More free publications from Archimer
La Baie de Seine (GRECO-MANCHE) - Université de Caen, 24-26 avril 1985
IFREMER. Actes de Colloques n. 4 1986, pages 347 à 362
30
BIOLOGICAL AVAILABILITY OF SEDIMENT-BOUND TRACE METALS.
LUOMA S.N. *
ABSTRACT^ T h e i m p a c t s
of
trace
contaminants
in
aquatic
e n v i r o n m e n t s c a n n o t be a s s e s s e d r e a l i s t i c a l l y w i t h o u t a g r e a t e r
u n d e r s t a n d i n g of t h e f a c t o r s c o n t r o l l i n g
the
biological
a v a i l a b i l i t y of t h e c o n c e n t r a t e d p o o l of m e t a l s a s s o c i a t e d w i t h
sediments.
I t has been e s t a b l i s h e d t h a t d i r e c t uptake of (at
l e a s t some) t r a c e m e t a l s from s e d i m e n t s c o n t r i b u t e s t o m e t a l
c o n c e n t r a t i o n s in b e n t h i c o r g a n i s m s .
I m p o r t a n t c o n t r o l s on m e t a l
u p t a k e from s e d i m e n t a r e t h e c o n c e n t r a t i o n o f t h e e x p o s u r e ,
the
p a r t i t i o n i n g o f t h e m e t a l s among c o m p o n e n t s o f t h e s e d i m e n t , and
t h e redox p o t e n t i a l of t h e s e d i m e n t .
Important problems
in
e c o l o g y , p h y s i o l o g y , g e o c h e m i s t r y and b i o g e o c h e m i s t r y r e m a i n
unresolved,
however,
and a c o n c e n t r a t e d
interdisciplinary
r e s e a r c h e f f o r t w i l l be n e c e s s a r y b e f o r e a c o m p l e t e u n d e r s t a n d i n g
o f t h e f a t e and i m p a c t o f s e d i m e n t - b o u n d m e t a l s w i l l be p o s s i b l e .
INTRODUCTION
One
important
objective
of
studying
trace
metal
biogeochemistry
is
to
develop
means
of
predicting
or
understanding the b i o l o g i c a l impact of t h e s e c o n t a m i n a n t s , based
upon t h e i r c o n c e n t r a t i o n s i n t h e e n v i r o n m e n t .
This w i l l require
u n d e r s t a n d i n g b o t h b i o l o g i c a l and g e o c h e m i c a l a s p e c t s o f t r a c e
metal behavior.
When a m e t a l i s r e l e a s e d i n an a q u a t i c s y s t e m i t i m m e d i a t e l y
d i s t r i b u t e s b e t w e e n p a r t i c l e s and s o l u t i o n .
C o n c e n t r a t i o n s bound
t o p a r t i c l e s ( s e d i m e n t s or s u s p e n d e d p a r t i c u l a t e s ) a r e u s u a l l y
o r d e r s of m a g n i t u d e h i g h e r than c o n c e n t r a t i o n s in s o l u t i o n .
This
p a p e r i s a summary o f some o f t h e work we h a v e done s t u d y i n g t h e
p r o c e s s e s t h a t d e t e r m i n e t h e e x t e n t o f t r a n s f e r t o f o o d webs o f
metals within this concentrated p a r t i c u l a t e - a s s o c i a t e d metal
reservoir.
*U. S. G e o l o g i c a l S u r v e y , M a i l S t o p
Menlo P a r k , C a l i f o r n i a 9 4 0 2 5 , USA
465,
345
Middlefield
Road,
348
1.
SEDIMENT GEOCHEMISTRy OF METALS
P a r t i c l e s i n e s t u a r i n e e n v i r o n m e n t s a r e c o m p o s e d o f a number
of c o m p o n e n t s c a p a b l e of s t r o n g l y b i n d i n g t r a c e m e t a l s .
In
o x i d i z e d s e d i m e n t s ( w h i c h w i l l be c o n s i d e r e d e x c l u s i v e l y i n t h i s
paper) t h e s e i n c l u d e o x i d e s of i r o n , o x i d e s of manganese, v a r i o u s
f o r m s o f o r g a n i c m e t a l s and c l a y s .
Most p a r t i c l e s a r e a g g r e g a t e s
of a l l t h e s e components (Jenne 1 9 7 7 ) .
Most of t h e o r g a n i c
m a t e r i a l s , i r o n o x i d e s and m a n g a n e s e o x i d e s o c c u r a s c o a t i n g s
often covering clay surfaces.
By t h e m s e l v e s , c l a y s a l s o b i n d
m e t a l s l e s s s t r o n g l y than the other components ( D a v i e s - C o l l e y e t
al 1985).
The c o m b i n a t i o n o f a l o w e r b i n d i n g i n t e n s i t y a n d a
l o s s of b i n d i n g s i t e s to i n t e r a c t i o n s w i t h o t h e r components
s u g g e s t s c l a y s a r e much l e s s i m p o r t a n t t h a n o t h e r t y p e s o f
components in b i n d i n g m e t a l s in s e d i m e n t s (Jenne, 1977, D a v i s Colley et al., 1984).
The d i s t r i b u t i o n o f a m e t a l among t h e c o m p o n e n t s o f t h e
s e d i m e n t s i s d e t e r m i n e d by t h r e e f a c t o r s :
( 1 ) The i n t e n s i t y o f
metal binding to each component;
(2) t h e number of a v a i l a b l e
b i n d i n g s i t e s p e r u n i t mass o f e a c h c o m p o n e n t ; and (3) t h e m a s s
o f e a c h component per u n i t mass of s e d i m e n t .
By q u a n t i t a t i v e l y
c h a r a c t e r i z i n g each of the above a m a t h e m a t i c a l d e s c r i p t i o n of
m e t a l d i s t r i b u t i o n w i t h i n a g i v e n s e d i m e n t s h o u l d be p o s s i b l e
( O a k l e y e t a l . , 1 9 8 2 ; Luoma and D a v i s , 1 9 8 3 ; D a v i e s - C o l l e y 1 9 8 4 ;
Tessier et a l . , 1984).
H o w e v e r , a number o f t h e p r e q u i s i t e s f o r
an a c c u r a t e m o d e l a r e p o o r l y k n o w n .
Poorly understood factors
i n c l u d e (1) m e a s u r e s of b i n d i n g i n t e n s i t y t h a t are c o m p a r a b l e
among c o m p o n e n t s ; ( 2 ) t h e e f f e c t o f c o m p o n e n t i n t e r a c t i o n s w i t h i n
a g g r e g a t e s upon t h e number o f b i n d i n g s i t e s ; ( 3 ) t h e c o n s t a n c y o f
b i n d i n g i n t e n s i t y at d i f f e r e n t metal c o n c e n t r a t i o n s per u n i t
c o m p o n e n t ; and ( 4 ) how t o c o n v e r t m e a s u r e s o f
component
c o n c e n t r a t i o n s t o number o f c o m p o n e n t b i n d i n g s i t e s p e r u n i t mass
o f s e d i m e n t (Luoma and D a v i s 198 3 ) .
Thus, model c a l c u l a t i o n s of
metal p a r t i t i o n i n g ( D a v i s - C o l l e y , et a l , 1984; T e s s i e r , et a l . ,
1984,
Luoma,
in p r e s s )
must
be c o n s i d e r e d
simplistic
approximations.
In l i e u of a t e c h n i q u e f o r p r e c i s e l y m o d e l i n g
metal
p a r t i t i o n i n g in s e d i m e n t s , o p e r a t i o n a l t e c h n i q u e s have been
developed.
A l a r g e number of l e a c h i n g t e c h n i q u e s h a v e been
applied to aquatic sediments (Gibbs,
19 7 3 ; F o r e s t n e r
1979;
T e s s i e r , 1979).
N e a r l y a l l s u f f e r from a l a c k of
chemical
s p e c i f i c i t y (Luoma a n d J e n n e , 1 9 7 6 ; G u y , e t a l . , 1 9 7 8 ) ; and f e w ,
i f a n y , e f f i c i e n t l y e x t r a c t m e t a l from a s i n g l e c o m p o n e n t o f t h e
sediment.
Statistical
techniques
a l s o are employed to
assess
p a r t i t i o n i n g (Luoma and Bryan 1 9 8 1 ) but t h e s e a r e q u a l i t a t i v e and
s u b j e c t t o t h e e r r o r s of any c o r r e l a t i v e a p p r o a c h , e s p e c i a l l y
those a s s o c i a t e d with confounding v a r i a b l e s .
D e s p i t e t h e i r i n a d e q u a c i e s , some
c o n s i s t e n t conclus ions
e m e r g e from t h e d i f f e r e n t
approaches
to studying
metal
partitioning.
The c l e a r e s t i s t h a t m o s t m e t a l s d i s t r i b u t e among
s e v e r a l c o m p o n e n t s or t y p e s of b i n d i n g s i t e s in o x i d i z e d
sediments.
I t a l s o a p p e a r s t h a t t h i s d i s t r i b u t i o n can c h a n g e i f
the c h e m i c a l c h a r a c t e r i s t i c s of the s e d i m e n t s change.
Leaching
studies
c o n s i s t e n t l y show t h a t s e v e r a l m e t a l f r a c t i o n s
of
d i f f e r e n t e x t r a c t a b i l i t y o c c u r in a l m o s t a l l s e d i m e n t s .
A
349
'ùffilmêHj-M\**à
Figure 1 .
P a r t i t i o n i n g of Ag, Cd, Co, Cu, Pb and Zn among biding
c o m p o n e n t s i m p o r t a n t in o x i d i z e d s e d i m e n t s ,
as
i n d i c a t e d by s t a t i s t i c a l a s s o c i a t i o n s (from Luoma and
Bryan, 1 9 8 1 ) .
BIOAVAILABILITY
PHYSICAL ENVIRONMENT
~1
Solution—J
Specini
Water
-
^>l
1
^
Form,
3.
Upukf
Partitioning
—J
Psnitionirm | ^ »
'
'
^
Sutairate^
A
Suhstrzis.
Environmental Ch»r»ct wit tics
- «fUagoninic, tyn«rgitiic, »dditivt mteractiorn
- lempwatura
Figure 2 .
A s i m p l i f i e d s h e m a t i c i l l u s t r a t i o n of t h e v a r i o u s
p r o c e s s e s which a f f e c t t h e a v a i l a b i l i t y of t r a c e
contaminants to organisms.
350
Figure 3.
Differences in uptake of 1 1 0 m Ag when d i f f e r e n t type;
of well-defined sediments were ingested by the depositf e e d i n g clam Macoma b a l t i c a .
S e d i m e n t - t y p e s art
amorphous i r o n o x i d e s (Fe), decaying marsh grass
fragments (org), manganese oxides (Mn), crushed bivalve
s h e l l s (BioCa), and c a l c i u m c a r b o n a t e (CaHfrom Luom<
and Jenne, 1977).
351
s t a t i s t i c a l s t u d y , a s s e s s i n g c o r r e l a t i o n s of metal c o n c e n t r a t i o n s
w i t h component c o n c e n t r a t i o n s among n e a r l y 50 g e o c h e m i c a l l y
d i v e r s e s e d i m e n t s s t r o n g l y i n d i c a t e d the multi-component nature
of m e t a l b i n d i n g ( F i g . 1; Luoma and B r y a n ) .
More r e c e n t l y ,
a t t e m p t s t o c a l c u l a t e t h e o r e t i c a l metal d i s t r i b u t i o n s have shown
t h a t a t l e a s t Cu i s m a i n l y d i s t r i b u t e d b e t w e e n i r o n o x i d e and
o r g a n i c m a t e r i a l s in s e d i m e n t s , but t h e r e l a t i v e i m p o r t a n c e of
e a c h d i f f e r s among s e d i m e n t s ( D a v i e s - C o l l e y 1 9 8 5 ; Luoma, in
press).
T h i s means t h a t no s i n g l e component d o m i n a t e s t h e
p a r t i t i o n i n g of a m e t a l ; and t h a t p a r t i t i o n i n g may change from
p l a c e to p l a c e or time t o t i m e .
2. BIOLOGICAL IMPACT OF VARIABLE METAL PARTITIONING.
If m e t a l s p a r t i t i o n among a number of c o m p o n e n t s , t h e n
organisms t h a t i n g e s t or c o n t a c t s e d i m e n t s are not exposed t o the
sediment-bound metal as a s i n g l e e n t i t y .
Rather, each metal i s
encountered in a v a r i e t y of
m e t a l - l i g a n d a s s o c i a t i o n s (Fig. 2);
and t h a t v a r i e t y i s n o t c o n s t a n t in t i m e or s p a c e .
Laboratory
s t u d i e s c l e a r l y show t h a t each metal-component a s s o c i a t i o n has a
d i s t i n c t l y d i f f e r e n t b i o l o g i c a l a v a i l a b i l i t y . Cadmium i s
accumulated r a p i d l y by d e p o s i t f e e d i n g o r g a n i s m s - ( t h e clam Macoma
b a l t h i c a ) from s e d i m e n t s c o n t a i n i n g o r g a n i c m a t e r i a l s such as the
p o l y s a c c a r i d e e x o p o l y m e r s e c r e t e d e x t r a c e l l u l a r l y by some
b a c t e r i a ( H a r v e y and Luoma, 1 9 8 5 ) .
H o w e v e r , Cd i s n o t
accumulated from s e d i m e n t s s t r i p p e d of o r g a n i c m a t e r i a l s or from
p a r t i c u l a t e s t h a t are e i t h e r p u r e l y iron o x i d e s or are composed
of iron o x i d e coated with l i v i n g b a c t e r i a (Luoma and Jenne 1976;
Harvey and Luoma, 1985). The r a t e of uptake of Zn, Ag and Co may
d i f f e r by o r d e r s of m a g n i t u d e when t h e s e m e t a l s a r e bound t o
d i f f e r e n t s p e c i f i c c o m p o n e n t s . o f the sediment (Luoma and Jenne,
1977).
For e x a m p l e , F i g . 3 s h o w s t h a t u p t a k e o f Ag by M.
b a l t h i c a was 10 f o l d g r e a t e r when manganese o x i d e - b o u n d Ag was
i n g e s t e d as compared t o i n g e s t i o n of Ag a s s o c i a t e d w i t h i r o n
o x i d e s or o r g a n i c m a t e r i a l s (marsh g r a s s d e t r i t u s ) .
T h u s , g e o c h e m i c a l s t u d i e s show t h a t t h e d i s t r i b u t i o n of a
metal among components may vary from sediment t o s e d i m e n t , and
l a b o r a t o r y b i o l o g i c a l s t u d i e s show t h a t a d i f f e r e n c e in component
a s s o c i a t i o n of a m e t a l may c a u s e a d i f f e r e n c e i n m e t a l
bioavailability.
T h e r e f o r e , in n a t u r e m e t a l c o n c e n t r a t i o n s in
o r g a n i s m s s h o u l d v a r y among s e d i m e n t s of d i f f e r i n g component
concentrations.
3. COMPARISONS OF METALS IN ORGANISMS AND SEDIMENTS.
In natural systems organisms are directly exposed to
sediment-bound metals through surface contact, and accidental or
intentional ingestion during feeding. Sediments also may control
solute metal concentrations in waters in contact with the
sediment bed sufficiently long to approach equilibrium, thus
affecting biological exposures through the solute vector of
uptake. Thus, metal tissue burdens in deposit and suspension
feeding organisms should directly reflect the biological
availability of sediment-bound metals. These organisms are
exposed to all components of the sediment in their quest for
nutrition. Most choose their food only on the basis of particle
size, or particle density (Newell, 1965, Whitlach, 1974; Bubnova,
1974, Self and Jumars, 1978), although particle-size selectivity
may differ among species. For example the clam, Macoma balthica,
352
d i g e s t s v a r i o u s t y p e s of p a r t i c l e s l e s s than 80 urn in s i z e
(Yonge, 1949).
The average p a r t i c l e s i z e in the d i g e s t i v e gland
of Macoma i n q u i n a t a i s 10 urn, w h i l e p a r t i c l e s in t h e gut of
îlâcoma s e c t a a v e r a g e 300 urn (Reid and R e i d , 1 9 6 9 ) .
The more
s e l e c t i v e f e e d e r , P e c t i n a r i a g o u l d i i (a p o l y c h a e t e worm), i n g e s t s
p a r t i c l e s <75 urn, and >25 urn, but employs no d e t e c t a b l e chemical
selection (Whitlach, 1974).
Selective
suspension-feeding
o r g a n i s m s a l s o may i n a d v e r t e n t l y i n g e s t a v a r i e t y of m e t a l b i n d i n g s u b s t r a t e s when heavy c o n c e n t r a t i o n s of r e - s u s p e n d e d
m a t e r i a l s a r e mixed w i t h p h y t o p l a n k t o n in t h e w a t e r c o l u m n , or
may employ some s u s p e n d e d s e d i m e n t as an e s s e n t i a l s o u r c e of
nutrition.
Most b e n t h i c organisms a l s o are exposed p r i m a r i l y to m e t a l s
a s s o c i a t e d w i t h o x i d i z e d p a r t i c l e s (Luoma and D a v i s , 1 9 8 3 ) . In
oxgenated w a t e r s , reducing c o n d i t i o n s occur in sediments below
t h e s e d i m e n t - w a t e r i n t e r f a c e , but
a t h i n l a y e r of o x i d i z e d
sediment i s l e f t at the sediment water i n t e r f a c e .
Many i n f a u n a l
o r g a n i s m s f e e d a t t h e o x i d i z e d s e d i m e n t - w a t e r i n t e r f a c e , or
i r r i g a t e borrows with water from the o x i d i z e d s u r f a c e .
Meiofauna
l i v e e x c l u s i v e l y above t h e redox i n t e r f a c e ( C o u l l , 1 9 7 9 ) , and
e p i b e n t h i c organisms are in c o n t a c t , almost e x c l u s i v e l y , with the
o x i d i z e d e n v i r o n m e n t a t t h e s u r f a c e of t h e s e d i m e n t .
Where
reducing conditions occur,
they undoubtedly a f f e c t
the
a v a i l a b i l i t y of s e d i m e n t - b o j i n d m e t a l s ; but i n g e n e r a l t h e
o x i d i z e d s u r f a c e l a y e r of s e d i m e n t s i s much more i m p o r t a n t
b i o l o g i c a l l y than i n d i c a t e d by i t s mass.
If e x p o s u r e s t o s e d i m e n t s c o n t r o l b i o a c c u m u l a t i o n by
benthos, then metal c o n c e n t r a t i o n s in organisms in nature might
c o r r e l a t e with c o n c e n t r a t i o n s in s e d i m e n t s .
Strong c o r r e l a t i o n s
are most commonly not o b s e r v e d , h o w e v e r . . Poor c o r r e l a t i o n s
b e t w e e n m a r i n e or e s t u a r i n e b e n t h i c o r g a n i s m s and t h e i r
s e d i m e n t a r y h a b i t a t have been r e p o r t e d by C r o s s e t a l . , ( 1 9 7 0 ) ,
Halcrow, e t a l . , (1973), V a l i e l a e t a l . , (1974), Huggett e t a l . ,
( 1 9 7 5 ) , Luoma ( 1 9 7 7 b ) , and S c h n e l l and N e v e s s i ( 1 9 7 7 ) . The poor
c o r r e l a t i o n s between metal c o n c e n t r a t i o n s in b e n t h i c organisms
and s e d i m e n t s c o u l d mean t h a t m e t a l in b e n t h o s are not d e r i v e d
from s e d i m e n t s , or s o u r c e s coupled t o s e d i m e n t s .
However, they
could a l s o r e s u l t from s t a t i s t i c a l problems in the comparison or
from t h e i n f l u e n c e of v a r i a b l e s o t h e r than s e d i m e n t a r y m e t a l
c o n c e n t r a t i o n s upon metal b i o a v a i l a b i l i t y .
Two e s p e c i a l l y i m p o r t a n t p r o b l e m s have c h a r a c t e r i z e d
s t a t i s t i c a l comparisons of metal c o n c e n t r a t i o n s in benthos and
t h e i r f o o d : (1) t h e a c t u a l food of t h e o r g a n i s m s has not a l w a y s
been used in t h e c o m p a r i s o n ; and (2) an a d e q u a t e d a t a range has
not always been employed.
O b v i o u s l y , metal c o n c e n t r a t i o n s in f i l t e r - f e e d i n g organisms
such as o y s t e r s , m u s s e l s and some s p e c i e s of c l a m s ( t h a t are
d e p e n d e n t p r i m a r i l y upon phy t o p l a n x t o n f o r f o o d ) o r i n
herbivorous g r a z i n g a n i m a l s , would not n e c e s s a r i l y c o r r e l a t e with
metal c o n c e n t r a t i o n s in s e d i m e n t s , even i f food were the primary
v e c t o r of m e t a l u p t a k e .
For e x a m p l e , c o n c e n t r a t i o n s of most
m e t a l s in g r a z i n g s n a i l s f o l l o w c o n c e n t r a t i o n s in a l g a e , but not
s e d i m e n t s , where s e d i m e n t s and a l g a e a r e not c o r r e l a t e d (Bryan
and Hummerstone, 1977; Young, 1975). Even among d e p o s i t - f e e d i n g
353
organisms, d i f f e r e n c e s in food sources may affect metal exposure.
For e x a m p l e , P h e l p s (1967) and P h e l p s , e t a l . , (1969) r e p o r t e d
c o n s i s t e n t d i f f e r e n c e s in Zn c o n c e n t r a t i o n s among b e n t h i c
p o l y c h a e t e s from d i f f e r e n t f e e d i n g g u i l d s ( s u r f a c e f e e d e r s vs.
subsurface f e e d e r s ; s e l e c t i v e vs. n o n - s e l e c t i v e feeders).
Most c o r r e l a t i o n s t u d i e s also have been conducted within a
s i n g l e body of w a t e r , i n c l u d i n g only narrow c o n c e n t r a t i o n
g r a d i e n t s in the comparison. Comparisons which have considered
wider d a t a r a n g e s have shown some s i g n i f i c a n t c o r r e l a t i o n s
b e t w e e n m e t a l c o n c e n t r a t i o n s i n d e p o s i t f e e d e r s and
c o n c e n t r a t i o n s in s e d i m e n t s .
Bryan (1974) found
that
c o n c e n t r a t i o n s of Cu, Pb, and Cd in t h e p o l y c h a e t e N.
d i v e r s i c o l o r c o r r e l a t e d s t r o n g l y with concnetrations in sediments
from the sediment-water i n t e r f a c e when data were c o l l e c t e d from
several estuaries.
Packer e t aj. (1980) found t h a t Cd and Zn
c o n c e n t r a t i o n s in the polychaete Arenicola marina followed Cd and
Zn in s e d i m e n t s from 24 s t a t i o n s on t h e c o a s t of W a l e s .
S i g n i f i c a n t c o r r e l a t i o n s were not observed for Pb, Cu, and Mn,
however. In an e x t e n s i v e s u r v e y , Luoma and Bryan (1978, 1979,
1982) compared c o n c e n t r a t i o n s of Ag, Cd, Co, Cu, Pb and Zn in two
deposit f e e d e r s , the burrowing clam S c r o b i c u l a r i a plana and the
polychaete N^ d i v e r s i c o l o r , to concentrations in sediments over a
wide range of conditions among 50 s t a t i o n s in 17 e s t u a r i e s . The
d a t a range for a l l m e t a l s was two to t h r e e o r d e r s of m a g n i t u d e .
S t a t i s t i c a l l y s i g n i f i c a n t (but weak) c o r r e l a t i o n s between t o t a l
m e t a l s in s e d i m e n t s and t h e t i s s u e s of S. p l a n a were observed for
Pb ( F i g . 4 ) , and for a l l o t h e r m e t a l s e x c e p t Cu.
Stronger
10
1.000
100
I
1
10,0
1
I
1
Aooo
E
>
r
H i.ooo
•
>
••
•
;
\
SO
J
>
-J
• ••
j | SOO
•
•
•
•
XL*
•
•
•
•
1
30
i
1
1
_
5O0
1
S,0OO
CONCENTRATION OF Pb IN S E D I M E N T (jjg/g)
Figure
4.
Correlation of Pb in surficial estuarine sediments
with Pb in the deposit-feeding bivalve Scrobicularia
plana. r = 0.69 for power function fit. Data from 17
estuaries (from Luoma and Bryan, 1978).
354
Figure 5A) Concentrations of Cu observed in the
soft tissues of M, balthica
in South
San Francisco Bay" between June 1975
and June 1983. Rep resentative errors
bars (one SEM) areshown in 1979.
B) Salinity observed at same station in
water in the mantl e cavity of M. balti<
C) Cu discharge from the sewage treatment
works located 1 km south of above station.
D) HCL-extractable Cu in surficial sediments ( <100um grain size) at same.
station.
!..
1975
1
1
1977 .
1
-..I..
1979
-I •
1. —
1981
I I
1983
.001
.01
1
1
0.10
'
1.000
Figure 6.
Correlation of Pb in 5. plana with
ratio of P'o/fe (both extracted by
IN HC1) in surficial esturarine sediments. r = 0.95. Data from 17 estuaries (from Luoma and Bryan, 1978).
300
-
SO
/ ••
•
J
t
J
PbHCI/FeHC!
--
1.0
1
355
correlations were observed between sediments and N^_ diversicolor
for Cu and
Pb. However, over the broader data set, these
correlations were not as strong as observed by Bryan (1974.) In
general, the data suggested that total concentrations contributed
to metal concentrations in the deposit feeders, but that an
understanding of other contributing variables would be necessary
to predict metal concentrations in organisms from concentrations
in the environment.
Sediments need not be the only source of metal exposure for
benthic organisms. Deviations in correlations between organisms
and sediments could result from uptake from solution. However,
even where the source of exposure which controls both the food
and solute vectors is well-defined, deviations of bioaccumulation
from dependence upon exposure alone are evident. For example,
Bryan and Hummerstone (1977) observed differences in Ag and Cu
concentrations in S. plana from two estuaries that could not be
explained by Ag and Cu either in water or in sediment. In San
Francisco Bay, spatial variations in Cu concentration indicated a
sewage outfall was the primary source of the metal for the
burrowing clam M^ balthica (Thomson et al., 1984). However
comparisons of nine years of near-monthly analyses of plant
effluent, and clams from this site showed that, although Cu
levels in M^ ^âitîli^Ë were occas s ional ly coupled to Cu
discharges, large fluctuations in concentrations occurred in the
clam which could not be explained by changes in exposure (Fig.
5). Again, a general dependence upon exposure was evident, but
other variables were also obviously important in controlling
bioaccumulation.
Recent studies strongly indicate that one of the most
important of those factors is the chemical characteristics of the
sediment.
The importance of such characteristics was first
clearly demonstrated by Luoma and Bryan (1978). As previously
mentioned, concentrations of Pb in the deposit feeding bivalve
Scrobicularia plana were significantly correlated with
concentrations of Pb in sediments from 37 stations in 17
estuaries in southwest England (Fig. 4) in that study. However,
the correlation was characterized by substantial variability. It
was noticed that the stations with unusually high Pb
concentrations were stations where the ratio between Pb and
extractable Fe* was also high. Among all stations concentrations
of Pb in S^_ Plana were very closely correlated (R2 = 0.89) with
Pb/Fe in sediments (where Fe was measured by HC1 extraction, Fig.
6).
Luoma and Bryan (1978) suggested that the availability of Pb
was enhanced at low concentrations of Fe in sediment because less
Pb was strongly bound to iron oxides as the Pb/Fe ratio in
sediments increased making more Pb biologically available in the
digestive tract.
Whatever the cause, the ratio Pb/Fe, in
sediments was an accurate predictor of Pb in S^ elâHâ * n
estuaries not included in the original regression calculation
*Fe extracted either with 1NHC1 for two hours or 0.4N acid
ammonium oxalate for two hours—presumably an amorphous fraction
of iron oxide.
356
HCl-soluble
Pb ( u g / g )
Estuary
Pb o b s e r v e d
i n S^ p l a n a
(ug/g)
Pb p r e d i c t e d i n
S. p l a n a from
Pb/Fe in sediment
Axe
25
8
9
Thames
57
25
36
Elorn
71
31
34
E.
93
104
128
Gannel
417
327
330
Humber
191
22
28
Looe
Table 1.
The c o n c e n t r a t i o n o f Pb o b s e r v e d i n s e d i m e n t s (HCl
e x t r a c t i o n ) and s o f t t i s s u e s o f Scrob.icul.ar_ia p l a n a from s i x
e s t u a r i e s compared w i t h t h e c o n c e n t r a t i o n of Pb p r e d i c t e d for S.
planci from t h e Pb/Fe r a t i o in t h e s e d i m e n t s . Data from Luoma and
Bryan ( 1 9 7 8 ) .
Best
Extraction
Method
Inhibits
Enhances
Vector
Availability
Availability
Ag
HCl
sediment
(interstitial
water)
Cu
e x t r a c t a b l e Fe?
As
Total
sediment
solute (polychaetes)
e x t r a c t a b l e Fe
Cd
HCl
solute
sediment
anoxia (S=)
Co
HCl
sediment
(solute?)
o r g a n i c carbon
Cu
Total
HCl
sediment
(polychaetes)
e x t r a c t a b l e Fe
o r g a n i c carbon?
anoxia
sediment
o r g a n i c carbon
e x t r a c t a b l e Fe
moderate Eh
low o r g a n i c carbon
Total
HCl
sediment
e x t r a c t a b l e Fe
o r g a n i c carbon
1N_ ammonium
acetate
HCl
sediment
o r g a n i c carbon
Hg
Pb
Zn
i
Table 2.
sewage f a c t o r
sewage f a c t o r ?
(molluscs)
solute
Summary of various factors which appear to i n h i b i t or enhance the a v a i l a b i l i t y of sediment-bound trace metals to benthic organisms.
357
(Table 1).
In e s t u a r i e s s u c h a s t h e L o o e , Pb i n S_^ p l a n a was
g r e a t e r t h a n in e s t u a r i e s such as L'Elorn in F r a n c e , a l t h o u g h Pb
c o n c e n t r a t i o n s in s e d i m e n t were s i m i l a r , b e c a u s e e x t r a c t a b l e Fe
was l o w e r in t h e Looe. The most d r a m a t i c example was t h e Humber,
w h i c h i n c l u d e s t h e i n d u s t r i a l M i d l a n d s of E n g l a n d in i t s
watershed.
Although s e d i m e n t s were h i g h l y c o n t a m i n a t e d w i t h Pb,
t h e s t a t i s t i c a l m o d e l p r e d i c t e d l i t t l e Pb s h o u l d o c c u r in S.
p l a n a i n t h e Humber b e c a u s e of t h e v e r y h i g h Fe c o n c e n t r a t i o n s in
the sediment.
O b s e r v a t i o n s proved t h i s t o be t h e c a s e .
S i m i l a r t o P b , L a n g s t o n ( 1 9 8 0 ; 1982) h a s shown t h a t l e v e l s
of As i n S^ p l a n a and M_^ b a l t h i c a a r e a l s o b e s t r e l a t e d
t o t h e A s : F e r a t i o in a IN HC1 e x t r a c t of s u r f a c e s e d i m e n t .
M e r c u r y , on t h e o t h e r h a n d , h a s a h i g h a f f i n i t y f o r o r g a n i c
p a r t i c l e s and c o n c e n t r a t i o n s in £^._ p l a n a and M_^ b a l t h i c a a r e
r e l a t e d t o t h e t o t a l (HNO3 e x t r a c t a b l e ) H g : t o t a l o r g a n i c m a t t e r
r a t i o s i n t h e <100 urn f r a c t i o n of s u r f a c e s e d i m e n t s ( L a n g s t o n ,
1982). T h i s a g r e e s w i t h t h e work of B r e t e l e r e t a l . (1981) which
showed t h a t t h e h i g h e s t c o n c e n t r a t i o n of Hg in m u s s e l s (Modiolus
d e m i s s u s ) and c r a b s ( Uca p_u£n.aj£) o c c u r r e d i n a n i m a l s e x p o s e d t o
s e d i m e n t s h a v i n g low l e v e l s of o r g a n i c m a t t e r .
P h y s i o c h e m i c a l c o n d i t i o n s o t h e r than sediment component
c o n c e n t r a t i o n s also appear to influence metal b i o a v a i l a b i l i t y
from s e d i m e n t .
F o r e x a m p l e , t h e a v a i l a b i l i t y of Ag ( w h i c h
a p p e a r s in t h e s e d i m e n t s of t h e S e i n e in c o n c e n t r a t i o n s h i g h e r
t h a n r e p o r t e d anywhere in t h e w o r l d ) t o d e p o s i t f e e d i n g b i v a l v e s
i s s t r o n g l y r e d u c e d when h i g h c o n c e n t r a t i o n s of Cu a p p e a r i n
s e d i m e n t s (Luoma and B r y a n , 1 9 8 2 ) .
I n c r e a s e d pH a p p e a r s t o
i n c r e a s e a v a i l a b i l i t y of Hg ( p e r h a p s by s t i m u l a t i n g c o n v e r s i o n of
Hg
t o Hg°), but n o t Cu and Pb t o marsh p l a n t s (Gambrell e t a l . ,
1 9 7 7 ) . U n p u b l i s h e d d a t a from t h e s t u d y of Luoma and Bryan a l s o
s u g g e s t e d Cd was of l o w e r a v a i l a b i l i t y in h i g h l y a n o x i c m u d f l a t s
(e.g., inner Poole Harbor).
The a v a i l a b i l i t y of Cu t o t h e
p o l y c h a e t e Naanthes a r e n a e o d e n t a t a a l s o i s l e s s from s u b s u r f a c e
t h a n from s u r f a c e s e d i m e n t s ( P e s c h , 1 9 7 9 ) , p r e s u m a b l y due t o
d i f f e r e n c e s in redox p o t e n t i a l .
In c o n t r a s t , c e r t a i n t y p e s of
r e d u c i n g c o n d i t i o n s e n h a n c e d t h e b i o a v a i l a b i l i t y of Cu t o t h e
an
c l a m s £3^ P_iana
^ M^ b§_Ith_ica (Luc-ma a n d B r y a n , 1 9 8 2 ) .
E x c e p t i o n a l l y h i g h c o n c e n t r a t i o n s of Cu w e r e o b s e r v e d i n t h e s e
a n i m a l s in seven a n o x i c m u d f l a t s , and d u r i n g an u n u s u a l p e r i o d of
a n o x i a on one m u d f l a t .
G r e a t e r enhancements of Cu a v a i l a b i l i t y
g e n e r a l l y accompanied lower c o n c e n t r a t i o n s of Fe in s e d i m e n t s ,
b u t t h e p r e c i s e c a u s e of t h e enhancement was not i d e n t i f i e d .
In a r e c e n t r e v i e w , Bryan (1985) s u m m a r i z e d , for a number of
t r a c e m e t a l s , t h e r e s u l t s of h i s e x t e n s i v e e x p e r i e n c e , and t h a t
of o t h e r s , w i t h p r o c e s s e s c o n t r o l l i n g m e t a l a v a i l a b i l i t y from
sediments to aquatic organisms.
I t must be e m p h a s i z e d t h a t t h e s e
conclusions are preliminary.
R e s u l t s s o m e t i m e s d i f f e r e d among
s p e c i e s , and d e f i n i t i v e s t u d i e s have o n l y been c o n d u c t e d w i t h a
few s p e c i e s , m o s t l y i n e s t u a r i n e e n v i r o n m e n t s .
From B r y a n ' s
s u m m a r i z a t i o n and o u r e x p e r i e n c e , t h e f o l l o w i n g c o n c l u s i o n s
a p p e a r : ( 1 ) High c o n c e n t r a t i o n s of o r g a n i c m a t t e r a n d / o r Fe
( p r o b a b l y a s a m o r p h o u s i r o n o x i d e ) i n h i b i t t h e a v a i l a b i l i t y of
Hg, P b , A s , Zn, and p o s s i b l y Ag and Cu. S e d i m e n t s h i g h i n t o t a l
o r g a n i c carbon or e x t r a c t a b l e Fe may c o n t a i n h i g h c o n c e n t r a t i o n s
of t r a c e m e t a l s , but t h e m e t a l s do n o t a p p e a r t o p a s s on t o most
biota.
(2) Under some c i r c u m s t a n c e s o r f o r some s p e c i e s , t h e
358
s o l u t e v e c t o r o f u p t a k e i s an e s p e c i a l l y i m p o r t a n t s o u r c e o f Cd,
Z n , a n d p o s s i b l y As a n d A g .
(3) T o t a l c o n c e n t r a t i o n s
in
s e d i m e n t s c o n t r o l Cu a v a i l a b i l i t y
to p o l y c h a e t e s ,
but
the
c o n t r o l s on Cu a v a i l a b i l i t y t o m o l l u s c s a r e n o t c l e a r .
Anoxia
m a y e n h a n c e Cu a v a i l a b i l i t y
to mulluscs#
under
some
circumstances.
( 4 ) Zn a v a i l a b i l i t y i s c o n t r o l l e d by r e a d i l y
e x c h a n g e a b l e Zn i n s e d i m e n t , u p t a k e f r o m t h e s o l u t e v e c t o r , and a
negative
influence
of o r g a n i c
carbon.
(5) Most
metals
( e s p e c i a l l y Hg, P b , Zn, A s , Cu, and Ag) w o u l d be e x p e c t e d t o be
of h i g h b i o a v a i l a b i l i t y i n c o a r s e r g r a i n e d s e d i m e n t s e n r i c h e d by
a n t h r o p o g e n i c m e t a l i n p u t and i n w a s t e s ( s u c h a s s m e l t e r w a s t e s
or mine w a s t e s ) l o w in o r g a n i c m a t e r i a l or Fe.
Some u n k n o w n
a t t r i b u t e o f s e w a g e s l u d g e e n h a n c e s t h e a v a i l a b i l i t y o f Ag a n d
p o s s i b l y Cd.
Table 2 summarizes the c o n c l u s i o n s p r e s e n t e d to
d a t e on f a c t o r s c o n t r o l l i n g m e t a l a v a i l a b i l i t y from s e d i m e n t s t o
benthos.
4.RECOMMENDATIONS
TREATMENTS .
FOR IMPROVING BIOLOGICAL RELEVANCE OF SEDIMENT
I t m u s t be r e - e m p h a s i z e d t h a t o u r k n o w l e d g e o f
metal
b i o a v a i l a b i l i t y from s e d i m e n t s i s , at b e s t ,
fragmentary.
D e f i n i t i v e s t u d i e s are l e s s than f i v e y e a r s o l d , have been
c o n d u c t e d by o n l y a f e w r e s e a r c h g r o u p s , c o n s i d e r o n l y a f e w
s p e c i e s , and n e a r l y a l l h a v e been c o n d u c t e d i n e s t u a r i e s .
Nearly
a l l c o n c l u s i o n s r e s t upon s t a t i s t i c a l e v i d e n c e w h i c h h a s n o t y e t
been m e c h a n i s t i c a l l y c l a r i f i e d by d e f i n i t i v e l a b o r a t o r y s t u d i e s .
A d d i t i o n a l c o m p a r a t i v e s t u d i e s among e s t u a r i e s , r i v e r s o r c o a s t a l
e n v i r o n m e n t s a r e n e e d e d , a s a r e c o n t r o l l e d s t u d i e s , t e s t i n g some
of t h e h y p o t h e s e s g e n e r a t e d by t h e s t a t i s t i c a l work.
W i t h i n t h e l i m i t a t i o n s of our p r e s e n t k n o w l e d g e , i t
is
p o s s i b l e t o recommend a few p r a c t i c a l p r o c e d u r e s which c o u l d
enhance t h e b i o l o g i c a l r e l e v a n c e of s e d i m e n t t r e a t m e n t . However,
i t m u s t be a c c e p t e d t h a t t h e s e r e c o m m e n d a t i o n s a r e p r e l i m i n a r y
and c o u l d c h a n g e a s o u r k n o w l e d g e g r o w s .
Furthermore,
the
o b j e c t i v e i s t o recommend t h e s i m p l e s t p o s s i b l e p r o c e d u r e s , s o a s
t o m a x i m i z e t h e i r u t i l i t y i n an o p e r a t i o n a l p r o g r a m .
The s i m p l e s t ,
could include:
b i o l o g i c a l l y r e l e v a n t measurements of
sediments
(1) Measurement of t o t a l c o n c e n t r a t i o n s (or n e a r - t o t a l using an
HN0 3 -reflux) of t r a c e m e t a l s .
(2) A s i m p l e e x t r a c t i o n of s e d i m e n t s w i t h a 0.5N HCl. and
a n a l y s i s of t r a c e m e t a l s in the e x t r a c t .
(3) Measurement of major s e d i m e n t c o m p o n e n t s which a f f e c t
bioavailability.
These i n c l u d e :
(a) Total organic carbon.
(b) Concentrations of Fe extracted by HCl. (Acid ammonium
o x a j a t e is a m o r e w i d e l y a c c e p t e d a l t e r n a t i v e for
estimating amorphous Fe oxide. However, HCl and oxalate
extractions of estuarine sediments usually yield similar
results. For the sake of smplicity, measurement of Fe in
the same HCl extract used for metals would not result in
much loss of information.)
(c) Total Mn.
359
Collection of such samples should be from microenvironments
of most relevance to organisms of interest in the systems
involved. In estuaries such as the Seine, this usually means
sediments should be collected carefully from the thin oxidized
layer at the sediment-water interface. Sediments should be
seived prior to storage. We employ a 100 urn seive, others
suggest 60 urn. Sediments also should be frozen as soon as
possible if they are to be stored prior to extractions, so as to
prevent redox changes which could affect extraction results.
This simple program would provide information about the
major consitiuents that appear to affect metal bioavailability,
and concentrations of metals that may competitively inhibit
availability. From such a program, general assessments of the
vulnerability of different sedimentary environments to
accumulation of biologically significant concentrations of trace
metals could begin to be possible.
Breteler R. J., Valiela I & Teal J. M. (1981). - Bioavailability
of mercury in several north-eastern U.S. Spa£t_ina
ecosystems. Estuarine, Coastal Shelf Sci^ 12:155-166.
Bryan G. W.(1974). - Adaptation of an estuarine
sediments containing high concentrations of
^n: Pol-luti^qn and Physiology of Marine
Vernber^ âQ<! !ÎLL Yernberg (eds.} t Academic
123-136.
Bryan
polychaete to
heavy metals,
OE^âHisnis^ ^_i
Press, London,
G. W., and Hummerstone L. G. (1977). - Indicators of
metal contamination in the Looe estuary (Cornwall)
particular regard to silver and lead, Jour. Mar^ Biol.
U.K.. 57, 75-92.
Bryan G. W. (1985). - The biological availability and effects of
heavy metals in marine deposits. Wastes in the Sea Vol. 6,
Near Shore Waste Disposal (in press).
Bubnova N. P. (1974).- Consumption and assimilation of
carbohydrates from marine sediments by the detritus-feedinq
mollusks Macoma balthica (L.) and Portlandia arctica (Gray),
Oceanography 14, 743-747.
Coull
Cross
B. C.C1979). - Aspects of benthic-pelagic coupling in
estuarine systems, Presented at Fifth Biennial International
Estuarine Res. Conf., Jekyll Island, Georgia.
F. A., Hardy L. H., Jones F. Y. & Barber R. T. (1973). Relation between total body weight and concentrations of
manganese, copper, zinc and mercury in white muscle of
bluefish (Pomatomus saltatrix) and a bathyl demersal fish
Antimore rostra ta, Jour. F-ish^ Res^ Bd^ Can. 30, 1287-1291.
Davies-Colley R. J., Nelson P.O., & Williamson K. J. (1984).
- Copper and cadmuim uptake by estuarine sedimentary
phases. Environ. Sci. Technol. 18:491-502.
Forstner U. & Wittmann G. T. W. (1979). - Metal PqIIuti.on ijn the
Aquatic Environment. Springer-Verlag, Berlin. 486 pp.
Gam br ell R. P., Col lard V. R.f Reddy C. N., & Patrick W. N.
(1977). - Trace and toxic metal uptake by marsh plants as
affected by Eh, pH and salinity, Tech. Rept. D-77, Dept. of
Army, Washington, D. C , 123 pp.
Gibbs R. J. (1973). - Mechanisms of trace metal transport in
rivers. Science 180, 71-73.
Guy R. D., Chakrabarti C. L., & McBain D. C , (1978). - An
evaluation of extraction techniques for the fractionation of
copper and lead in model sediment systems, Water Res., 12,
21-24.
Halcrow W.f MacKay D. W., & Thornton I. (1973). - The
distribution of trace metals and fauna in the Firth of Clyde
in relation to the disposal of sewage sludge, Jour. Mar,
li2L_ M i l IL_ ?_L 53, 721-739.
Harvey R.W. & Luoma S. N. (1985). - Effect of adherent bacteria
and bacterial extracellular polymer upon assimilation by
Macoma balthica of sediment-bound Cd, Zn, and Ag. Mar.
Ç Ç ^ L L ££°_9^ Ser.
22, 281-292.
Huggett R. J., Cross R. A., & Bender M. E. (1975). - Distribution
of copper and zinc in oysters and sediments from three
coastal plain estuaries, In; Symposium on Mineral Cycling in
Southeastern Ecosystems^ F. G. Howell, J. B. Gentry and M.
H. Smith (eds.), Augusta, GA, Proc, U. S. Environ. Res.
Dev. Admin. Symp. Series (CONF-740513), 224-238.
Jenne
E. A. (1977). - Trace element sorption by sediments an
soils-sites and processes, Inj^ Symposium on Mcylybdeivum in
the Environment, W. Chappel and K. Petersen (eds.), M.
Kekker, Inc., New York, 415-511.
Langs ton W. J. (1980 ). - Arsenic in U. K. estuar ine sediments and
its availability to benthic organisms. J^ Mar. Biol. Assn.
U^ K^_ 60, 868-881.
Langston W. J. (1982). - The distribution of mercury in British
estuarine sediments and its availability to deposit-feeding
bivalves. J^ Mar. B ^ o ^ Assn. U. K. 62, 667-684.
Luoma S. N. (1985). - A comparison of methods for determining
copper partitioning in oxidized sediments. Mar. Chem. (in
press).
Luoma
S. N. & Bryan G. W. (1981). - A statistical assessment of
the form trace metals in oxidized estuarine sediments
employing chemical extractants, Sci. Total Environ. 17,
165-196.
Luoma S. N. & Bryan G. W. (1982). - A statistical study of
environmental factors controlling concentrations of heavy
metals in the burrowing bivalve Scrobicularia plana and the
polychaete Nereis diversicolor, Estuarine Coastal and Shelf
Science 15, 95-108.
361
Luoma
S. N. & Davis J. A. (1983). - Requirements for modeling
trace metal partitioning in oxidized estuarine sediments.
Mar. Chem. 1 2 , 159-181.
Luoma
S. N. & Jenne E. A.
(1976b). - Estimating bioavailability
of sediment-bound trace metals with chemical extractants,
In : Trace Substances _in Environmental Hea^th^ 3£* D« D *
Hemphill (éd.), Univ. of Missouri Press, Columbia, 343-353.
Luoma S. N. (1977b). - The dynamics of biologically available
mercury in a small estuary, Est^ Çoast^ Mar. Sci., 5, 653652.
Luoma
S. N. & Davis J. A. (1983). Modeling trace metal
partitioning in oxidized estuarine s e d i m e n t s , Mar. Chem.
12:159-181.
Luoma S. N. & Bryan G. W. (1979). - Trace metal bioavailability:
Modeling chemical and biological interactions of sedimentbound zinc, In : Chemical Modeling — Speciation, Sqrpti^qn^
Sqlub^lity^ and K^neti^cs .in Aqueous S ^ s ^ e m s ^ E. A. Jenne
(éd.), Amer. Chem. Soc., 577-611.
Newell R.
(1965). The role of detritus in the nutrition of two
marine deposit feeders, the prosobranch Hydrobia u^yae and
the bivalve Macoraa balthica, Proc. Zqqlqg^ Soc^ London,
144, 25-45.
Oakley S. M., Nelson P. 0., & Williamson K. J. (1981). - Model of
trace-metal partitioning in marine s e d i m e n t s , Eny_^ Sci.
Tech., 1 5 , 474-480.
Packer D. M., Ireland M. P., & Wootton R. J. (1980). - Cadmium,
c o p p e r , l e a d , zinc and m a n g a n e s e in the p o l y c h a e t e
Areniocola marina from sediments around the coast of Wales,
Environ.~Poll., 22, 309-321.
Pesch
C. E. (1979). Influence of three sediment types on copper
toxicity to the polychaete Neanthes ârenaceodentata, Mar.
Biol. 52, 237-245.
Phelps D. K. (1967). - Partitioning of the stable elements Fe, Zn,
Se and Sm within a benthic c o m m u n i t y , Anacco Bay, Puerto
Rico, In : Radioecological Çqncentr_ati^qn Processes, E. B.
Aberg and F. P. Hungate, (eds.), Permagon P r e s s , London,
721-734.
Phelps D. K., Santiago R. J., Luciano D., & Irigarny N. (1969). Trace element composition of inshore and offshore benthic
populations, In : Ra.d^qecol^ojjy, D. J. Nelson and F. C. Evans
(eds.), AEC CONF^070503. 413-425.
Reid R. C. B., & Reid A. (1969). - Feeding processes of members
of the genus M a c o m a (Mollusca: B i v a l v i a ) , Can^ Jour. Zool.,
47, 649-657.
Schell W. R, & Nevissi A., (1977). - Heavy metals from waste
disposal in central Puget Sound, Environ. S^ci^ Tech., 11,
887-893.
362
S e l f R. F. L., & Jumars P. A. ( 1 9 7 8 ) . - New r e s o u r c e
d e p o s i t f e e d e r s , Jour. Mar. Res. 36, 6 2 7 - 6 4 1 .
axes
for
T e s s i e r A., Campbell P. G. C , & B i s s o n M. ( 1 9 7 9 ) . - S e q u e n t i a l
e x t r a c t i o n p r o c e d u r e f o r t h e s p e c i a t i o n of p a r t i c u l a t e
trace metals.
Anal. Chem. 5 1 , 844-851.
T e s s i e r A., Rapin R. & C a r i g n a n G. ( 1 9 8 5 ) . - T r a c e m e t a l s i n o x i c
lake sediments:
Possible
adsorption
onto
iron
oxyhydroxides. Geochim. Cosmochim. ACTA 49, 183 - 194.
Thomson E. A., Luoma S. N., Cain D. J. & J o h a n s s o n C. ( 1 9 8 4 ) . Comparison of s e d i m e n t s and o r g a n i s m s in
identifying
sources
of
biologically
available
trace
metal
contamination.
Water Res. 18, 755 - 7 6 7 .
Valiela
I . , Banus M. B., & T e a l J. M. (1974). - Response of s a l t
marsh b i v a l v e s t o enrichment with m e t a l - c o n t a i n i n g sewage
s l u d g e and r e t e n t i o n t o l e a d , z i n c and cadmium by marsh
s e d i m e n t s , Environ. P o l l .
7, 1 4 9 - 1 5 7 .
Whitlatch R. B. (1974). - Food-resource p a r t i t i o n i n g in the d e p o s i t
f e e d i n g p o l y c h a e t e , P e c t i n a r i a g o u l d i ^ , B i o l . B u l l . , 147,
227-235.
Yonge M. L. (19 7 5 ) . The t r a n s f e r of 6 5 Z n and 5 9 F e a l o n g a
Fucus_ s e m a t u s ( L. ) L_i t t o j : ni_a o b t u s a t a ( L. ) food c h a i n ,
hI°_HLi. Mar^ Bi.o.U_ Ass^ Uj_ !LL 5 5 , 58 3 - 6 1 0 .