e mani f ol d l eadi ng i t ( pur el y f i ni t el y addi t i ve) i nt o t he f ut ur e . dmi zat i on of bot h t er ms i n i er and f ur t her t he j ump t o t hat act ual l y achi eves t hi s xi mand over f easi bl e pat hs ch r each t he gr een gol den se pat hs never r eaches t he ; upr emum. Mor e f or mal l y, b' t < t ' wher e t ' i s def i ned us co appr oaches t he st abl e i s l i mi t i ng pat h st < s* Vt . 59 o I nt ui t i vel y, t he non- exi st ence pr obl em ar i ses her e because i t i s al ways possi bl e t o post pone f ur t her i nt o t he f ut ur e movi ng t o t he gr een gol den r ul e, wi t h no cost i n t er ms of l i mi t i ng ut i l i t y val ues but wi t h a gai n i n t er ms of t he i nt egr al of ut i l i t i es . Thi s i s possi bl e because of t he r enewabi l i t y of t he r esour ce . Ther e i s no equi val ent phenomenon f or an exhaust i bl e r esour ce [ 18] . 5 . 1 . Decl i ni ng Di scount Rat es Wi t h t he Chi chi l ni sky cr i t er i on f or mul at ed as a f 00 u ( ct , st ) e- at dt + ( 1 - a) t l i m u ( ct , st ) , 0 t her e i s no sol ut i on t o t he pr obl em of opt i mal management of a r enewabl e r esour ce . I n f act as not edt he di scount f act or does not have t o be an exponent i al f unct i on of t i me. The cr i t er i on can be st at ed sl i ght l y di f f er ent l y, i n a way whi ch i s st i l l consi st ent wi t h Chi chi l ni sky' s axi oms and whi ch i s al so consi st ent wi t h sol vi ng t he r enewabl e r esour ce pr obl em. Thi s r ef or mul at i on bui l ds on a poi nt t hat we have not ed bef or e, namel y t hat f or t he di scount ed ut i l i t ar i an case, as t he di scount r at e goes t o zer o, t he st at i onar y sol ut i on goes t o t he gr een gol den r ul e . We shal l , t her ef or e, consi der a modi f i ed obj ect i ve f unct i on a 00 f o u ( ct , st ) A( t ) dt + ( 1 - a) t l i m u ( ct , st ) , wher e A( t ) i s t he di scount f act or at t i me t , f o A ( t ) dt i s f i ni t e, t he di scount r at e q ( t ) at t i me t i s t he pr opor t i onal r at e of change of t he di scount f act or : (t) 0 (t) q (t) _ - and we assume t hat t he di scount r at e goes t o zer o wi t h t i n t he l i mi t : o q (t) 0. = ta i So t he over al l pr obl emi s now max a ( 5) f 00 u ( ct , s t ) A( t ) dt + ( 1 - a) t l i i o u ( et , st ) 0 s. t . st = r ( st ) - ct , so gi ven, wher e t he di scount f act or A( t ) sat i sf i es t he condi t i on ( 5) t hat t he di scount r at e goes t o zer o i n t he l i mi t . We wi l l show t hat f or t hi s pr obl em, t her e i s a sol ut i on : ? i n f act , i t i s t he sol ut i on t o t he ut i l i t ar i an pr obl emof maxi mi zi ng j ust t he f ast t er m i n t he above maxi mand, f o u ( ct , st ) A( t ) dt . As bef or e we t ake t he ut i l i t y f unct i on t o be separ abl e i n i t s ar gument s : u ( c, s) = ul ( c) + u2 ( s) . For mal l y, 60 A. Bel t r at t i et al . PROPOSI TI ON 6 . 8 Consi der t hepr obl em max a f 00 { u1 ( c) + u2 ( s) } A ( t ) dt i s t he same as t hat of t he a + ( 1 - a) t l i y m { ul ( c) + u2 ( s) } , 0 < a < 1, s . t. ht = r ( st ) - ct , so gi ven, wher e q( t ) = - ( 0( t ) / 0( t ) ) andl i mt , q ( t ) = 0. Asol ut i on t ot hi spr obl em i s i dent i cal t o t he sol ut i on of " max f ' { u1( c) + u2 ( s) } 0 ( t ) dt subj ect t o t he same const r ai nt " . I n wor ds, t he condi t i ons char act er i zi ng a sol ut i on t o t he ut i l i t ar i an pr obl em wi t h t he var i abl e di scount r at e whi ch goes t o zer o al so char act er i ze a sol ut i on t o t he over al l pr obl em. Pr oof. Consi der f i r st t he pr obl em max a f ° ° { ul ( c) + u2 ( s) JA ( t ) dt s . t . ht = r ( st ) - ct , so gi ven. We shal l show t hat any sol ut i on t o t hi s pr obl em appr oaches and at t ai ns t he gr een gol den r ul e asympt ot i cal l y, whi ch i s t he conf i gur at i on of t he economy whi ch gi ves t he maxi mumof t he t er m ( 1 a) l i mt4 -0 . u ( c t , s t ) . Hence t hi s sol ut i on sol ves t he over al l pr obl em. The Hami l t oni an f or t he i nt egr al pr obl emi s now ~t = - u2 ( St ) ht = r ( st . whi ch di f f er s onl y i n t hat t zer o . 9 The pai r of Equat i o: st abi l i t y pr oper t i es of or i l associ at ed l i mi t i ng aut ono by t he st andar d t echni que: and ct = r ( s t ) , so t hat u2 u1 = -r' and whi ch i s j ust t he def i ni t i on ment s used above we can of t he syst em( 8) , as sho) N H= { u1( c) + u2 ( s) } A ( t ) + At A( t ) [ r ( st ) - Ct ] 00 " maxi mi ze and maxi mi zat i on wi t h r espect t o consumpt i on gi ves as bef or e i s f or any gi ven i ni t i al st e t hat ( co, so) i s on t he st y appr oaches t he Gr een Gc t o t he maxi mum possi bl , t her ef or e l eads t o a sol ut i The r at e of change of t he shadowpr i ce At i s det er mi ned by _ - [ u2 ( st ) 0 ( t ) + At A ( t ) r (st )] . The r at e of change of t he shadow pr i ce i s, t her ef or e, a t A( t ) + At , & ( t ) = - u2 ( st ) A( t ) - At A ( t ) r ' ( st ) . ( 6) As , & ( t ) depends on t i me, t hi s' equat i on i s not aut onomous, i . e . , t i me appear s expl i ci t l y as a var i abl e. For such an equat i on, we cannot use t he phase por t r ai t s and associ at ed l i near i zat i on t echni ques used bef or e, because t he r at es of change of c and s depend not onl y on t he poi nt i n t he c- s pl ane but al so on t he dat e . Rear r angi ng and not i ng t hat A( t ) / A ( t ) = q ( t ) , we have at 0 subj ect t o At u 1 ( ct ) = At . d ( at o( t ) ) f { + At q ( t ) = - u2 ( st ) - ui ( ct ) r ' ( st ) But i n t he l i mi t q = 0, so i n t he l i mi t t hi s equat i on i s aut onomous : t hi s equat i on and t he st ock gr owt h equat i on f or mwhat has r ecent l y been cal l ed i n dynami cal syst ems t heor y an asympt ot i cal l y aut onomous syst em [ 4] . Accor di ng t o pr oposi t i on 1 . 2 of [ 4] , t he asympt ot i c phase por t r ai t of t hi s non- aut onomous syst em ~ t + At q ( t ) ' = - u2 ( st ) - ui ( ct ) r ' ( st ) ht = r ( st ) - ct Fi gur e 4 shows t he behal can see what dr i ves t hi s 1 const ant di scount r at e ar of t he pat h t hat maxi mi ze pat h t hat maxi mi zes t he t o zer o i n t he l i mi t , t hat r esol ved onl y i n t hi s case PROPOSI TI ON 7. 1o Cot 00 max a ( J0 { u1( c) 0<~ wher e q( t ) = - ( 0( t ) / L = 0. I n t hi s case, t he sol e act er i ze t he sol ut i on t o " const r ai nt " . - Sust ai nabl e Use of Renewabl e Resour ces 61 i s t he same as t hat of t he aut onomous syst em t l +00 i MJU1 ct , so gi ven, a) ( c) + u2 ( S) } , 0. 14 sol ut i on t o t hi spr obl em 12 ( s) } A( t ) dt subj ect t o t he - act er i zi ng a sol ut i on t o t he 2t e whi ch goes t o zer o al so + u2 ( s ) } 0 ( t ) dt s . t . ny sol ut i on t o t hi s pr obl em sympt ot i cal l y, whi ch i s t he naxi mum of t he t er m ( 1 ; t he over al l pr obl em. The . 2c1 ( c) ( st ) - ct ] at = - ua ( st ) - ui ( ct ) r ' ( st ) = r ( St ) - Ct St whi ch di f f er s onl y i n t hat t he non- aut onomous t er mq( t ) has been set equal t o zer o . 9 The pai r of Equat i ons ( 8) i s an aut onomous syst em and t he asympt ot i c st abi l i t y pr oper t i es of or i gi nal syst em ( 7) wi l l be t he same as t hose of t he associ at ed l i mi t i ng aut onomous syst em( 8) . Thi s l at t er syst emcanbe anal yzed by t he st andar d t echni ques used bef or e. At a st at i onar y sol ut i on of ( 8) , . f i t = 0 and ct = r ( st ) , so t hat and U2 ul ct = r ( st ) whi ch i s j ust t he def i ni t i on of t he gr een gol den r ul e . Fur t her mor e, by t he ar gument s used above we can est abl i sh t hat t he gr een gol den r ul e i s a saddl epoi nt of t he syst em ( 8) , as shown i n Fi gur e 3. So t he opt i mal pat h f or t he pr obl em 00 " maxi mi ze i ves as bef or e ( 8) J0 { ul ( c) + u2 ( s ) } 0 ( t ) dt subj ect t o st = r ( st ) - ct , so gi ven" i s f or any gi ven i ni t i al st ock so t o sel ect an i ni t i al consumpt i on l evel co such t hat ( co, so) i s on t he st abl e pat h of t he saddl e poi nt conf i gur at i on whi ch appr oaches t he Gr een Gol den Rul e asympt ot i cal l y. But t hi s pat h al so l eads t o t he maxi mum possi bl e val ue of t he t er m l i mt , , , . { u l ( c) + u2 ( s) } , and o t her ef or e l eads t o a sol ut i on t o t he over al l maxi mi zat i on pr obl em. r mi ned by r ' ( s t )] . ) r e, ( t ) r ' ( st ) . ( 6) : onomous, i . e. , t i me appear s annot use t he phase por t r ai t s Mor e, because t he r at es of i n t he c- s pl ane but al so on i = q ( t ) , we have i s aut onomous : t hi s equat i on ent l y been cal l ed i n dynamas syst em [ 4] . Accor di ng t o r ai t of t hi s non- aut onomous Fi gur e 4 shows t he behavi or of an opt i mal pat h i n t hi s case . I nt ui t i vel y, one can see what dr i ves t hi s r esul t . The non- exi st ence of an opt i mal pat h wi t h a const ant di scount r at e ar ose f r om a conf l i ct bet ween t he l ong- r un behavi or of t he pat h t hat maxi mi zes t he i nt egr al of di scount ed ut i l i t i es, and t hat of t he pat h t hat maxi mi zes t he l ong- r un ut i l i t y l evel . When t he di scount r at e goes t o zer o i n t he l i mi t , t hat conf l i ct i s r esol ved. I n f act , one can show t hat i t i s r esol ved onl y i n t hi s case, as st at ed by t he f ol l owi ng pr oposi t i on . PROPOSI TI ON 7. 10 Consi der t he pr obl em max a J0 00{ u l ( c) + u2 ( s ) } 0 ( t ) { u l ( c) + u2 t _+00 liM 0 < a < 1, s. t . §t = r ( st ) - ct , so gi ven, dt + ( 1 - a) ( s) } , wher e q ( t ) = - ( , &( t ) / A ( t ) ) . Thi spr obl emhas a sol ut i on onl y i f l i mt , " ' , q ( t ) = 0. I n t hi s case, t he sol ut i on i s char act er i zed by t he condi t i ons whi ch char act er i ze t he sol ut i on t o " max f o { ui ( c) + u2 ( s) } 0 ( t ) dt subj ect t o t he same const r ai nt " . 62 A. Bel t r at t i et al . and 5. 3 . Empi r i cal Evi dence on D Fi gur e 4. Asympt ot i c dynami cs of t he ut i l i t ar i an sol ut i on f or t he case i n whi ch t he di scount r at e f al l s t o zer o . Pr oof. The " i f ' par t of t hi s was pr oven i n t he pr evi ous pr oposi t i on, Pr oposi t i on 6. The " onl y i f ' par t can be pr oven by an ext ensi on of t he ar gument s i n Pr oposi t i on 5, whi ch est abl i shed t he non- exi st ence of sol ut i ons i n t he case of a const ant di scount r at e . To appl y t he ar gument s t her e, assume cont r ar y t o t he pr oposi t i on t hat l i mi nf t _. ~, , . q ( t ) = q > 0, and t hen appl y t he ar gument s of Pr oposi t i on 5 . p Exi st ence of a sol ut i on t o t hi s pr obl em i s est abl i shed i n t he Appendi x . 5 . 2 . Exampl es To compl et e t hi s di scussi on, we r evi ew some exampl es of di scount f act or s whi ch sat i sf y t he condi t i on t hat t he l i mi t i ng di scount r at e goes t o zer o . The most obvi ous i s t t O( t ) = e- a ( ) , wi t h t l i , 1 b ( t ) = 0. Anot her exampl es 1 i s A( t ) = t - a, a > 1. Taki ng t he st ar t i ng dat e t o be t = 1, 12 we have 00 1 t ` dt = a1 f, Pr oposi t i on 7 has subst ant i al mal i t y wi t h a cr i t er i on sensi t i wi t h non- r enewabl e r esour ce : behavi or of t he di scount r at e : ut i l i t i es symmet r i cal l y i n t he e sense, t he t r eat ment of pr esen si st ent wi t h t he pr esence of t r posi t i ve wei ght on t he ver y l os Ther e i s a gr owi ng body of l i ke t hi s i n eval uat i ng t he f uh: mor e compr ehensi ve di scussi o whi ch peopl e appl y t o f ut ur e f ut ur i t y of t he pr oj ect . Over r e t hey use di scount r at es whi ch ; r egi on of 15%or mor e . For pi di scount r at es ar e cl oser t o st ext ends t he i mpl i ed di scount r year s and down t o of t he or der , f r amewor k f or i nt er t empor al of f ut ur e gener at es an i mpl i cat i on per sonal behavi or t hat hi t her t o Thi s empi r i cal l y- i dent i f i ed l ; sci ences whi ch f i nd t hat humar l i near , and ar e i nver sel y pr opor l i s an exampl e of t he Weber - Fec t hat human r esponse t o a chang pr e- exi st i ng st i mul us . I n symbc dr _ _K _ or r = K ds s wher e r i s a r esponse, s a st i m t o appl y t o human r esponses t o We not ed t hat t he empi r i cal r e ; somet hi ng si mi l ar i s happeni ng of an event : a gi ven change i s l eads t o a smal l er r esponse i n t o t he event al r eady i s i n t he f ut ur e appl i ed t o r esponses t o di st ance Sust ai nabl e Use of Renewabl e Resour ces 63 and 0=t -+ 0 as t - + oo . 5. 3 . Empi r i cal Evi dence on Decl i ni ng Di scount Rat es I f i mal pat hs a f or t he case i n whi ch t he di scount pr evi ous pr oposi t i on, Pr opon ext ensi on of t he ar gument s , t ence of sol ut i ons i n t he case : nt s t her e, assume cont r ar y t o i nd t hen appl y t he ar gument s 0 i shed i n t he Appendi x . I - xampl es of di scount f act or s ; count r at e goes t o zer o . The Pr oposi t i on 7 has subst ant i al i mpl i cat i ons . I t says t hat when we seek opt i mal i t y wi t h a cr i t er i on sensi t i ve t o t he pr esent and t he l ong- r un f ut ur e, t hen wi t h non- r enewabl e r esour ces exi st ence of a sol ut i on i s t i ed t o t he l i mi t i ng behavi or of t he di scount r at e: i n t he l i mi t , we have t o t r eat pr esent and f ut ur e ut i l i t i es symmet r i cal l y i n t he eval uat i on of t he i nt egr al of ut i l i t i es . I n a cer t ai n sense, t he t r eat ment of pr esent and f ut ur e i n t he i nt egr al has t o be made consi st ent wi t h t he pr esence of t he t er ml i mt , , , , , { u l ( c) + u2 ( s) } whi ch pl aces posi t i ve wei ght on t he ver y l ong r un. Ther e i s a gr owi ng body of empi r i cal evi dence t hat peopl e act ual l y behave l i ke t hi s i n eval uat i ng t he f ut ur e ( see, f or exampl e, [ 20] ; see al so [ 18] f or a mor e compr ehensi ve di scussi on) . The evi dence suggest s t hat t he di scount r at e whi ch peopl e appl y t o f ut ur e pr oj ect s depends upon, and decl i nes wi t h, t he f ut ur i t y of t he pr oj ect . Over r el at i vel y shor t per i ods up t o per haps f i ve year s, t hey use di scount r at es whi ch ar e hi gher even t han commer ci al r at es - i n t he r egi on of 15%or mor e . For pr oj ect s ext endi ng about t en year s, t he i mpl i ed di scount r at es ar e cl oser t o st andar d r at es - per haps 10%. As t he hor i zon ext ends t he i mpl i ed di scount r at es dr ops, t o i n t he r egi on of 5%f or 30 t o 50 year s and down t o of t he or der of 2%f or 100 year s . I t i s of gr eat i nt er est t hat a f r amewor k f or i nt er t empor al opt i mi zat i on t hat i s sensi t i ve t o bot h pr esent and f ut ur e gener at es an i mpl i cat i on f or di scount i ng t hat may r at i onal i ze a f or mof per sonal behavi or t hat hi t her t o has been f ound i r r at i onal . Thi s empi r i cal l y- i dent i f i ed behavi or i s consi st ent wi t h r esul t s f r omnat ur al sci ences whi ch f i nd t hat human r esponses t o a change i n a st i mul us ar e nonl i near , and ar e i nver sel y pr opor t i onal t o t he exi st i ng l evel of t he st i mul us . Thi s i s an exampl e of t he Weber - Fechner l aw, whi ch i s f or mal i zed i n t he st at ement t hat human r esponse t o a change i n a st i mul us i s i nver sel y pr opor t i onal t o t he pr e- exi st i ng st i mul us . I n symbol s, _dr _ _K or r = Kl og s, ds s wher e r i s a r esponse, s a st i mul us and K a const ant . Thi s has been f ound t o appl y t o human r esponses t o t he i nt ensi t y of bot h l i ght and sound si gnal s . We not ed t hat t he empi r i cal r esul t s on di scount i ng ci t ed above suggest t hat somet hi ng si mi l ar i s happeni ng i n human r esponses t o changes i n t he f ut ur i t y of an event : a gi ven change i n f ut ur i t y ( e . g. , post ponement by one year ) l eads t o a smal l er r esponse i n t er ms of t he decr ease i n wei ght i ng, t he f ur t her t he event al r eady i s i n t he f ut ur e . I n t hi s case, t he Weber - Fechner l awcan be appl i ed t o r esponses t o di st ance i n t i me, as wel l as t o sound and l i ght i nt ensi t y, 64 A. Bel t r at t i et al , wi t h t he r esul t t hat t he di scount r at e i s i nver sel y pr opor t i onal t o di st ance i nt o t he f ut ur e . Recal l i ng t hat t he di scount f act or i s A( t ) and t he di scount r at e q ( t ) = - A( t ) / A ( t ) , we can f or mal i ze t hi s as 1 dO q (t) = A dt K t or A( t ) =e K l og t =tK f or K a posi t i ve const ant . Such a di scount f act or can meet al l of t he condi t i ons we r equi r ed above: t he di scount r at e q goes t o zer o i n t he l i mi t , t he di scount f act or A( t ) goes t o zer o and t he i nt egr al f l' A( t ) dt = f l' eK l og t dt = f l , t K dt conver ges f or Kposi t i ve, as i t al ways i s . I n f act , t hi s i nt er pr et at i on gi ves r i se t o t he second exampl e of a non- const ant di scount r at e consi der ed i n t he pr evi ous sect i on. A di scount f act or A( t ) = eK 109' has an i nt er est i ng i nt er pr et at i on : t he r epl acement of t by l og t i mpl i es t hat we ar e measur i ng t i me di f f er ent l y, i . e . by equal pr opor t i onal i ncr ement s r at her t han by equal absol ut e i ncr ement s . 5. 4 . Ti me Consi st ency An i ssue whi ch i s r ai sed by t he pr evi ous pr oposi t i ons i s t hat of t i me consi st ency . Consi der a sol ut i on t o an i nt er t empor al opt i mi zat i on pr obl emwhi ch i s comput ed t oday and i s t o be car r i ed out over some f ut ur e per i od of t i me st ar t i ng t oday. Suppose t hat t he agent f or mul at i ng i t - an i ndi vi dual or a soci et y may at a f ut ur e dat e r ecomput e an opt i mal pl an, usi ng t he same obj ect i ve and t he same const r ai nt s as i ni t i al l y but wi t h i ni t i al condi t i ons and st ar t i ng dat e cor r espondi ng t o t hose obt ai ni ng when t he r ecomput at i on i s done . Then we say t hat t he i ni t i al sol ut i on i s t i me consi st ent i f t hi s l eads t he agent t o cont i nue wi t h t he i mpl ement at i on of t he i ni t i al sol ut i on. Anot her way of sayi ng t hi s i s t hat a pl an i s t i me consi st ent i f t he passage of t i me al one gi ves no r eason t o change i t . The i mpor t ant poi nt i s t hat t he sol ut i on t o t he pr obl emof opt i mal management of t he r enewabl e r esour ce wi t h a t i me- var yi ng di scount r at e, st at ed i n Pr oposi t i on 7, i s not t i me- consi st ent . A f or mal def i ni t i on of t i me consi st ency i s : 13 DEFI NI TI ON 8 . Let ( ct , st max a f o 00 { ul ) t =o, 00 ( c) + u2 be t he sol ut i on t o t he pr obl em ( s) } A ( t ) dt + ( 1 - a) t hi n { ul ( c) + u2 t - +00 ( s) } , 0 < a < 1, s . t . At = r ( st ) - ct , so gi ven . Let ( ct , 9' t ) t =T, Oo be t he sol ut i on t o t he pr obl emof opt i mi zi ng f r omTon, gi ven t hat t he pat h ( ct , s t ) t =o, o0 has been f ol l owed up t o dat e T. , i . e . , ( Ft , st ) t =T, m sol ves max a , f ' { ul 1' ( c) + u2 ( t - T) dt + ( 1 - a) l i m { ul ( c) + t - r oo 0 < a < 1, s . t . At = r ( st ) - ct , sT gi ven. ( s) } 0 u2 ( s) } , Then t he or i gi nal pr obl em so ( Et , St ) t =T, . = ( Ct , st ) t =T, oc per i od [ T, oo] i s al so a sol ut i c st ock sT, f or any T. I t i s shown i n [ 14] t hat t he sc i n gener al t i me consi st ent onl l owi ng r esul t i s an i l l ust r at i on PROPOSI TI ON 9. 14 The sol u, r enewabl e r esour ce wi t h a di s t i me consi st ent , i . e . , t he sol ut i max a 0<a< f 00 { ul ( c) + u2 0 l, s . t. At = r ( st ) i s not t i me consi st ent . Pr oof . Consi der t he f i r st o whi ch ar e gi ven i n ( 7) and r ef u1 ( ct ) ct + ui ( ct ) q i At Let ( ct , st ) t =o, . be a sol ut i on consumpt i on on t hi s at a dat e 7 be a sol ut i on t o t he pr obl em condi t i ons at T gi ven by ( cr st ar t i ng dat e T, t he val ue of val ue of t he di scount f act or . H A( T - T) , whi l e i t i s A( T) , t he t wo pat hs wi l l have di f f er t i n excess of T. Thi s est abl i shc T > 0, t hen t he i ni t i al pl an wi These ar e i nt er est i ng and sw opt i mal pat h whi ch bal ances Chi chi l ni sky' s axi oms, we ha t ent . Of cour se, t he empi r i ca: behavi or must al so be i ncons i ng what i ndi vi dual s appar en al ways r egar ded t i me consi st e r al choi ce. Mor e r ecent l y, t hi s and psychol ogi st s have not ed or hi s l i f e can r easonabl y be per spect i ves on l i f e and di f f er wi t h i nconsi st ent choi ces cl ea Sust ai nabl e Use of Renewabl e Resour ces pr opor t i onal t o di st ance i nt o A( t ) and t he di scount r at e ) gt =t K can meet al l of t he condi t i ons er o i n t he l i mi t , t he di scount A( t ) dt = f l oo eK t o g t dt = i s . I n f act , t hi s i nt er pr et at i on r ant di scount r at e consi der ed = eK i og t has an i nt er est i ng pl i es t hat we ar e measur i ng ement s r at her t han by equal ; i t i ons i s t hat of t i me consi sAi mi zat i on pr obl emwhi ch i s i e f ut ur e per i od of t i me st ar t - an i ndi vi dual or a soci et y usi ng t he same obj ect i ve and condi t i ons and st ar t i ng dat e i mput at i on i s done . Then we i s l eads t he agent t o cont i nue mot her way of sayi ng t hi s i s me al one gi ves no r eason t o mt o t he pr obl emof opt i mal t i me- var yi ng di scount r at e, A f or mal def i ni t i on of t i me n t o t he pr obl em u2 ( S) J, - a) l i m 1ul ( C) + . ct , so gi ven. ' opt i mi zi ng f r omTon, gi ven t o dat e T. , i . e. , ( Et , st ) t =T, oo - a) t l un{ u1 ( c) + u2 ( s) } , t , sT gi ven. 65 Then t he or i gi nal pr obl emsol ved at t = 0 i s t i me consi st ent i f and onl y i f ( Ft , St ) t =T, oo = ( ci st ) t =T, , , i . e. , i f t he or i gi nal sol ut i on r est r i ct ed t o t he per i od [ T, oc] i s al so a sol ut i on t o t he pr obl em wi t h i ni t i al t i me T and i ni t i al st ock sT, f or any T. I t i s shown i n [ 14] t hat t he sol ut i ons t o dynami c opt i mi zat i on pr obl ems ar e i n gener al t i me consi st ent onl y i f t he di scount f act or i s exponent i al . The f ol l owi ng r esul t i s an i l l ust r at i on of t hi s f act . PROPOSI TI ON 9 . 14 The sol ut i on t o t hepr obl emof opt i mal management of a r enewabl e r esour ce wi t h a di scount r at ef al l i ng asympt ot i cal l y t o zer o i s not t i me consi st ent , i . e. , t he sol ut i on t o max a , f 00 { ul ( c) + u2 ( s) } 0 ( t ) dt + ( 1 - a) t hiy n { ul ( c) + uZ ( s) } , 0 < a < 1, s . t . st = r ( st ) - ct , so gi ven, q ( t ) _ - , l i mt +00 q ( t ) = 0. i s not t i me consi st ent . Pr oof . Consi der t he f i r st or der condi t i on f or a sol ut i on t o t hi s pr obl em, whi ch ar e gi ven i n ( 7) and r epeat ed her e wi t h t he subst i t ut i on A = ui : ui ( ct ) 6t + ui ( ct ) q ( t ) = - ui ( st ) - ui ( ct ) r ' ( st ) . ( 9) st = r ( st ) - ct Let ( ct , st ) t =o 0o be a sol ut i on comput ed at dat e t = 0. The r at e of change of consumpt i on on t hi s at a dat e T > 0 wi l l be gi ven by ( 9) . Nowl et ( Et , st ) t =T, o0 be a sol ut i on t o t he pr obl em wi t h st ar t i ng dat e T, 0 < T < T, and i ni t i al condi t i ons at T gi ven by ( cr , sT) . When t he pr obl em i s sol ved agai n wi t h st ar t i ng dat e T, t he val ue of A( t ) at cal endar t i me T i s A( 0) , t he i ni t i al val ue of t he di scount f act or . Hence on t hi s pat h t he val ue of A( t ) at dat e T i s A( T - T) , whi l e i t i s A( T) on t he i ni t i al pat h . Hence q ( T) wi l l di f f er , and t he t wo pat hs wi l l have di f f er ent r at es of change of consumpt i on f or al l dat es i n excess of T. Thi s est abl i shes t hat i f t he opt i mumi s r ecomput ed at any dat e T > 0, t hen t he i ni t i al pl an wi l l no l onger be f ol l owed. These ar e i nt er est i ng and sur pr i si ng r esul t s : t o ensur e t he exi st ence of an opt i mal pat h whi ch bal ances pr esent and f ut ur e " cor r ect l y" accor di ng t o Chi chi l ni sky' s axi oms, we have t o accept pat hs whi ch ar e not t i me consi st ent . Of cour se, t he empi r i cal evi dence ci t ed above i mpl i es t hat i ndi vi dual behavi or must al so be i nconsi st ent , so soci et y i n t hi s case i s onl y r epl i cat i ng what i ndi vi dual s appar ent l y do. Tr adi t i onal l y, wel f ar e economi st s have al ways r egar ded t i me consi st ency as a ver y desi r abl e pr oper t y of i nt er t empor al choi ce . Mor e r ecent l y, t hi s pr esumpt i on has been quest i oned : phi l osopher s and psychol ogi st s have not ed t hat t he same per son at di f f er ent st ages of her or hi s l i f e can r easonabl y be t hought of as di f f er ent peopl e wi t h di f f er ent per spect i ves on l i f e and di f f er ent exper i ences . 15 The i mpl i cat i ons of wor ki ng wi t h i nconsi st ent choi ces cl ear l y need f ur t her r esear ch . 66 6. A. Bel t r at t i et al . 7. 1 . St at i onar y Sol ut i ons Capi t al and Renewabl e Resour ces Nowwe consi der t he most chal l engi ng, and per haps most r eal i st i c and r ewar di ng, of al l cases: an economy i n whi ch a r esour ce whi ch i s r enewabl e and so has i t s own dynami cs can be used t oget her wi t h pr oduced capi t al goods as an i nput t o t he pr oduct i on of an out put . The out put i n t ur n can as usual i n gr owt h model s be r ei nvest ed i n capi t al f or mat i on or consumed. The st ock of t he r esour ce i s al so a sour ce of ut i l i t y t o t he popul at i on . So capi t al accumul at i on occur s accor di ng t o k =F( k , v ) - c and t he r esour ce st ock evol ves accor di ng t o wher e k i s t he cur r ent capi t al st ock, Q t he r at e of use of t he r esour ce i n pr oduct i on, and F( k, v) t he pr oduct i on f unct i on . As bef or e r ( s) i s a gr owt h f unct i on f or t he r enewabl e r esour ce, i ndi cat i ng t he r at e of gr owt h of t hi s when t he st ock i s s . As bef or e, we shal l consi der t he opt i mum accor di ng t o t he ut i l i t ar i an cr i t er i on, t hen char act er i ze t he gr een gol den r ul e, and f i nal l y dr awon t he r esul t s of t hese t wo cases t o char act er i ze opt i mal i t y accor di ng t o Chi chi l ni sky' s cr i t er i on. A l i t t l e al gebr a shows t h under l yi ng di f f er ent i al ec sol ut i on : S=Fk ( 1 c =F( k us ( c+ s ) = (I Fa Uc ( c, s) Thi s syst em of f our equal t he var i abl es k, s, v and c . I t i s i mpor t ant t o under model , and i n par t i cul ar t h st ock s acr oss al t er nat i ve , Fi r st , consi der t hi s r el al t he capi t al st ock k : i n t hi s c = F( k, and so we have C9C Q( s) ) , - F, 198 k f i xed 7. The Ut i l i t ar i an Opt i mum The ut i l i t ar i an opt i mumi n t hi s f r amewor k i s t he sol ut i on t o max f ~u ( Ct ) St ) e - dt dt subj ect t o . ( 10) k =F( k , a) - c ands =r ( s ) - a We pr oceed i n t he by- now st andar d manner , const r uct i ng t he Hami l t oni an H = u ( c, s) e- 6t + Ae - 6t { F ( k, Q) - c} + me - 6t { r ( s) - o} and der i vi ng t he f ol l owi ng condi t i ons whi ch ar e necessar y f or a sol ut i on t o ( 10) : uC AF, = ~, ( 11) = ~~ ( 12) - Sa = - AFk, ( 13) - 8I - L = - ' us - hr s 1 ( 14) wher e r s i s t he der i vat i ve of r wi t h r espect t o t he st ock s . As FQ i s al ways posi t i ve, and t hen swi t ches t o neg; bet ween c and s f or f i xe, acr oss st at i onar y st at es f gr owt h f unct i on r ( s) and I n gener al , however , k on v vi a Equat i on . ( 15) . T as an i mpl i ci t f unct i on, w acr oss st at i onar y st at es : do _ Fk _ _ rs ( - b ds Fkk whi ch, mai nt ai ni ng t he as agai n i nher i t s t he shape of 1090S) k f i xed I and t hat t l zer o . The var i ous cur ves r e i n Fi gur e 5: f or Fk, > 0 t l r i ses and f al l s mor e shar p. f r ombel ow whi l e i ncr easi st at i onar y sol ut i on wi t h a Sust ai nabl e Use of Renewabl e Resour ces 67 7. 1 . St at i onar y Sol ut i ons s most r eal i st i c andr ewar dwhi ch i s r enewabl e and so oduced capi t al goods as an t ur n can as usual i n gr owt h asumed. The st ock of t he n. So capi t al accumul at i on of use of t he r esour ce i n As bef or e r ( s) i s a gr owt h r at e of gr owt h of t hi s when i r di ng t o t he ut i l i t ar i an cr i i f i nal l y dr aw on t he r esul t s ; cor di ng t o Chi chi l ni sky' s A l i t t l e al gebr a shows t hat t he syst em ( 11) t o ( 14) , t oget her wi t h t he t wo under l yi ng di f f er ent i al equat i ons i n ( 10) , admi t s t he f ol l owi ng st at i onar y sol ut i on : b = F' k ( k, ~) ( 15) = r ( s) , ( 16) c = F ( k, v) , ( 17) u s ( c' s) = FQ ( k, o) ( 5 - r . , ) u, ( c, s) ( 18) Q Thi s syst em of f our equat i ons suf f i ces t o det er mi ne t he st at i onar y val ues of t he var i abl es k, s, o, and c . I t i s i mpor t ant t o under st and f ul l y t he st r uct ur e of st at i onar y st at es i n t hi s model , and i n par t i cul ar t he t r ade- of f bet ween consumpt i onc and t he r esour ce st ock s acr oss al t er nat i ve st at i onar y st at es . Fi r st , consi der t hi s r el at i onshi p acr oss st at i onar y st at es f or a gi ven val ue of t he capi t al st ock k : i n t hi s case we can wr i t e c = F( k, v ( s) ) , and so we have ac Fr Qr s. . ( 19) ( 7S k f i xed - ol ut i on t o ( 10) r uct i ng t he Hami l t oni an + Fee - 8t f r ( s) _ Q} necessar y f or a sol ut i on t o , t ock s . As FQ i s al ways posi t i ve, t hi s has t he si gn of r s , whi ch i s i ni t i al l y posi t i ve and t hen swi t ches t o negat i ve : hence we have a si ngl e- peaked r el at i onshi p bet ween c and s f or f i xed k acr oss st at i onar y st at es . The c- s r el at i onshi p acr oss st at i onar y st at es f or a f i xed val ue of k r epl i cat es t he shape of t he gr owt h f unct i on r ( s) and so has a maxi mumf or t he same val ue of s . I n gener al , however , k i s not f i xed acr oss st at i onar y st at es, but depends on Q vi a Equat i on ( 15) . Taki ng account of t hi s dependence and t r eat i ng ( 15) as an i mpl i ci t f unct i on, we obt ai n t he t ot al der i vat i ve of c wi t h r espect t o s acr oss st at i onar y st at es : ( 11) ( 12) ( 13) ( 14) + FQ) , ( 20) Fkkk whi ch, mai nt ai ni ng t he assumpt i on t hat Fk, > 0, al so has t he si gn of r , s and agai n i nher i t s t he shape of r ( s) . Not e t hat f or a gi ven val ue of s : I ( dcl ds) ( > 1 * 149s) k &ed+ and t hat t he t wo ar e equal onl y i f t he cr oss der i vat i ve Fk, i s zer o . The var i ous cur ves r el at i ng c and s acr oss st at i onar y sol ut i ons ar e shown i n Fi gur e 5 : f or Fk Q > 0 t he cur ve cor r espondi ng t o k f ul l y adj ust ed t o s bot h r i ses and f al l s mor e shar pl y t han t he ot her s, and cr osses each of t hese t wi ce, f r ombel owwhi l e i ncr easi ng and f r om above whi l e decr easi ng, as shown. A st at i onar y sol ut i on wi t h a capi t al st ock k must l i e on t he i nt er sect i on of t he TS = r s (-b 68 A. Bel t r at t i et al . Ful l y- adj ust ed r el at i onshi p bet ween c and s acr oss st at i onar y st at es . 7. 2 . Dynami cs of t he Ut i l i t The f our di f f er ent i al equat k =F( k , a) - c , s =r ( s ) - a( pt ; ~_b11 =- us . The mat r i x of t he l i near i ze 6 - Fo ) , Fok Fov - AFkk + Fk, a 0 Fi gur e S. Aut i l i t ar i an st at i onar y sol ut i on occur s wher e t he f ul l y- adj ust ed c- s r el at i onshi p cr osses t he same r el at i onshi p f or t he f i xed val ue of k cor r espondi ng t o t he st at i onar y sol ut i on . cur ve cor r espondi ng t o a capi t al st ock f i xed at k wi t h t he cur ve r epr esent i ng t he f ul l y- adj ust ed r el at i onshi p . At t hi s poi nt , c, s and k ar e al l f ul l y adj ust ed t o each ot her . ( I n t he case of Fk, = 0 t he cur ves r el at i ng c and s f or k f i xed and f ul l y adj ust ed ar e i dent i cal , so t hat i n t he case of a separ abl e pr oduct i on f unct i on t he dynami cs ar e si mpl er , al t hough qual i t at i vel y si mi l ar. ) The st at i onar y f i r st or der condi t i on ( 18) r el at es most cl osel y t o t he cur ve connect i ng c and s f or a f i xed val ue of k ( t he onl y r el evant cur ve f or Fk a = 0) , and woul d i ndi cat e a t angency bet ween t hi s cur ve and an i ndi f f er ence cur ve i f t he di scount r at e 5 wer e equal t o zer o . For posi t i ve J, t he case we ar e consi der i ng now, t he st at i onar y sol ut i on l i es at t he poi nt wher e t he c- s cur ve f or t he f i xed val ue of k associ at ed wi t h t he st at i onar y sol ut i on cr osses t he c- s cur ve al ong whi ch k var i es wi t h s . At t hi s poi nt , an i ndi f f er ence cur ve cr osses t he f i xed- k c- s cur ve f r omabove: t hi s i s shown i n Fi gur e 5 . Not e t hat as we var y t he di scount r at e b, t he capi t al st ock associ at ed wi t h a st at i onar y sol ut i on wi l l al t er vi a Equat i on ( 15) , so t hat i n par t i cul ar l ower i ng t he di scount r at e wi l l l ead t o a st at i onar y sol ut i on on a f i xed- k c- s cur ve cor r espondi ng t o a l ar ger val ue of k and t her ef or e out si de t he cur ve cor r espondi ng t o t he i ni t i al l ower di scount r at e . To est abl i sh cl ear gene mat r i x, we have t o make si mar gi nal pr oduct i vi t y of t h t hen t he ei genval ues of t ht u2CJ Z + 4u cAFkk . Ther st at i onar y sol ut i on . I n t hi s saddl e poi nt . PROPOSI TI ON 10 . 16 A . sol ut i on t o be l ocal l y a sac pr oduct i vi t y of t he r esour c Ther e ar e ot her cases i n poi nt , i nvol vi ng addi t i ve s sol ut i on t o t he ut i l i t ar i an f 8. The Gr een Gol den R Acr oss st at i onar y st at es, t h st ock sat i sf i es t he equat i on c = F ( k, r ( s) ) , so t hat at t he gr een gol de l evel wi t h r espect t o t he i n max u ( F ( k, r ( s) ; , Maxi mi zat i on wi t h r espec Sust ai nabl e Use of Renewabl e Resour ces 69 7. 2 . Dynami cs of t he Ut i l i t ar i an Sol ut i on The f our di f f er ent i al equat i ons gover ni ng a ut i l i t ar i an sol ut i on ar e k = F ( k, v) - c ( st , At ) s = r ( s) - a ( pt , At , kt ) a- SA=- AFk ~_J M= - us - pr s r i an st at i onar y sol ut i on i e f ul l y- adj ust ed c- s r el at i onshi p i ondi ng t o t he st at i onar y sol ut i on. wi t h t he cur ve r epr esent i ng and k ar e al l f ul l y adj ust ed r el at i ng c and s f or k f i xed e of a separ abl e pr oduct i on i t at i vel y si mi l ar . ) s most cl osel y t o t he cur ve - el evant cur ve f or Fk, = 0) , e and an i ndi f f er ence cur ve ) osi t i ve b, t he case we ar e e poi nt wher e t he c- s cur ve ar y sol ut i on cr osses t he c- s a i ndi f f er ence cur ve cr osses n Fi gur e 5. Not e t hat as we - d wi t h a st at i onar y sol ut i on l ower i ng t he di scount r at e s cur ve cor r espondi ng t o a cor r espondi ng t o t he i ni t i al The mat r i x of t he l i near i zed syst em i s b - F° A UCC rs Faa - 1 _ Fa Fo _ AFaa ucc Fa AFaa t ea ss Foa 0 AFkk + Fkva 6 Fa AF, , _ 1 AF aa + Faa (~ - r , ucc To est abl i sh cl ear gener al r esul t s on t he si gns of t he ei genval ues of t hi s mat r i x, we have t o make si mpl i f yi ng assumpt i ons . I f FQQ i s l ar ge, so t hat t he mar gi nal pr oduct i vi t y of t he r esour ce dr ops r api dl y as mor e of i t i s empl oyed, t hen t he ei genval ues of t he above mat r i x ar e : r s , b - r s , 1/ ( 2uo, ) ( 2u, 6 f u. ' J2 + 4u cc AFkk Ther e ar e t wo negat i ve r oot s i n t hi s case, as r s < 0 at a . st at i onar y sol ut i on. I n t hi s case t he ut i l i t ar i an st at i onar y sol ut i on i s l ocal l y a saddl e poi nt . 0 USCUc s ucc - u ss _ l -~r s - U PROPOSI TI ON 10. 16 A suf f i ci ent condi t i on f or t he ut i l i t ar i an st at i onar y sol ut i on t o be l ocal l y a saddl e poi nt i s t hat Faa i s l ar ge, so t hat t he mar gi nal pr oduct i vi t y of t he r esour ce di mi ni shes r api dl y i n pr oduct i on. Ther e ar e ot her cases i n whi ch t he st at i onar y sol ut i on i s l ocal l y a saddl e poi nt , i nvol vi ng addi t i ve separ abi l i t y of t he ut i l i t y f unct i on. 17 Exi st ence of a sol ut i on t o t he ut i l i t ar i an pr obl emi s est abl i shed i n t he Appendi x. 8. The Gr een Gol den Rul e wi t h Pr oduct i on and Renewabl e Resour ces Acr oss st at i onar y st at es, t he r el at i onshi p bet ween consumpt i on and t he r esour ce st ock sat i sf i es t he equat i on c = F( k, r ( s) ) , so t hat at t he gr een gol den r ul e we seek t o maxi mi ze t he sust ai nabl e ut i l i t y l evel wi t h r espect t o t he i nput s of capi t al k and t he r esour ce st ock s : max u ( F ( k, r ( s) ) , s) . s, k Maxi mi zat i on wi t h r espect t o t he r esour ce st ock gi ves ( 21) 70 A. Bel t r at t i et al . whi ch i s pr eci sel y t he condi t i on ( 18) char act er i zi ng t he st at i onar y sol ut i on t o t he ut i l i t ar i an condi t i ons f or t he case i n whi ch t he di scount r at e 8 i s equal t o zer o . So, as bef or e, t he ut i l i t ar i an sol ut i on wi t h a zer o di scount r at e meet s t he f i r st or der condi t i ons f or maxi mi zat i on of sust ai nabl e ut i l i t y wi t h r espect t o t he r esour ce st ock. Of cour se, i n gener al t he ut i l i t ar i an pr obl emmay have no sol ut i on when t he di scount r at e i s zer o . Not e t hat t he condi t i on ( 21) i s qui t e i nt ui t i ve and i n keepi ng wi t h ear l i er r esul t s. I t r equi r es t hat an i ndi f f er ence cur ve be t angent t o t he cur ve r el at i ng c t o s acr oss st at i onar y st at es f or k f i xed at t he l evel k def i ned bel ow: i n ot her wor ds, i t agai n r equi r es equal i t y of mar gi nal r at es of t r ansf or mat i on and subst i t ut i on bet ween st ocks and f l ows . The capi t al st ock k i n t he maxi mand her e i s i ndependent of s . Howi s t he capi t al st ock chosen? I n a ut i l i t ar i an sol ut i on t he di scount r at e pl ays a r ol e i n t hi s t hr ough t he equal i t y of t he mar gi nal pr oduct of capi t al wi t h t he di scount r at e ( 15) : at t he gr een gol den r ul e t her e i s no equi val ent r el at i onshi p . We cl ose t he syst em i n t he pr esent case by supposi ng t hat t he pr oduct i on t echnol ogy ul t i mat el y di spl ays sat i at i on wi t h r espect t o t he capi t al i nput al one : f or each l evel of t he r esour ce i nput o t her e i s a l evel of capi t al st ock at whi ch t he mar gi nal pr oduct of capi t al i s zer o . Pr eci sel y, k ( c) =mi nk : ( k, o) = 0. ( 22) ak We assume t hat T ( o, ) exi st s f or al l o >_ 0, i s f i ni t e, cont i nuous and nondecr easi ng i n c . Essent i al l y assumpt i on ( 22) says t hat t her e i s a l i mi t t o t he ext ent t o whi ch capi t al can be subst i t ut ed f or r esour ces : as we appl y mor e and mor e capi t al t o a f i xed i nput of r esour ces out put r eaches a maxi mum above whi ch i t cannot be i ncr eased f or t hat l evel of r esour ce i nput . I n t he case i n whi ch t he r esour ce i s an ener gy sour ce, t hi s assumpt i on was shown by Ber r y et al . [ 5] t o be i mpl i ed by t he second l aw of t her modynami cs : t hi s i ssue i s al so di scussed by Dasgupt a and Heal [ 11] . I n gener al , t hi s seems a ver y mi l d and r easonabl e assumpt i on. Gi ven t hi s assumpt i on, t he maxi mi zat i on of st at i onar y ut i l i t y wi t h r espect t o t he capi t al st ock at a gi ven r esour ce i nput , m kax u ( F ( k, r ( s) ) , s) r equi r es t hat we_pi ck t he capi t al st ock at whi ch sat i at i on occur s at t hi s r esour ce i nput , i . e . , k = k ( r ( s) ) . Not e t hat ak ( r ( s) ) ak ( c) _ as ao so t hat k i s i ncr easi ng and t hen decr easi ng i n s acr oss st at i onar y st at es : t he der i vat i ve has t he si gn of r s . I n t hi s case, t he gr een gol den r ul e i s t he sol ut i on t o t he f ol l owi ng pr obl em: t he capi t al st ock maxi mi z r el at i onshi p bet ween consi st at es when at each r esour k ( r ( s) ) has t he f ol l owi ng dc ds = F~ wher e at each val ue of t he r esour ce st ock s t he i nput and t he r esour ce and t he capi t al st ock ar e adj ust ed so t hat t he r esour ce st ock i s st at i onar y and rs +. and by t he def i ni t i on of k t f t he cur ve r el at i ng c and s v t he sl ope when t he capi t al s of t he cur ves f or f i xed val u The t ot al der i vat i ve of r esour ce i s now du _ _ ds - ucFk _ 8k ao rs By assumpt i on ( 22) and t l t hi s t o zer o f or a maxi mun si on ( 21) . The gr een gol de i ndi f f er ence cur ve and t he st at i onar y st at es f or f i xed c PROPOSI TI ON 11 . 18 I n a) abl e r esour ces, under t he f unct i on wi t h r espect t o cal condi t i on us / u c = - Fr , cur ve and t he out er envek capi t al st ock of k ( _o ( s* ) ) , r esour ce st ock and k denot e of capi t al f i r st becomes zen What i f pr oduct i on does not I n t hi s case t her e i s no may a gi ven r esour ce f l ow and s sat i at i on of pr ef er ences wi t not wel l def i ned. l 9 9. Opt i mal i t y f or t he Chi Nowwe seek t o sol ve t he p max u ( F ( k ( r ( s) ) , r ( s) ) , s) , s ac max a f 00 u ( ct , 0 s. t . k = F( kt , at ) Sust ai nabl e Use of Renewabl e Resour ces : i ng t he st at i onar y sol ut i on t o he di scount r at e b i s equal t o 3 zer o di scount r at e meet s t he f i nabl e ut i l i t y wi t h r espect t o l i t ar i an pr obl emmay have no pat t he condi t i on ( 21) i s qui t e r equi r es t hat an i ndi f f er ence ar oss st at i onar y st at es f or k i , i t agai n r equi r es equal i t y of n bet ween st ocks and f l ows . i ndependent of s . How i s t he di scount r at e pl ays a r ol e i n A of capi t al wi t h t he di scount ui val ent r el at i onshi p . upposi ng t hat t he pr oduct i on pect t o t he capi t al i nput al one : evel of capi t al st ock at whi ch Y, ( 22) 71 t he capi t al st ock maxi mi zes out put f or t hat st at i onar y r esour ce i nput . The r el at i onshi p bet ween consumpt i on and t he r esour ce st ock acr oss st at i onar y st at es when at each r esour ce st ock t he capi t al st ock i s adj ust ed t o t he l evel k ( r ( s) ) has t he f ol l owi ng sl ope: dc ak ds Fk 8o r s + Far ., and by t he def i ni t i on of k t he f i r st t er mon t he r i ght i s zer o, so t hat t he sl ope of t he cur ve r el at i ng c and s when t he capi t al st ock i s gi ven by Jc i s t he same as t he sl ope when t he capi t al st ock i s f i xed. Thi s cur ve i s t hus t he out er envel ope of t he cur ves f or f i xed val ues of t he capi t al st ock. The t ot al der i vat i ve of t he ut i l i t y l evel wi t h r espect t o t he st ock of t he r esour ce i s now du o9k rs us u, Fk ds + ucFar s + . By assumpt i on ( 22) and t he def i ni t i on of k, Fk = 0 her e : hence equat i ng t hi s t o zer o f or a maxi mum sust ai nabl e ut i l i t y l evel gi ves t he ear l i er expr essi on ( 21) . The gr een gol den r ul e i s char act er i zed by a t angency bet ween an i ndi f f er ence cur ve and t he out er envel ope of al l cur ves r el at i ng c t o s acr oss st at i onar y st at es f or f i xed capi t al st ocks . f i ni t e, cont i nuous and nonys t hat t her e i s a l i mi t t o t he r esour ces : as we appl y mor e out put r eaches a maxi mum vel of r esour ce i nput . I n t he i t s assumpt i on was shown by i f t her modynami cs : t hi s i ssue n gener al , t hi s seems a ver y nnpt i on, t he maxi mi zat i on of k at a gi ven r esour ce i nput , PROPOSI TI ON 11 . 18 I n an economy wi t h capi t al accumul at i on and r enewabl e r esour ces, under t he assumpt i on ( 22) of sat i at i on of t he pr oduct i on f unct i on wi t h r espect t o capi t al , t he gr een gol den r ul e sat i sf i es t hef i r st or der condi t i on us / u, = - Far ., whi ch def i nes a t angency bet ween an i ndi f f er ence cur ve and t he out er envel ope of c- s cur ves f or f i xed val ues of k. I t has a capi t al st ock of k ( o, ( s* ) ) , wher e s* i s t he gr een gol den r ul e val ue of t he r esour ce st ock and k denot es t he capi t al st ock at whi ch t he mar gi nal pr oduct of capi t al f i r st becomes zer of or a r esour ce i nput of v ( s* ) . . t i at i on occur s at t hi s r esour ce What i f pr oduct i on does not di spl ay sat i at i on wi t h r espect t o t he capi t al st ock? I n t hi s case t her e i s no maxi mumt o t he out put whi ch can be obt ai ned f r om a gi ven r esour ce f l ow and so f r om a gi ven r esour ce st ock. Unl ess we assume sat i at i on of pr ef er ences wi t h r espect t o consumpt i on, t he gr een gol den r ul e i s not wel l def i ned. 19 acr oss st at i onar y st at es : t he en gol den r ul e i s t he sol ut i on 9. Opt i mal i t y f or t he Chi chi l ni sky Cr i t er i on i nput and t he r esour ce and ar ce st ock i s st at i onar y and Nowwe seek t o sol ve t he pr obl em max a f 00 u ( ct , st ) e - at dt + ( I - a) s . t . k = F( k t , at ) - ct &i t st ) l i omo u ( ct , = r ( s) - o' t , st > 0 ` dt . ( 23) 72 A. Bel t r at t i et al . I n t he case of sat i at i on of t he pr oduct i on pr ocess wi t h r espect t o capi t al , as capt ur ed by assumpt i on ( 22) , t he si t uat i on r esembl es t hat wi t h t he Chi chi l ni sky cr i t er i on wi t h r enewabl e r esour ces above: t her e i s no sol ut i on unl ess t he di scount r at e decl i nes t o zer o . For mal l y : . 2° Assume t hat condi t i on ( 22) i s sat i sf i ed. Then pr obl em PROPOSI TI ON 12 ( 23) has no sol ut i on . Pr oof. The st r uct ur e of t he pr oof i s t he same as t hat used above. The i nt egr al t er m i s maxi mi zed by t he ut i l i t ar i an sol ut i on, whi ch r equi r es an asympt ot i c appr oach t o t he ut i l i t ar i an st at i onar y st at e. The l i mi t t er mi s maxi mi zedon any pat h whi ch asympt ot es t o t he gr een gol den r ul e . Gi ven any f r act i on , 0 E [ 0, 1] we can f i nd a pat h whi ch at t ai ns t he f r act i on, Q of t he payof f t o t he ut i l i t ar i an opt i mumand t hen appr oaches t he gr een gol den r ul e . Thi s i s t r ue f or any val ue of Q < 1, but not t r ue f or B = 1 . Hence any pat h can be domi nat ed by anot her o cor r espondi ng t o a hi gher val ue of Q. We nowconsi der i nst ead opt i mi zat i on wi t h r espect t o Chi chi l ni sky' s cr i t er i on wi t h a di scount r at e whi ch decl i nes t o zer o over t i me : 10 . Concl usi ons A r evi ew of opt i mal pat t er r i nt er est i ng concl usi ons . The i t gi ves t he hi ghest sust ai nal i t i ve di scount r at e wi l l accu associ at ed wi t h t he gr een go t he di scount r at e used i n t he i a zer o di scount r at e, t her e i s Chi chi l ni sky' s cr i t er i on i n s4 concept s of opt i mal i t y : a sol i nt egr al t er m of Chi chi l ni sk; whi ch case maxi mi zat i on of ut i l i t i es - l eads one t o t hezyxw ¬ wi t h t he i ncl usi on of pr oduc not qual i t at i vel y di f f er ent . I r pl e di spl ay decl i ni ng di scow behavi or i s qui t e consi st ent human choi ce and summar b PROPOSI TI ON 13 . 21 Consi der t hepr obl em max a f 00 ul ( c, s) A( t ) dt + ( 1 - a) t l i m ul ( c, s) , 0 < a < 1, 0 11 . Appendi x 400 s . t . k = F( kt , ut ) - ct &ht = r ( st ) - ct , so gi ven. wher e q ( t ) = - ( 0( t ) / A( t ) ) and l i mt , c) q ( t ) = 0. Any sol ut i on t o t hi s pr obl em i s al so a sol ut i on t o t he pr obl emof maxi mi zi ng f o ul ( c, s) A( t ) dt subj ect t o t he same const r ai nt . I n wor ds, sol vi ng t he ut i l i t ar i an pr obl emwi t h t he var i abl e di scount r at e whi ch goes t o zer o sol ves t he over al l pr obl em. Pr oof. The pr oof i s a st r ai ght f or war d adapt at i on of t he pr oof of Pr oposi t i on 6, and i s omi t t ed . O As bef or e, t he exi st ence of a sol ut i on i s est abl i shed i n t he Appendi x . What does t he Chi chi l ni sky- opt i mal pat h l ook l i ke i n t hi s case? I t i s si mi l ar i n gener al t er ms t o t he set of pat hs shown i n Fi gur e 4, except t hat t he gr aph of t he gr owt h f unct i on r ( s) i s r epl aced by t he out er envel ope of t he cur ves r el at i ng c and s f or f i xed val ues of k . The opt i mal pat h moves t owar ds t he gr een gol den r ul e, whi ch i s a poi nt of t angency bet ween an i ndi f f er ence cur ve and t he out er envel ope of t he cur ves r el at i ng c and s f or f i xed val ues of k . Thi s poi nt i s t he l i mi t of ut i l i t ar i an st at i onar y sol ut i ons as t he associ at ed di scount r at e goes t o zer o . I n t hi s appendi x we est abl i s : t i ons t o t he var i ous i nt er t emy si t i ons 2, 6, 7, 10 and 13 of devel oped i ni t i al l y by Chi ch enwal d [ 9] . Thi s i s a ver y di of f easi bl e sol ut i ons t o t he cc f unct i on i s a cont i nuous f un t i nuous f unct i on on a compa i s t o f i nd a t opol ogy i n whi cl sonabl e assumpt i ons about t as i nt r oduced i n Chi chi l ni sk We consi der t he ut i l i t ar i a t hi s i s t he most compl ex of t he paper ar e speci al cases c i mpl i es t he exi st ence of soi l pr obl em i s : max 00 u ( ct , st ) e 0 k =F( k , v ) - c ar We make t he f ol l owi ng assu ocess wi t h r espect t o capi on r esembl es t hat wi t h t he above : t her e i s no sol ut i on l y: ?) i s sat i sf i ed. Then pr obl em t hat used above. The i nt egr al hi ch r equi r es an asympt ot i c ni t t er mi s maxi mi zed on any 3i ven any f r act i on , 3 E [ 0, 1] f t he payof f t o t he ut i l i t ar i an Ae . Thi s i s t r ue f or any val ue San be domi nat ed by anot her ct t o Chi chi l ni sky' s cr i t er i on t i me : Sust ai nabl e Use of Renewabl e Resour ces 10 . 73 Concl usi ons A r evi ew of opt i mal pat t er ns of use of r enewabl e r esour ces has suggest ed i nt er est i ng concl usi ons . The gr een gol den r ul e i s an at t r act i ve conf i gur at i on: i t gi ves t he hi ghest sust ai nabl e ut i l i t y l evel . Ut i l i t ar i an sol ut i ons wi t h a posi t i ve di scount r at e wi l l accumul at e a smal l er st ock of t he r esour ce t han t hat associ at ed wi t h t he gr een gol den r ul e, al t hough t he di f f er ence goes t o zer o as t he di scount r at e used i n t he ut i l i t ar i an f or mul at i on get s smal l er. Of cour se, f or a zer o di scount r at e, t her e i s t ypi cal l y no ut i l i t ar i an opt i mum. I nvest i gat i on of Chi chi l ni sky' s cr i t er i on i n some measur e br i dges t he gap bet ween t hese t wo concept s of opt i mal i t y : a sol ut i on exi st s i f and onl y i f t he di scount r at e i n t he i nt egr al t er m of Chi chi l ni sky' s maxi mand decl i nes asympt ot i cal l y t o zer o, i n whi ch case maxi mi zat i on of t he i nt egr al t er m al one - t he sumof di scount ed ut i l i t i es - l eads one t o t he gr een gol den r ul e . Thi s r esul t r emai ns t r ue even wi t h t he i ncl usi on of pr oduct i on : mat t er s ar e mor e compl ex i n t hat case, but not qual i t at i vel y di f f er ent . I nt er est i ngl y, t her e i s empi r i cal evi dence t hat peopl e di spl ay decl i ni ng di scount r at es i n t hei r behavi or t owar ds t he f ut ur e . Such behavi or i s qui t e consi st ent wi t h behavi or pat t er ns f ound i n ot her aspect s of human choi ce and summar i zed as t he Weber - Fechner l aw. l i m ul ( c, S) , 0 < a < 1, 11 . ( st ) - ct , so gi ven. I n t hi s appendi x we est abl i sh condi t i ons suf f i ci ent f or t he exi st ence of sol ut i ons t o t he var i ous i nt er t empor al opt i mi zat i on pr obl ems consi der ed i n Pr oposi t i ons 2, 6, 7, 10 and 13 of t he t ext . We use an appr oach and a set of r esul t s devel oped i ni t i al l y by Chi chi l ni sky [ 6] and appl i ed by Chi chi l ni sky and Gr uenwal d [ 9] . Thi s i s a ver y di r ect and i nt ui t i ve appr oach : we show t hat t he set of f easi bl e sol ut i ons t o t he const r ai nt s i s a compact set , and t hat t he obj ect i ve f unct i on i s a cont i nuous f unct i on, and i nvoke t he st andar d r esul t t hat a cont i nuous f unct i on on a compact set at t ai ns a maxi mum. The del i cat e st ep her e i s t o f i nd a t opol ogy i n whi ch we have compact ness and cont i nui t y under r easonabl e assumpt i ons about t he pr obl em: f or t hi s we use wei ght ed Lr spaces, as i nt r oduced i n Chi chi l ni sky [ 6] . We consi der t he ut i l i t ar i an opt i mal i t y pr obl em anal yzed i n Sect i on 7, as t hi s i s t he most compl ex of t he pr obl em i n t he paper. Ear l i er pr obl ems i n t he paper ar e speci al cases of t hi s, so t hat t he exi st ence of a sol ut i on t o t hi s i mpl i es t he exi st ence of sol ut i ons t o t he ear l i er pr obl ems . The opt i mi zat i on pr obl emi s : = 0. Any sol ut i on t o t hi s ci mi zi ng f ool , ul ( c, s) A( t ) dt t he ut i l i t ar i an pr obl emwi t h I ves t he over al l pr obl em. l i on of t he pr oof of Pr oposi 0 hed i n t he Appendi x . l i ke i n t hi s case? I t i s si mi l ar gur e 4, except t hat t he gr aph out er envel ope of t he cur ves mal pat h moves t owar ds t he Bet ween an i ndi f f er ence cur ve Ld s f or f i xed val ues of k. Thi s i ns as t he associ at ed di scount Appendi x max fo 00 u ( ct , st ) e- at dt subj ect t o k =F( k , v ) - c ands =r ( s ) - v We make t he f ol l owi ng assumpt i ons : . ( 24) 74 A. Bel t r at t i et al . 1 . u ( c, s) i s concave, i ncr easi ng and di f f er ent i abl e . I t sat i sf i es t he Car at heodor y condi t i on, namel y i t i s cont i nuous wi t h r espect t o c and s f or al most al l t and measur abl e wi t h r espect t o t f or al l val ues of c and i nequal i t y i s sat i sf i ed f or p opt i mum. s. 2 . r ( 0) = 0, 3s > 0 s . t . r ( s) = 0 Vs >_ s, max s r ( s) _< b1 < oo, and r ( s) i s concave f or s E [ 0, s] . 3 . For any a3b2 ( Q) < oo s . t . F( k, er ) < b2 ( Q) . W e have nowpr oven t he ex t he opt i mi zat i on pr obl ems t he si mpl er pr obl ems can 4. 3b3 < oo s . t . Js) < b3 . < b4 . 5. 3b4< oo s . t . I kI The f i r st t wo condi t i ons ar e convent i onal . The t hi r d i mpl i es t hat bounded r esour ce avai l abi l i t y i mpl i es bounded out put : i t i s a f or m of t he assumpt i on made by Dasgupt a and Heal [ 10] t hat t he r esour ce i s essent i al t o pr oduct i on. I t i s a r est at ement of assumpt i on ( 22) i n t he t ext . The f i nal t wo assumpt i ons i mpl y t hat i t i s not possi bl e f or ei t her t he r esour ce st ock or t he t o change i nf i ni t el y r api dl y. These seemt o be ver y r easonabl e However , we shal l i n t he end not r equi r e t hem: we shal l pr ove of an opt i mal pat h under t hese assumpt i ons, and t hen not e t hat capi t al st ock assumpt i ons . t he exi st ence a pat h whi ch i s opt i mal wi t hout t hese assumpt i ons i s st i l l f easi bl e and opt i mal wi t h t hem. PROPOSI TI ON 14 . Under assumpt i ons ( 1) t o ( S) above, t he ut i l i t ar i an opt i - mi zat i on pr obl em( 24) has a sol ut i on . Pr oof. Under t he above assumpt i ons, t he set of f easi bl e t i me pat hs of t he r esour ce st ock s and consumpt i on c ar e uni f or ml y bounded above . ( Not e t hat s i s bounded by ( 2) , and c by ( 3) and ( 5) . ) They ar e non- negat i ve and so bounded bel ow. Hence t he pat hs of s and c ar e i nt egr abl e agai nst some f i ni t e measur e and so ar e el ement s of a wei ght ed L1 space . Denot e by P t he set of f easi bl e pat hs st and ct , 0 _< t <_ oo : as a subset of L1, P i s cl osed and nor m bounded, so t hat by t he Banach- Al aogl u t heor em i t i s weak- * compact . By Lebesgue' s bounded conver gence t heor em, i t i s al so compact i n t he nor mof Ll . The obj ect i ve U = f o u ( ct , SOe- bt dt maps Pt o t he r eal l i ne f i t . To compl et e t he pr oof we need t o showt hat U i s cont i nuous i n t he nor mof L1 . Thi s f ol l ows i mmedi at el y f r om t he char act er i zat i on of LP cont i nui t y gi ven i n [ 6] : LEMMA 15 ( Chi chi l ni sky) . Let W= f i t u ( c t , t ) dv ( t ) f or a f i ni t e measur e v ( t ) , wi t h u ( ct , t ) sat i sf yi ng t he Car at heodor y condi t i on. Then W def i nes a nor m- cont i nuous f unct i on f r om LP t o Rf or some coor di nat e syst em of Lp i f and onl y i f I u ( ct , t ) ~ < a ( t ) + b I ct JP, wher e a ( t ) > 0, f i t a ( t ) dv ( t ) < oo and b > 0. I n t he case of our obj ect i ve t he r ol e of u ( ct , t ) i s pl ayed by u ( ct , s t ) e- Jt . An ext ensi on of Chi chi l ni sky' s l emma t o f unct i ons u def i ned on R2 i s st r ai ght f or war d. As u i s def i ned onl y on R2 , concavi t y i mpl i es t hat Chi chi l ni sky' s ( 4) and ( 5) above, whi ch b t he r esour ce and capi t al st o, of t he paper . However , not e sol ut i ons t o t he pr obl ems do i n f act have bounded r , of capi t al . Hence f or suf f i c t he r at es of change of st ock pr obl ems . I t f ol l ows t hat w f or t he unbounded opt i mi z, Not es 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12. 13 . 14. 15 . 16 . 17 . 18 . 19 . 20 . 21 . See [ 12] f or a det ai l ed l i st i ng Thi s pr oposi t i on, whi ch was El sewher e we have cal l ed t hi Thi s r esul t , and t he associ at e and [ 3] . We ar e gr at ef ul t o Kenn J ud Thi s r esul t was i nt r oduced i n We ar e gr at ef ul t o Har l Ryde . it. Thi s r esul t was f i r st pr oven f t Thi s equal i t y i s not al ways aut onomous syst emt o t he au Thi s r esul t was f i r st pr oven i t Due t o Har l Ryder . Thi s di scount f act or i s i nf i ni t , Fur t her di scussi ons of t i me a Thi s r esul t was f i r st pr oven i t For a f ur t her di scussi on, see [ Thi s r esul t was f i r st pr oven i t See [ 18] f or det ai l s . Thi s r esul t was f i r st pr oven i t See [ 18] f or det ai l s . Thi s r esul t was f i r st pr oven i r Thi s r esul t was f i r st pr oven i n Sust ai nabl e Use of Renewabl e Resour ces ; r ent i abl e . I t sat i sf i es t he uuous wi t h r espect t o c and ct t o t f or al l val ues of c and is r ( s) < b1 < oo, and r ( s) e t hi r d i mpl i es t hat bounded i s a f or m of t he assumpt i on ce i s essent i al t o pr oduct i on . t . The f i nal t wo assumpt i ons -ce st ock or t he capi t al st ock er y r easonabl e assumpt i ons . we shal l pr ove t he exi st ence i t hen not e t hat a pat h whi ch ; i bl e and opt i mal wi t h t hem. i ) above, t he ut i l i t ar i an opt i of f easi bl e t i me pat hs of t he [ y bounded above. ( Not e t hat i ey ar e non- negat i ve and so at egr abl e agai nst some f i ni t e pace . Denot e by Pt he set of of L1, Pi s cl osed and nor m ; m i t i s weak- * compact . By al so compact i n t he nor mof Pt o t he r eal l i ne R. To comuous i n t he nor mof L 1 . Thi s L P cont i nui t y gi ven i n [ 6] : t ) dv ( t ) f or af i ni t e measur e condi t i on. Then W def i nes a t o coor di nat e syst em of Lp i f ( t ) > 0, f gt a ( t ) dv ( t ) < oc pl ayed by u ( ct , st ) e- bt . An u def i ned on R2 i s st r ai ght , i mpl i es t hat Chi chi l ni sky' s 75 i nequal i t y i s sat i sf i ed f or p = 1 . Thi s compl et es t he pr oof of exi st ence of an opt i mum. El We have nowpr oven t he exi st ence of an opt i mal pat h f or t he most compl ex of t he opt i mi zat i on pr obl ems di scussed i n t he paper : exi st ence of an opt i mumf or t he si mpl er pr obl ems can be deduced f r omt hi s . Our pr oof used assumpt i ons ( 4) and ( 5) above, whi ch bound r espect i vel y s and k, t he r at es of change of t he r esour ce and capi t al st ocks . These assumpt i ons wer e not made i n t he body of t he paper. However , not e f r omt he char act er i zat i on r esul t s i n t he paper t hat sol ut i ons t o t he pr obl ems wi t hout bounds on t he r at es of change of st ocks do i n f act have bounded r at es of change of t he st ocks of t he r esour ce and of capi t al . Hence f or suf f i ci ent l y l ar ge bounds, t he i mposi t i on of bounds on t he r at es of change of st ocks cannot change t he sol ut i ons t o t he opt i mi zat i on pr obl ems . I t f ol l ows t hat we have al so est abl i shed t he exi st ence of sol ut i ons f or t he unbounded opt i mi zat i on pr obl ems . Not es 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . See [ 12] f or a det ai l ed l i st i ng of many mor e exampl es . Thi s pr oposi t i on, whi ch was f i r st pr oved i n [ 18] , i s a st r engt heni ng of r esul t s i n [ 3] . El sewher e we have cal l ed t hi s t he gr een gol den r ul e [ 3] . Thi s r esul t , and t he associ at ed concept of t he gr een gol den r ul e, wer e i nt r oduced i n [ 1] and [ 3] . We ar e gr at ef ul t o Kenn Judd f or t hi s obser vat i on . Thi s r esul t was i nt r oduced i n [ 18] . We ar e gr at ef ul t o Har l Ryder f or suggest i ng t hi s r esul t and out l i ni ng t he i nt ui t i on behi nd it. Thi s r esul t was f i r st pr oven i n [ 18] . Thi s equal i t y i s not al ways t r ue : i t r equi r es l ocal l y uni f or m conver gence of t he nonaut onomous syst em t o t he aut onomous syst em. For det ai l s, see [ 4] . Thi s r esul t was f i r st pr oven i n [ 18] . Due t o Har l Ryder . Thi s di scount f act or i s i nf i ni t e when t = 0: hence t he need t o st ar t f r om t = 1 . Fur t her di scussi ons of t i me consi st ency can be f ound i n [ 14] . Thi s r esul t was f i r st pr oven i n [ 18] . For a f ur t her di scussi on, see [ 13] and r ef er ences t her ei n . Thi s r esul t was f i r st pr oven i n [ 18] . See [ 18] f or det ai l s. Thi s r esul t was f i r st pr oven i n [ 18] . See [ 18] f or det ai l s. Thi s r esul t was f i r st pr oven i n [ 18] . Thi s r esul t was f i r st pr oven i n [ 18] . 76 A. Bel t r at t i et al . Ref er ences Bel t r at t i , A., G. Chi chi l ni sky and G. M . Heal . " Sust ai nabl e gr owt h and t he gr een gol den r ul e" , i nAppr oaches t o Sust ai nabl eEconomi cDevel opment , I an Gol di n and Al an Wi nt er s ( eds . ) , Par i s, Cambr i dge Uni ver si t y Pr ess f or t he OECD, 1993, pp . 147- 172 . 2. Bel t r at t i , A. , G. Chi chi l ni sky and G. M.Heal . " The Envi r onment and t he Long Run: A Compar i son of Di f f er ent Cr i t er i a" , Ri cer che Economi che 48, 1994, 319- 340. 3 . Bel t r at t i , A., G. Chi chi l ni sky and G. M . Heal . " The Gr een Gol den Rul e" , Economi cs Let t er s 49, 1995, 175- 179. 4. Bena-i m, M . and M . W . Hi r sch . " Asympt ot i c Pseudot r aj ect or i es, Chai n Recur r ent Fl ows and St ochast i c Appr oxi mat i ons" , Wor ki ngPaper , Depar t ment of Mat hemat i cs, Uni ver si t y of Cal i f or ni a at Ber kel ey, 1994. 5. Ber r y, S. , G. M . Heal and P. Sal omon. " On t he Rel at i on bet ween Economi c and Ther modynami c Concept s of Ef f i ci ency i n Resour ce Use" , Resour ces and Ener gy 1, 1978, 125- 137 . ( al so r epr i nt ed i n [ 16] ) . 6. Chi chi l ni sky, G. " Nonl i near Funct i onal Anal ysi s and Opt i mal Economi c Gr owt h" , Jour nal of Opt i mi zat i on Theor y and Appl i cat i ons 61( 2) , 1977, 504- 520 . 7. Chi chi l ni sky, G. " What I s Sust ai nabl e Devel opment ?" , Wor ki ng Paper , St anf or d I nst i t ut e f or Theor et i cal Economi cs, 1993 . 8. Chi chi l ni sky, G. " Sust ai nabl e Devel opment : An Axi omat i c Appr oach" , Soci al Choi ce and Wel f ar e 13( 2) , 1996, 219- 248. 9. Chi chi l ni sky, G. and P. F. Gr uenwal d. " Exi st ence of an Opt i mal Gr owt h Pat h wi t h Endogenous Techni cal Change" , Economi cs Let t er s 48, 1995, 433- 439. 10 . Dasgupt a, P. S. and G. M . Heal . " The Opt i mal Depl et i on of Exhaust i bl e Resour ces" , Revi ew of Economi c St udi es, Speci al I ssue on Exhaust i bl e Resour ces, 1974, 3- 28 . 11 . Dasgupt a, P. S. and G. M.Heal . Economi c Theor y and Exhaust i bl eResour ces, Cambr i dge Uni ver si t y Pr ess, 1979 . 12 . Dai l y, G. Nat ur e' s Ser vi ces, Soci et al Dependence on Nat ur al Ecosyst ems, I sl and Pr ess, Washi ngt on DC, 1997. 13 . Har vey, C. " The Reasonabl eness of Non- Const ant Di scount i ng" , Jour nal of Publ i c Economi cs 53, 1994, 31- 51 . 14 . Heal , G. M.The Theor y of Economi c Pl anni ng, Advanced Text s i n Economi cs, Amst er dam, Nor t h- Hol l and, 1973 . 15 . Heal , G. M . " The Opt i mal Use of Exhaust i bl e Resour ces" Handbook of Nat ur al Resour ce and Ener gy Economi cs, Vol . I I I , Al an Kneese and James Sweeney ( eds. ) , Amst er dam, . NewYor k and Oxf or d, Nor t h- Hol l and, 1993, pp. 855- 880 . 16. Heal , G. M . The Economi cs of Exhaust i bl e Resour ces, I nt er nat i onal Li br ar y of Cr i t i cal Wr i t i ngs i n Economi cs, Edwar d El gar , 1993 . 17. Heal , G. M . " I nt er pr et i ng Sust ai nabi l i t y" , i n Soci al Sci ences and t he Envi r onment , L. Quesnel ( ed . ) , Uni ver si t y of Ot t awa Pr ess, 1995, pp. 119- 143 . 18 . Heal , G. M . Lect ur es on Sust ai nabi l i t y, Li ef Johansen Lect ur es, Uni ver si t y of Osl o, 1995. Ci r cul at ed as a wor ki ng paper of t he Depar t ment of Economi cs, Uni ver si t y of Osl o, and f or t hcomi ng as Val ui ng t he Fut ur e: Economi c Theor y and Sust ai nabi l i t y, Col umbi a Uni ver si t y Pr ess . 19 . Kr aut kr amer , J . A. " Opt i mal Gr owt h, Resour ce Ameni t i es and t he Pr eser vat i on of Nat ur al Envi r onment s" , Revi ew of Economi c St udi es 52, 1985, 153- 170 ( al so r epr i nt ed i n [ 16] ) . 20 . Lowenst ei n, G. and R. Thal er . " I nt er t empor al Choi ce" , Jour nal of Economi c Per spect i ves 3, 1989, 181- 193 . 21 . Roughgar den, J . and F. Smi t h . " Why Fi sher i es Col l apse and What t o Do about I t " , i n Pr oceedi ngs of t he Nat i onal Academy of Sci ences, f or t hcomi ng . 22 . Sei er st ad, A. and K. Sydsxt er . Opt i mal Cont r ol Theor y wi t h Economi c Appl i cat i ons, Advanced Text s i n Economi cs, Amst er dam, Nor t h- Hol l and, 1987 . RALPH ABRAHAM, GRAC 1. 2 . 2 . Nor t h- Sout h Tr y of t he Envi r onm 1. I nt r oduct i on Thi s paper devel ops a dyr envi r onment pl ays an i mpc Nor t h- Sout h model f or t he of t he wor l d economy . The W e i nt r oduce dynami cs i n endogenous accumul at i on c duce her e a var i abl e whi cl envi r onment al asset whi ch coul d r epr esent , f or exampl i s ext r act ed t o be used as a pr oper t y r i ght s on wat er v goods f or expor t . The paper expl ai ns mat h of a t wo- r egi on wor l d . Th pr oduct i on . Capi t al i s one t i me as a f unct i on of pr of i t , t he envi r onment t he dynam ar e t he pr oper t y r i ght s, t he The model s whi ch r esul t Neumann i n 1932 and ext er W e est abl i sh, i n a sequenc coupl ed l ogi st i c maps st udi o i dea i s t o al t er [ I ] t o al l ow c t he appr oach t o equi l i br i um our model , whi ch ar e not f evol ut i on of capi t al st ock t h G. Chi chi l ni sky et al ( eds) , Sust ai nat © 1998 Kl uwer Academi c Publ i sher s