28.
INTERSTITIAL WATER STUDIES, DEEP SEA DRILLING PROJECT, LEG 751
Joris M. Gieskes, Kirk Johnston, and Marcus Boehm, Scripps Institution of Oceanography, La Jolla, California
and
Masato Nohara, Geological Survey of Japan Ibarak, 305, Japan
ABSTRACT
Interstitial water profiles obtained at Sites 530 and 532 of DSDP Leg 75 indicate complex concentration depth profiles resulting from diagenetic reactions taking place in the sediments. At both sites, large depletions in dissolved
sulfate, resulting from bacterial sulfate reduction reactions, are accompanied by increased alkalinity values and also by
increased dissolved ammonia concentrations. At Site 530, high sedimentation rates in the upper 200 m of the sediment
column have led to a minimum in dissolved sulfate. Deep-seated reactions in basal sediments and/or basalts at this site
cause downhole increases in dissolved calcium and decreases in dissolved magnesium. At Site 532, phosphate liberated
by sulfate reduction has led to reaction with calcium ions to form authigenic Ca-phosphate minerals.
INTRODUCTION
During Leg 75 of the Deep Sea Drilling Project
(DSDP) two sites were drilled—Sites 530 and 532—
which were sampled in great detail for interstitial waters. The drill sites are closely related to two sites occupied during Leg 40: Site 530 is 55 km NE of Site 363,
at a water depth of 4629 m in the Angola Basin, and Site
532 is essentially a reoccupation of Site 362 of DSDP
Leg 40.
Site 530 was piston cored to a depth of 180 m (Hole
53OB) and rotary drilled to basement at 1103 m sub-bottom depth. Site 532 was piston cored to a depth of 300 m
(Hole 532B); at this site a very detailed sampling program for interstitial waters was undertaken.
Both Sites 530 and 532 are characterized by very high
sedimentation rates, especially in the younger sections,
and this leads to complications in the interstitial water
profiles as will be discussed.
RESULTS
The shipboard data (pH, alkalinity, salinity, chloride, calcium, and magnesium) and the data obtained in
our laboratory are presented in Table 1 and Figures 1, 2,
and 3. Methods used were those described by Gieskes
(1974), Gieskes and Lawrence (1976), and Gieskes and
Johnson (1981).
DISCUSSION
Site 530
The upper 100 m (Units la, lb) were deposited at rates
in excess of 65 m/m.y. and consist of diatom-nannofossil marls and debris-flow deposits. Sedimentation rates
in the lower lying lithologic units were much less.
Hole 53OB (Fig. 1) indicates that sulfate reduction is
an important process in the upper section of the sedi-
Hay, W. W., Sibuet, J . - C , et al., Init. Repts. DSDP, 75: Washington (U.S. Govt.
Printing Office).
ment column. This is evident from the rapid decrease in
dissolved sulfate, the increase in dissolved ammonia
(maximum of 3.25 mM at 80 m), and the increase in alkalinity (maximum of 25 meq/dm3 at 80 m). Typically,
the production of bicarbonate has led to the precipitation of calcium carbonate, thus causing the low concentrations of dissolved calcium in the upper 200 m. A
rapid decrease in magnesium occurs which is not readily
explained, but may be the result of processes involving
the diagenesis of opaline silica (Kastner et al., 1977) or
the formation of dolomite. Strontium concentrations
increase rapidly below 40 m, probably as a result of carbonate diagenesis (Baker et al., 1982). Dissolved lithium
appears to have a source in the lower lying sediments,
i.e., in Unit 3 (Fig. 2). Data on dissolved silica indicate
high concentrations, representative of those often found
in siliceous sediments (Gieskes, 1981).
Holes 530 and 53OA sampled the deeper section of
Site 530, and the data indicate a well-established minimum in dissolved sulfate, located at about 200 m subbottom depth. This can be understood in terms of the
higher sedimentation rates in the upper 200 m of the
sediments, usually associated with increased levels of reactive organic carbon. With sedimentation rates of ~ 50
m/m.y. in the upper 200 m of the sediment column the
communication length for diffusion is between 100-150
m, and thus nonsteady-state dissolved sulfate profiles,
especially as a result of higher sulfate reduction rates in
the upper sediment column, are to be expected (Gieskes
et al., 1978; Gieskes, 1981). The sulfate minimum is accompanied by an ammonia maximum as well as an alkalinity maximum.
Unit 3 (250-450 m) is characterized by red and green
muds, with appreciable volcanic contributions. Dissolved silica values are low, indicating little contribution
of biogenic silica. The profiles of dissolved lithium and
potassium indicate a source for lithium, leading to a
maximum in this zone, and a sink for potassium, perhaps as a result of uptake in clay minerals. No sink for
magnesium is indicated by the dissolved magnesium
profile.
959
J. M. GIESKES, K. JOHNSTON, M. BOEHM, M. NOHARA
Table 1. Interstitial water analyses, Leg 75.
Sample
(interval in cm)
pH
Alk.
(meq/dirr)
S
(g/kg)
Ca
(mM)
Mg
(mM)
Cl
(g/kg)
Sr
(µM)
Li
(µM)
K
(mM)
So 4
(mM)
124
7.54
16.32
33.0
5.50
39.7
23.49
166
88
10.7
5.0
1407
172
219
265
313
362
406
416
500
594
687
965
1050
7.77
7.44
7.52
6.81
7.42
6.81
7.06
7.58
7.64
7.25
12.40
6.79
2.19
3.26
2.32
1.96
1.50
1.46
0.92
0.22
-
7.39
8.09
8.13
13.41
17.91
23.61
24.68
21.77
24.42
32.89
87.70
43.53
38.3
38.3
37.6
37.7
36.5
29.8
31.4
36.2
29.1
16.5
15.8
13.1
19.55
19.55
19.31
19.41
18.67
19.11
18.87
19.78
19.75
19.61
18.93
18.33
254
197
167
234
275
320
387
387
593
725
735
630
161
158
136
136
145
160
197
133
97
90
—
182
10.0
6.95
6.65
6.60
3.00
2.90
2.50
4.20
2.86
2.55
1.39
1.39
4.5
—
—
8.9
-
33.0
32.2
32.4
33.0
31.9
33.0
32.4
34.1
34.1
34.1
31.9
31.4
17.1
—
20.4
—
18.5
—
—
1425
1113
871.5
582
378
370
274
252
340
250
—
—
1227
495
118
82
167
125
107
781
375
122
—
—
14
35
57
83
106
124
149
172
7.65
7.47
7.57
7.35
7.41
7.64
7.48
7.47
12.53
19.95
23.38
24.02
20.82
14.81
10.56
10.66
35.2
34.4
33.3
33.6
32.7
32.4
32.2
32.2
6.93
6.74
5.63
4.88
5.69
5.12
5.33
6.35
52.4
46.6
41.2
40.3
38.5
37.1
31.3
35.6
19.46
19.46
19.46
19.69
19.39
19.63
19.29
19.49
96
81
124
178
186
177
170
170
48
53
57
69
69
98
120
142
10.72
8.46
11.34
9.07
9.70
8.20
10.0
7.41
20.9
8.4
7.4
—
3.8
3.5
3.6
4.5
1550
2518
3041
3252
3238
2934
2559
2209
759
787
944
916
974
970
875
787
8
51
90
130
164
211
7.01
7.52
7.20
7.27
6.93
7.92
2.23
13.22
19.35
19.88
19.81
19.47
35.5
34.4
32.7
32.2
32.4
33.0
10.73
9.00
7.06
8.31
6.65
9.57
49.8
41.1
36.9
27.8
27.9
24.7
—
—
104
134
195
234
298
351
47
70
123
163
208
267
6.90
7.17
6.83
10.29
8.87
10.60
30.0
15.0
7.2
2.9
3.9
3.9
40
2198
3784
4421
5242
5505
44
782
893
866
840
657
8
17
25
34
43
52
61
69
78
87
96
105
113
121
129
138
146
154
162
170
177
184
1%
208
216
224
232
243
251
258
264
271
279
285
290
7.61
7.69
7.46
7.53
7.49
7.34
7.52
7.48
7.49
7.52
7.51
7.38
7.54
7.52
7.39
7.45
7.63
7.67
7.7
7.67
7.31
7.54
7.68
7.48
7.74
7.67
7.82
7.65
7.48
7.55
7.69
7.66
7.59
7.57
7.84
3.76
4.20
4.96
7.49
9.96
12.34
13.55
14.68
16.34
18.98
18.61
17.93
15.20
18.64
18.20
20.46
18.98
18.83
17.80
18.13
11.06
18.65
17.42
13.84
17.30
17.86
16.01
15.51
12.24
12.39
13.70
11.98
9.70
10.41
12.56
34.9
35.2
35.2
35.2
35.2
35.2
34.3
33.8
34.1
33.3
33.0
33.0
32.4
32.7
33.0
33.0
33.0
32.4
32.2
31.9
31.9
32.2
32.4
32.2
32.2
32.4
32.7
32.2
32.2
32.2
32.4
32.2
32.2
31.9
34.1
10.82
10.71
10.22
9.35
8.08
7.28
7.06
5.02
4.89
5.00
4.94
5.04
5.20
5.24
4.98
6.28
5.12
6.00
5.77
6.24
5.41
6.31
6.94
7.18
7.20
7.59
7.43
7.18
5.57
6.98
7.71
5.63
4.94
5.57
7.28
54.2
53.8
53.7
54.2
52.2
50.8
46.9
44.0
43.8
40.8
36.7
35.1
32.3
32.2
31.7
30.9
31.8
30.9
33.7
29.1
24.6
30.9
28.3
24.4
27.8
28.4
27.7
27.0
26.0
26.4
26.8
26.2
26.2
25.9
28.4
18.83
18.77
19.92
19.68
19.41
19.78
19.98
19.88
19.41
19.34
19.14
19.41
19.21
18.97
19.17
19.17
19.34
19.14
20.12
19.54
19.51
19.34
19.34
19.44
19.21
19.37
19.68
19.51
19.41
19.17
19.61
19.44
19.88
19.14
19.27
104
122
124
126
129
130
134
147
151
173
184
184
195
198
196
235
237
274
272
284
219
279
302
274
320
366
366
375
325
365
377
376
364
316
304
50
50
51
58
59
59
79
81
89
82
118
124
132
139
138
129
177
188
196
216
234
203
265
279
288
274
274
292
294
297
295
312
291
285
254
11.24
9.28
8.27
11.44
10.61
10.64
9.84
12.62
10.97
11.15
9.07
11.04
11.75
11.13
10.0
10.02
11.81
10.87
10.86
11.47
15.17
11.42
8.49
12.14
10.63
10.40
10.82
10.86
8.05
9.45
8.24
8.95
—
10.55
8.90
31.0
28.4
31.0
_
24.3
23.3
—
13.1
—
8.3
—
4.9
—
7.3
9.4
—
7.3
328
398
510
958
1322
1719
2153
2584
2757
3043
3241
2889
4126
4130
4955
4851
4974
5264
5609
5358
5061
5649
6873
5716
6106
5061
6458
6209
6858
6230
6011
6272
6591
5500
3500
512
536
565
687
700
832
761
883
788
839
840
829
786
831
812
800
801
804
753
757
349
831
673
372
653
725
764
726
452
527
678
457
363
363
883
Sub-bottom
depth (m)
NH4
(MM)
Si
0*M)
Hole 530
2-6, 140-150
895
Hole 530A
5-6, 140-150
10-6, 140-150
15-5, 140-150
20-5, 140-150
25-6, 140-150
30-4, 140-150
35-4, 140-150
40-3, 140-150
50-3, 110-120
60-1, 140-150
89-5, 140-150
99-4, 140-150
Hole 530B
4-2, 143-150
9-2, 143-150
14-2, 140-150
20-2, 140-150
26-2, 140-150
32-1, 140-150
38-2, 140-150
46-1, 140-150
Hole 532
3-4,0-11
12-2, 140-150
21-2, 140-150
31-2, 140-150
40-2, 143-150
51-2, 140-150
—
Hole 532B
2-2, 140-150
4-2, 140-150
6-2, 140-150
8-2, 140-150
10-2, 140-150
12-1, 140-150
14-2, 140-150
16-2, 140-150
18-1, 140-150
20-1, 140-150
22-1, 140-150
24-2, 140-150
26-3, 140-150
28-2, 140-150
30-2, 143-150
32-2, 140-150
34-2, 140-150
36-2, 143-150
38-3, 0-006
40-2, 140-150
42-2, 140-150
44-2, 140-150
47-2, 140-150
50-2, 140-150
52-2, 140-150
54-2, 140-150
56-2, 140-150
59-2, 140-150
61-2, 140-150
63-2, 140-150
65-2, 140-150
67-2, 140-150
69-2, 140-150
71-1, 140-150
73-1, 140-150
9.4
_.
6.7
—
9.3
9.3
_
9.2
—
8.9
—
8.9
—
6.7
_
7.8
Note: Dash = data not available.
Below Unit 3 the profile of dissolved calcium indicates a source of calcium in the deeper section of the
sediment column, perhaps in the carbonate layers or in
the underlying basement. For dissolved magnesium the
situation is less clear, with possible uptake both in the
sediments (dolomitization?) and in the underlying basalts. Dissolved strontium has a significant source in
960
Unit 5, which is characterized by calcareous sediments
and limestones. At great depth dissolved strontium
values again decrease.
In general the dissolved constituents of the interstitial
waters recovered from Site 530 sediments indicate a
complex set of reactions reflecting the variable lithological features of the sediments. Biogenic sulfate reduc-
INTERSTITIAL WATER STUDIES
Sulfate (mM) and ammonia ( µM)
0
1000 2000 3000 N H 4
10
20
30 SO.
pH Alkalinity (meq/dm3)
6 8
10
20
Calcium and Magnesium (mM)
0
20
40
60
\T
1a
40 -
; i
80 " 1 b
.J
- •
120 " 2
160 -
,0
-
\
/
•
.
Silica (µM)
400
800
V
J
\
;
Lithium (µM)
50
100
Strontium (µM)
0
100
200
1
40
Mg
_
u
80
-lea
1
150
0
Potassium (mM)
5
10
V
]
120
160
j
Figure 1. Interstitial water data, Hole 530B. Unit la: Diatom-nannofossil marl and ooze; debris-flow deposits
65 m/m.y. Unit lb: Diatom ooze and debris-flow deposits
65 m/m.y. Unit 2: Nannofossil clay, marl, and ooze; debris-flow deposits -20 m/m.y.
tion processes in the upper sediment column cause complex nonsteady state profiles in dissolved sulfate, ammonia, alkalinity, and calcium.
Site 532
Site 532 was essentially a reoccupation of Site 362 on
the Walvis Ridge. Only the upper 300 m of this site were
sampled, but very detailed sampling allowed a detailed
determination of the interstitial water profiles. Sedimentation rates have varied between 40 and 50 m/m.y.,
and the sediments consist mostly of nannofossil marls
(Fig. 3).
The alkalinity profile shows a broad maximum of
- 2 0 meq/dm3 between 80-200 m. Dissolved sulfate
shows a minimum located at the base of Unit lb (diatom-nannofossil marl). This minimum is not reflected
in the dissolved ammonia profile. Methane gas levels
(not reported here) only become significant below 120 m,
i.e., below the sulfate minimum. Dissolved ammonia
has its main source at ~ 250 m, with high production in
the methane zones (120-250 m). Alkalinity increases,
causing authigenic apatite (cf., site summary) and calcium carbonate precipitation and consequently a decrease in dissolved calcium. Dissolved magnesium appears to have a sink in Unit lb. Perhaps the decrease in
magnesium is the result of partial dolomitization of carbonates in the low sulfate zone at -100 m. Both dissolved lithium and dissolved strontium have sources at
-280 m. However, the nature of these sources remains
unclear, though carbonate recrystallization reactions
are the most likely source of dissolved strontium. The
data for dissolved potassium show little trend and are
too scattered to suggest any possible significant variability downhole. Data on dissolved chloride are not precise enough to confirm the gradual downhole increase in
dissolved chloride that characterized Site 362, particularly below a depth of -300 m (Sotelo and Gieskes,
1978). Agreement between alkalinity, dissolved calcium,
and dissolved magnesium profiles obtained in Site 362
(Sotelo and Gieskes, 1978) and in Site 532 is very good.
ACKNOWLEDGMENTS
We appreciate the efforts by the shipboard chemist, Mr. Ken
Thompson. The manuscript has been reviewed by Drs. R. E. McDuff
and G. Klinkhammer, whose criticisms are appreciated. This work
was supported by NSF Grant OCE-8023966 to JMG.
REFERENCES
Baker, P. A., Gieskes, J. M., and Elderfield, H., 1982. Diagenesis of
carbonates in deep sea sediments—Evidence from Sr/Ca ratios
and interstitial dissolved Sr2* data. J. Sed. Petrol., 52:71-82.
Gieskes, J. M., 1974. Interstitial water studies, Leg 25. In Simpson, E.
S. W., Schlich, R., et al., Init. Repts. DSDP, 25: Washington
(U.S. Govt. Printing Office), 361-394.
, 1975. Chemistry of interstitial waters of marine sediments.
Ann. Rev. Earth Planet. Sci., 3:433-453.
_, 1981. Deep-sea drilling interstitial water studies: Implications for chemical alteration of the oceanic crust, Layers I and II.
Soc. Econ. Paleontol. Mineral., Spec. Pub!., 32:149-167.
Gieskes, J. M., and Johnson, J., 1981. Interstitial water studies, Leg59. In Kroenke, L., Scott, R., et al. Init. Repts. DSDP, 59: Wasfiington (U.S. Govt. Printing Office), 627-630.
Gieskes, J. M., and Lawrence, J. R., 1976. Interstitial water studies,
Leg 35. In Hollister, C. D., Craddock, C , et al., Init. Repts.
DSDP, 35: Washington (U.S. Govt. Printing Office), 407-423.
961
J. M. GIESKES, K. JOHNSTON, M. BOEHM, M. NOHARA
Gieskes, J. M., Lawrence, J. R., and Galleisky, G., 1978. Interstitial
water studies, Leg 38. In Bolli, H. M., Ryan, W. B. F., et al., Init.
Repts. DSDP, Suppl. to Vols. 38, 39, 40, and 41: Washington
(U.S. Govt. Printing Office), 121-133.
Kastner, M., Keene, J. B., and Gieskes, J. M., 1977. Diagenesis of
siliceous oozes. I. Chemical controls on the rate of opal-A to opalCT transformation—An experimental study. Geochim. Cosmochim. Acta, 41:1041-1059.
pH Alkalinity (meq/dm3)
10
20
6 8
1
2
400 -.
Sulfate (mM) and ammonia (µM)
NH4
400
800
12O o
0
10
20
30 SO.
0
f
\
'"" «6
800 —
•
8
-
1200 --
9
-
0
Date of Initial Receipt: October 6,1982
Calcium and Magnesium (mM)
0
20
40
60
• ×*
3
4
7
Sotelo, V., and Gieskes, J. M., 1978. Interstitial water studies, Leg
40: Shipboard studies. In Bolli, H. M., Ryan, W. B. F., et al., Init. Repts. DSDP, 40: Washington (U.S. Govt. Printing Office),
549-554.
- Mg
-
Silica (µM)
400
800
1200 0
Strontium (µM)
200
400
600
0
Lithium (µM)
100
200
0
Potassium (mM)
5
10
400
800
1200
Figure 2. Interstitial water data, Hole 53OA. Unit 1: Diatom-nannofossil oozes, marls, and debris-flow
deposits
65 m/m.y. Unit 2: Nannofossil clay, marl, and ooze; debris-flow deposits
20 m/m.y.
Unit 3: Red and green mud
9 m/m.y.; Unit 4: Multicolored mudstone, marlstone, chalk, and clas5 m/m.y. Unit 5a: Mudstone, marlstone, limestone
15 m/m.y. Unit 5b: Mudtic limestone
stone, marlstone, limestone, and siliciclastic sandstone
38 m/m.y. Unit 5c: Mudstone, marlstone,
11 m/m.y. Unit 6: Glauconitic sandstone
20 m/m.y. Unit 7:
calcareous siliclastic sandstone
Claystone, siltstone, sandstone
31 m/m.y. Unit 8: Claystone, marlstone, black shales
9
m/m.y. Unit 9: Basalt.
962
INTERSTITIAL WATER STUDIES
pH Alkalinity (meq/dm3)
6 8
10
20
Sulfate (mM) and ammonia (µM)
0
2000 4000 6000 NH
0
10
20
30
SO.
Calcium and Magnesium (mM)
0
20
40
60
la
«
80 - 1b
160 - 1c
240 -
<
j
J J
T
1
; > SO4
St
+
+++ NH4
\ \
320 --
.0
80
160
Silica (µM)
400
800
0
Strontium (µM)
200
400
Ca
>
0
Lithium (µM)
100
200
300 0
Potassium (mM)
5
10
V
•
240
•/•
320
Figure 3. Interstitial water chemistry, Site 532. Unit la: Foram-nannofossil marl and ooze
41 m/m.y.
Unit lb: Diatom-nannofossil marl
52 m/m.y. Unit lc: Nannofossil marl
40 m/m.y.
963