Radiometricinvestigationofdifferentsnowcovers
inSvalbard
RuggeroCasacchia,FrancescaLauta,
RosamariaSalvatori,AnselmoCagnati,
MauroValt&JonB.Ørbæk
This paper examines the relationship between reflectance and physical
characteristicsofthesnowcoverintheArctic.Fielddatawereacquired
for different snow and ice surfaces during a survey carried out at NyÅlesund,Svalbard,inspring1998.Ineachmeasurementsessionreflectance in the spectral range 350 - 2500 nm, snow data (including temperature,grainsizeandshape,densityandwatercontent),surfacelayer
morphology, and vertical profile of the snow pack were recorded. A
detailedanalysisofreflectancebasedonthephysicalstructureofsnow
wasperformed.Fieldreflectancedatawerealsore-sampledatthespectral
intervals of Landsat TM to compare the ability of identifying different
snow targets at discrete wavelength intervals. This analysis shows that
reliabledataonsnowstructureandthicknessarenecessarytounderstand
albedochangesofthesnowsurfaces.
R.Casacchia,F.Lauta&R.Salvatori,NationalResearchCouncil,InstituteofAtmosphericPollution,Via
Salariakm29.300C.P.10,00016MonterotondoStazione(Roma),Italy;A.Cagnati&M.Valt,ARPAVCVA,
StradaPassoCampolongo122,32020ArabbadiLivinallongo(BL),Italy;J.B.Ørbæk,NorwegianPolar
Institute,PolarEnvironmentalCentre,N-9296Tromsø,Norway.
Themultitemporalanalysisofthesnow-covered
surfacesinpolarregionsmayprovidedatauseful
formonitoringEarth’sclimatechanges.Radiometricdataacquiredbymultispectralsatelliteimages
recordedatwavelengthsbetween400-2500nm
cansupportthisstudy,owingtothelinkbetween
the reflectance and physical characteristics of
snowatthesewavelengths.
Snowreflectanceinthevisiblepartoftheelectromagneticspectrumisrelatedtowaterandice
content, absorbing impurities, and topographic
effects, while in the near-infrared wavelengths
snow reflectance is more sensitive to grain size
(Wiscombe&Warren1980;Warren1982;Dozier
1989). These parameters, together with snow
density, are generally an index of the physical
conditions of snow, and thus can provide information about the relative ages of various snowCasacchiaetal.2001year:PolarResearch20(1),13–22
coveredsurfaces.Reflectancedataasderivedfrom
Landsat/Thematic Mapper, SPOT and NOAA/
AVHRRhavebeenusedtoinvestigatesnow/ice
surfaces (Hall, Chang & Siddalingaiah 1988;
Hall, Kovalick et al. 1990; Bourdelles & Fily
1993; Thomas 1993; Winther 1993a). Comparisons of in situ and satellite derived reflectance
havealsobeencarriedout(Hall,Chang,Fosteret
al.1989;Hall,Bindschadleretal.1990;Winther
1993a, 1993b; Boresjö Bronge & Bronge 1999).
Thiscomparisonisimportantforacorrectinterpretationofsatellitedataandforadetailedanalysisofsnow’sspectralbehaviourandmetamorphic
conditions. Furthermore, ground measurements
ofalbedohavebeenperformedondifferentsnow
coversandicesurfacesbyGerlandetal.(1999),
Knapetal.(1999)andWintheretal.(1999).
Thispaperpresentsdataacquiredinasurvey
13
Fig.1.MapofBrøggerhalvøya
(BrøggerPeninsula)showingthe
locationoftheinvestigatedsites
(seeTable1fordetails);Svalbard
Archipelagoinset.Thesurface
areaisabout14kmby12km.
carriedoutinSvalbard.Fielddatawereanalysed
to identify quantitative changes in snow cover
albedo as a function of snow’s physical characteristics. This work is also aimed at providing
ground-truthdatatosupportsatellitemonitoring
ofsnow/icesurfaces.
Spectralcharacteristicsofsnow
Snowisacollectionoficegrainsandairandoften
containsorganicimpuritieslikedust,soot,pollen
andotherplantmaterials.Theopticalproperties
ofthesnowpackinthevisibleandnear-infrared
wavelengths depend on grain size distribution,
thicknessofthesnowpack,occurrenceofimpurities and liquid water content (Wiscombe &
Warren 1980; Warren 1982). The investigation
ofsnow/icespectralpropertiesusuallytakesinto
accountthereflectance,definedastheratioofthe
radiant energy reflected by a body to that incidentuponit.Theopticalpropertiesoficecanbe
verydifferentaccordingtoicetypes.However,in
thevisiblewavelengths,iceishighlytransparent,
so that its albedo may change according to the
amount and pattern of inclusions (Wiscombe &
Warren 1980). In the near-infrared wavelengths
ice is more absorptive, so that albedo depends
mainlyongrainsize(Warren&Wiscombe1980;
14
Dozier 1989). Furthermore, snow reflectance is
higher in the visible part of the electromagnetic
spectrum, decreasing rapidly at longer wavelengths,fromabout700nm.Theincreaseofgrain
size gives a decrease in reflectance all over the
spectralrangefromvisibletoshortwaveinfrared
(350-2500nm),particularlyrelevantintheinfraredregions(Warren&Wiscombe1980;Warren
1982;Warrenetal.1986).Thereflectanceofboth
wetandrefrozensnowisusuallylowerthanthat
ofdrysnowduetothestrongabsorptioncoefficientofwaterandice,especiallyatnear-infrared
andinfraredwavelengths.
Fieldmeasurements
Radiometric and snow data were collected
between25Apriland10May1998,infourmeasurementsitesonBrøggerhalvøya(BrøggerPeninsula), in the area surrounding the international
scientific station of Ny-Ålesund (Fig. 1). This
locationwaschosenbecauseitofferedtheopportunityofmeasuringflat,snow/icesurfaceslarge
enough to be sampled on satellite images and
farenoughfromdensehumansettlementtoproviderelativelyuncontaminatedsnowspectralsignatures. As expected (Ørbæk et al. 1999), the
weather conditions in this time period did not
RadiometricinvestigationofdifferentsnowcoversinSvalbard
cause a significant melting of the snow cover,
while some snowfall occurred together with
stormsandclearskydays.Allfielddatawerecollected during clear sky conditions; air temperatureswerealwaysbelow0°C(Table1).During
the survey sun elevation was between 23° and
27°.Eventhoughthisdatumiscrucialforreflectancemeasurements(Wintheretal.1999),inthis
paperourattentionismainlydevotedtothephysicalstructureofsnow.
Thesurveyedsnowsurfacesusuallycomprised
amixtureofgrainsofdifferentclasses;thesnow
surfacedefinitionsgiveninthisstudyarebased
onthemostrepresentativegraintype.Inparticular, as mentioned in Table 2, the term “equilibrium forms” is applied to rounded snow grains
characterized by almost no growth, because of
thelowthermalgradient.Theanalysedsnowsurfaceswere:newsnow,equilibriumforms,drifted
snow,andbasalicederivedfromfreezingofmeltwater.
thetopstratum.Thepenetrationtestwascarried
outusingaSwisspercussionprobe(Rammsonde,
cone tip angle 60°, base diameter 40 mm, tube
weight 10 N/m, ram weight 10 N). The vertical
profileledtotheidentificationofdifferentstrata,
and the following parameters were reported or
estimatedforeachofthem:grainshapeandsize,
hardness (hand test), density and temperature.
The water content was investigated, too, using
a Snow Fork (Toikka, Finland), though liquid
watercontentofsnowwasnullatallsites.Snow
descriptionisbasedontheinternationalclassificationofseasonalsnowonthegroundestablished
bytheInternationalCommitteeforSnowandIce,
InternationalAssociationofScientificHydrology
(Colbecketal.1990).Surfaceroughness(furrow
distanceanddepth)wasalsomeasuredinmmin
accordancewithColbecketal.(1990).Themain
physicalcharacteristicsofthesurveyedsnowsurfacesareshowninTables3and4.
Spectroradiometricmeasurements
Snowdata
Aconventionalsurveyofsnowsurfaceswascarriedoutatallmeasurementsites,includingapenetrationtestandaverticalprofilewithregardto
Snow and ice reflectance was acquired by the
fieldspectroradiometerFieldspecFR(Analytical
SpectralDevicesInc.,Boulder,CO),coveringthe
wavelengthrange350-2500nm,andcalculated
Table1.Characteristicsoftheinvestigatedsites.
Surfacetype
Symbol
Site
Latitude/
longitude
Day
Time
Average
snowthick-
ness(mm)
AirT Sun
(°C) elev.
Newsnow
N
Storvatnet
78°55’28”N
11°50’11”E
04May
13:30
200(+760)
-2.9
27°
Equilibriumforms
E
Storvatnet
78°55‘28”N
11°50’11”E
27April
13:30
600
-9.6
24°
Equilibriumformson
basalice(40mm)
E4
Tvillingvatna
78°55’16”N
11°55’37”E
28April
15:10
40
-5.7
24°
Equilibriumformson
basalice(10mm)
E1
Tvillingvatna
78°55’16”N
11°55’37”E
28April
15:00
10
-5.7
24°
Smoothdriftedsnow
SD
Storvatnet
78°55’28”N
11°50’11”E
01May
14:00
760
-4.3
26°
Driftedsnow
(barchans)
DB
Storvatnet
78°55’28”N
11°50’11”E
01May
13:15
760
-4.3
26°
Driftedsnow
(ripples)
DR
Storvatnet
78°55’28”N
11°50’11”E
01May
12:00
760
-4.3
26°
Driftedsnow
DE
MidreLovénbreen
78°54’01”N
12°02’56”E
05May
16:00
>800
-6.3
24°
Melt–freezecrust
C
Stuphallet
78°57’58”N
11°37’52”E
04May
12:00
200
-3
26°
Basalice
I
Tvillingvatna
78°55’16”N
11°55’37”E
28April
15:30
–
-5.7
23°
Casacchiaetal.2001year:PolarResearch20(1),13–22
15
Fig.2.Reflectancecurvesof
newsnow(N),equilibrium
forms(E),equilibriumforms
(40mm)onbasalice(E4),
equilibriumforms(10mm)on
basalice(E1),barebasalice(I)
andmelt–freezecrust(C).
as the ratio of incident solar radiation reflected
from the snow target and the incident radiation
reflectedfromawhitereferenceSpectralon(about
30cmx30cm),knownasaLambertianreflector.
Thisratiogivesthereflectancefactor,whilethe
absolute reflectance is obtained by multiplying
thisreflectancefactorwiththereflectancespectrumofthepanel.Usedinthefieldunderharsh
environments,thepanelrequirespropermaintenanceandcalibrationforcorrectcalculationofthe
reflectance data (especially concerning organic
impuritiesaffectingtheshorterwavelengths).
TheSpectralonwasre-calibratedattheNorwegian Polar Institute’s (NPI) Optical Calibration
Laboratory in Ny-Ålesund during the campaign
byintercomparisonwithaprimarystandardreferenceSpectralon.Thenewcalibrationcurveof
the panel was thereby obtained, allowing absolutereflectancetobecalculatedwithanerrorof
2%;thisvalueisderivedfromthestandarddeviation of the spectral response of our spectralon
(in the entire 350 - 2500 nm wavelength range)
Table2.Definitionofsnow-relatedtermsusedinthispaper.
Newsnow
Equilibrium
forms
Driftedsnow
Drysnow
Melt–freeze
crust
Basalice
16
Snowdepositedwithin24hours
Roundedcrystals,shapedbyaslowgrowth
Snowdepositedoralteredbythewind
Depositedsnowthathasnotbeensubject
tomeltingortoinfiltrationofliquidwater
Hardandgenerallythinlayerformed
byrecognizablemelt–freezepolycrystals
Iceoccurringatthebaseofthesnow
coverformedfromfreezingofmeltwater
computedwithrespecttotheNPI’sstandardreference.
Othersourcesoferrorsornoiseinfieldspectroradiometric data may have included incorrect
viewing geometry in data acquisition, random
noise produced by the electronic components of
theinstrument,atmosphericwatervapourabsorptionband,andthelowatmosphericirradianceat
wavelengths of 1400 nm and beyond 1700 nm,
giving a low signal to noise ratio (S/N). A correctorientationofthespectroradiometeroverthe
panelandthesurfaceisnecessaryforsnowtargets,particularlyinthevisiblewavelengthsupto
900 nm, to avoid reflectance values that exceed
100%andreflectancecurvesthathaveananomalous pattern. The S/N ratio can be increased by
increasingthenumberofmeasurementsforevery
radiometricacquisition.
Duringdataacquisitionparticularattentionwas
devoted to snow surface roughness variability
(Table 4). The different pattern and size of surfacefurrowsmaycausethespectralresponseto
vary,duebothtoshadowingeffectsandtobackscattering. To identify all the snow targets to
sample,adetailedobservationofallthesurface
variationsateachlocationwascarriedoutbefore
everymeasurementsession.Grainsizeandshape
weredetectedforeachtarget.Snowobservations
wereperformedonthesametargetimmediately
afterspectralmeasurements.
Measurements were acquired 500 mm above
thetarget,withafieldofviewof25°,thuscoveringgroundareasof230mmx230mm.Special
carewastakentoensurethattheradiometerwas
nadir viewing over the surveyed surfaces. The
RadiometricinvestigationofdifferentsnowcoversinSvalbard
Fig.3.Reflectancecurvesof
newsnow(N)anddriftedsnows
(SD,DB,DRandDE).
Fieldspecspectroradiometerallowstheimprovement of the S/N ratio of each spectral curve by
selectingaspecificnumberofsamplestobeaveraged to obtain the final spectral curve. Accordingtothespectrometer’smanufacturer,asample
average from 10 to 150 is sufficient; a larger
numberofsampleswouldrequirealongeracquisitiontime,andstableskyconditions.Becauseof
theweatherduringoursurvey,aspectrumaveraging of 50 samples was chosen, after having
checked that reflectance acquired with a higher
number of acquisition gave the same results.
Twenty to thirty spectral curves were acquired
for every target in order to have a statistically
meaningful sample of each target; the number
of acquisitions is a user decision, depending on
howstablethesignaltoberecorded.Increasing
thenumberofspectralcurvesforeachtargetalso
contributes to the reduction of random errors,
resulting in a better spectral characterization of
thetargetitself.Thecurvesdiscussedbeloware
absolutereflectancescomputedasmeanvaluesof
alltheacquisitionscollectedforeachtarget.
Table3.Physicalcharacteristicsoftheinvestigatedtargets.SymbolsusedinFigs.2,3and4:L=Layerthickness(mm);ρ=
density(kg/m3);R=hardness;T=snowtemperature(°C).
Surfacetype
Symbol L
Newsnow
N
Equilibriumforms
E
Equilibriumforms
E4
(40mm)onbasalice
Equilibriumforms
E1
(10mm)onbasalice
Smoothdriftedsnow
SD
Driftedsnow(barchans) DB
Driftedsnow(ripples) DR
Driftedsnow
DE
Melt–freezecrust
C
Basalice
I
30
80
40
10
110
110
110
20
30
150
ρ
55
145
135
n.d.
385
385
385
100
n.d.
n.d.
R
T
verylow -0.7
verylow -11.9
verylow -6.2
verylow n.d.
high
-5.8
high
-5.8
high
-5.8
verylow -5.4
high
-1.5
veryhigh n.d.
Casacchiaetal.2001year:PolarResearch20(1),13–22
Snowcrystals
partlydecomposedparticles(1.5mm)
andstellardendrites(3mm)
smallroundedparticles(0.3-0.5mm),
highlybrokenparticles(0.5mm),
raresurfacehoarcrystals(0.5mm)
10mm:partlydecomposedprecipitation
particles(1mm),stellardendrites(2.5mm),
surfacehoarcrystals(0.5mm);
30mm:smallroundedparticles(0.5mm),
surfacehoarcrystals(1mm)
partlydecomposedprecipitationparticles(1mm),
surfacehoarcrystals(0.5mm)
smallroundedparticles(0.3mm)
smallroundedparticles(0.3mm)
smallroundedparticles(0.3mm)
20mm:partlydecomposedparticles(1.5mm),
stellardendrites(3mm),surfacehoar;
20mm:smallroundedparticles(0.4mm)
mixedforms(0.8mm)androundedpolycrystals(1.2mm)
17
Fig.4.Reflectancevaluesre-sampledindiscretewavelength
intervals: (a) equilibrium forms (E, E4, E1), basal ice (I),
melt–freeze crust (C); (b) drifted snows (SD, DB, DR and
DE).Newsnow(N)isshowninbothplots.
Analysisofspectra
At wavelengths between 350 and 2500 nm the
snow physical characteristics that mostly affect
reflectancearegrainsize,presenceofabsorbing
impurities, water content and surface morphologicandgeometriccharacteristics(Wiscombe&
Warren1980;Warren1982;Dozier1989).
Figure 2 presents the spectral albedo of new
snow (N), melt–freeze crust (C), equilibrium
forms(E),equilibriumformswiththicknessesof
40 mm (E4) and 10 mm (E1) on basal ice, and
barebasalice(I);Fig.3showsnewsnow(N)and
drifted snow surfaces sampled at Midre Lovénbreen (DE) and three drifted snow surfaces—
smooth (SD), with surface barchans (DB), with
surface ripples (DR)—sampled at Storvatnet.
New snow reflectance is shown in both Figs. 2
and3,asitisusedasareferencetowhichcompare the spectral response of the other snows.
Tables3and4reportthemainphysicalcharacteristics of the surveyed surfaces. The general
trendsofthereflectancevalues(Figs.2,3)agree
withthosereportedbyotherauthors(Wiscombe
&Warren1980;Warren1982;Warrenetal.1986;
Hall,Chang&Siddalingaiah1988;Dozier1989;
Hall, Chang, Foster et al. 1989; Hall, Bindschadleretal.1990;Hall,Kovalicketal.1990;Zibordi
et al. 1996; Winther et al. 1998): reflectance is
higher in the visible region of the spectrum,
and decreases at longer wavelengths. Atmospheric water vapour absorption causes low S/N
ratioaffectingallthemeasurementsat1400nm,
between 1700 - 2000 nm and beyond 2300 nm;
two reflectance minima can also be observed at
1500nmand2000nm.Beyond1700nmtheincidentradiationisverylow;thisisafurthersource
ofradiometricerroraffectinginfrareddata.
The new snow curve (N) pattern shown in
Fig. 2 is typical for this surface: its measured
albedo is higher between 350 - 700 nm (values
of0.94-0.98),andshowslowervaluesatwavelengthgreaterthan700nm.Itshighreflectanceis
owedtotheshapeandsizeofthenewsnowgrains
(Table3),whichhavenotbeenalteredsincedep-
Table4.Surfaceroughnessoftheinvestigatedtargets.
Surfacetype
Newsnow
Equilibriumforms
Equilibriumforms
(40mm)onbasalice
Equilibriumforms
(10mm)onbasalice
Smoothdriftedsnow
Driftedsnow(barchans)
Driftedsnow(ripples)
Driftedsnow
Melt–freezecrust
Basalice
18
Symbol
Surfaceroughness
N
E
E4
smallirregularripples
smooth,littleripples
smooth
Furrowdistance Furrowdepth
E1
smooth
SD
DB
DR
DE
C
smooth
snowbarchans
irregularripples
irregularfurrows
concavefurrows
I
smooth
7mm
0.5-1mm
2mm
0.1mm
5mm
5-10mm
4mm
5mm
0.5-1mm
1-1.5mm
0.5-1mm
1mm
RadiometricinvestigationofdifferentsnowcoversinSvalbard
osition. The equilibrium forms (E) reflectance
curve is close to that of new snow (N) in the
visible part of the spectrum (within 3 % up to
900nm).Forwavelengthsgreaterthan900nm,
albedoofEisconsiderablylowerthanthatofnew
snow (N), probably due to the presence of surface hoar and to different grain size and shape.
The“equilibriumforms”grainsaremorerounded
than new snow grains, giving a reduced reflectanceatthesewavelengths(Wiscombe&Warren
1980; Warren 1982; Zibordi et al. 1996). The
“equilibriumforms”(40mm)onicecurve(E4)
showshighreflectance(0.8-0.89)upto900nm,
andisabout10%lowerthannewsnow(N)and
equilibrium forms (E) curves; the comparison
betweenthecurvesofequilibriumforms(E)and
of equilibrium forms on basal ice (E4) reveals
thattheincreasedgrainsize,thepresenceofsurfacehoarandoficebelowthesnowcoverdetermine a lower reflectance of E4 with respect to
E.Intheinfrared,beyond1600nmtheopposite
caseisobserved,asE4reflectanceishigherthan
reflectance measured on E, because E4 surface
snowgrainsarelessrounded,asrevealedbysnow
fielddata.Theequilibriumforms(10mm)onice
(E1)reflectanceisconsiderablylowerthanprevious ones, owing to the presence of ice close to
the surface and of surface hoar. This curve patternissimilartothebasalicecurve(I)between
350 - 1200 nm; reflectance values of the two
curves are very close up to 550 nm and appear
moreseparateaswavelengthincreases.Between
550and600nm,theE1curveshowsareflectance
maximumof0.73,followedbyasharpdecrease
beyond 600 nm, although it never falls to zero,
asbasalicealbedodoes.Wecanthereforeinfer,
according to the measurements carried out, that
10 mm of snow considerably affect ice albedo,
mainly in the infrared wavelengths. The basal
icereflectance(I)islowerthananyothersurface
at wavelengths greater than 450 nm. Ice reflectanceincreasesfrom350nmupto550nm,where
a maximum of 0.68 occurs, and then rapidly
decreases to zero because of the high spectral
absorptionat1200nm.Icespectralbehaviourhas
beeninvestigatedbyWiscombe&Warren(1980),
Warren (1982), Dozier (1989); in particular, the
minimumintheiceabsorptioncoefficientcurve
reportedbyDozier(1989)seemstocorrespondto
the reflectance maximum of curve (I) in Fig. 2.
Accordingtothesereflectancedata,thepresence
of a snow cover on an ice stratum significantly
affectsitsreflectance.AtvisibleandNIRwaveCasacchiaetal.2001year:PolarResearch20(1),13–22
Fig.5.Reflectancevalues(Rs)re-sampledindiscretewavelengthintervalsandnormalizedwithrespecttonewsnowreflectance (Rn): (a) equilibrium forms (E, E4, E1), basal ice
(I),melt–freezecrust(C);(b)driftedsnows(SD,DB,DRand
DE).
lengthsupto1350nmthereisawidegapbetween
icewithasnowcoverthicknessof40mm(E4),
icecoveredby10mmofsnow(E1)andbasalice
(I);beyond1350nmthedifferencesarereduced.
Moreover,comparingnewsnow(N),melt–freeze
crust(C)andbasalice(I)curves,weobservethat
increasingmetamorphismandageofgrainscause
a progressive decrease in reflectance at wavelengthbetween350and1400nm.
Thealbedomeasurementsofnewsnowandof
driftedsnowsmeasuredrespectivelyatStorvatnet
(N,SD,DB,DR)andMidreLovénbreen(DE)are
showninFig.3.AtStorvatnetdriftedsnowsurfaces have the same physical and granulometric
characteristics, but different surface roughness,
accordingtowhichthreekindsofdriftedsnows
havebeendefinedanddescribedinTables3and
4.Inthevisiblepartofthespectrumallcurvesare
similar and show reflectance values higher than
0.93;at700nmtheyappearmoredistinctiveand
from1000upto2500nmaprogressivedecrease
inreflectancecanbenoticed,fromnewsnow(N),
followedbydriftedsnowwithirregularfurrows
(DE), and drifted snows characterized, respec19
tively, by barchans (DB), ripples (DR) and a
smooth surface (SD). Due to the occurrence of
surfacehoar,atinfraredwavelengthsreflectance
of drifted snow (DE) is lower than that of new
snow(Fig.3).TheloweralbedomeasuredatStorvatnet (SD, DB and DR) with respect to that
acquiredatMidreLovénbreen(DE)isduetothe
occurrence of smaller and more rounded snow
grains.Moreover,themaindifferencesinalbedo
amongthedriftedsnowsurfacesatStorvatnetcan
beseenatabout1100and1300nm,whereprobably drifted snows DR and DB surface roughnessleadtohigherreflectancethanthatofsmooth
driftedsnow(SD).
Discussion
The analysis of the reflectance curves (Figs. 2,
3)hasshownthepossibilityofidentifyingdifferentkindsofsnow/icesurfacesbasedonthespectral response between wavelengths of 350 and
2500nm.Thesamecurveshavebeenanalysedin
discrete spectral intervals covered by the Landsat5ThematicMapper,withthepurposeofcomparingfieldreflectancewithsatellite-deriveddata
(Fig.4).Inaddition,weobserveinourdata(Figs.
2, 3) significant reflectance differences even at
1030 - 1085 nm and 1260 - 1350 nm. Satellite
data represent an integration of the reflectance
recorded over a broad spectral band; field data
havetobeexpressedinthesamewaytoallowa
propercomparison.Therefore,inFig.4thereflectancevaluesofthesurveyedsurfacesareshown,
averaged over the considered spectral intervals.
These data allow the quantitative estimatation
of the reflectance of the different snow-covered
surfaces in defined spectral intervals, providing
useful information for satellite data interpretation. Considering instrument errors, it has been
estimated that reflectance variations exceeding
5 % could be great enough to detect significant
differencesamongthesurveyedsurfaces.
At wavelengths corresponding to TM1
(450 - 520 nm), TM2 (520 - 600 nm) and TM3
(620 - 690 nm) bands, new snow (N), drifted
snows and equilibrium forms (E) have similar
andveryhighalbedo(>0.94;Fig.4a,b).Atthese
wavelengths equilibrium forms on ice (E4) and
melt–freeze crust (C) reflect the solar incident
radiationwithsimilarintensity.Inthesamespectralbandsalltheothersurfacesareprogressively
lessreflective,assurfacehoarincreases.Between
20
1030-1086nmand1260-1350nm,E4reflectsup
to17%moreradiationthanamelt–freezecrust
(C), though its particles are slightly larger and
hoar covers the surface. New snow (N), drifted
snows (SD, DB, DR and DE) and equilibrium
forms (E) begin to be distinguished from TM4
(760 - 900 nm) wavelength interval, where new
snow can be clearly distinguished from smooth
driftedsnow(SD)andsnowwithsurfacebarchans(DB).At1030-1085nmthegrainandmorphologic characteristics of new snow (N) make
it more reflective than drifted snows (DB, DR,
DE and SD). Between 1260 and 1350 nm new
snow(N)reflectanceishigherthanthatofdrifted
snow (DE), which has the same grain size but
appears covered by surface hoar. Still at wavelengthslongerthan1000nm,newsnow(N)can
be distinguished from equilibrium forms (E),
characterizedbyroundedgrainsandsurfacehoar
(Fig.4a).Reflectancedifferencesofdriftedsnows
withthesamethicknessandgraincharacteristics
areduetosurfaceroughness:smoothsnow(SD)
can be distinguished from 5 -10 mm furrowed
snow surfaces (DB and DR) at 1030 - 1085 nm
and1260-1350nmwavelengthranges(Fig.4b).
Between1260and1350nmitappearsalsopossibletodistinguishdriftedsnowsconsideringthe
different grain shape, as for drifted snow (DE)
andthesurfaceroughnessfordriftedsnowsSD,
DB,DR,whilethepresenceofsurfacehoarseems
tobelessdecisive.InTM5(1550-1750nm)and
TM7(2080-2350nm)bandsthelowalbedoof
equilibrium forms (E) with respect to the other
surfaces is due to the presence of surface hoar.
The basal ice reflectance (I) is lower than those
ofthesurveyedsnowsandisthereforeeasilydistinguishedinthefirstfourspectralintervalsconsidered.However,when10mmofsnowcoverthe
ice,anappreciablechangeinalbedoisobserved
(E1), mainly at wavelengths beyond 600 nm; at
TM5andTM7,theE1curvecoincideswiththat
ofEbecauseoftheeffectofbackscatteringdueto
thepresenceofsnow,aneffectparticularlystrong
atthesespectralchannels.
Tobetteremphasizemutualreflectancechanges,
the reflectances of the surveyed surfaces were
normalizedtonewsnowandshowninFig.5aand
b:intheseplotshighervaluessignifyreflectance
similartothatofnewsnow.Thedistancebetween
normalizedreflectancevaluesateachwavelength
interval reveal the possibility of detecting differentsnowsurfaces,eventhoughtheiroriginal
reflectance values were very similar. The infor-
RadiometricinvestigationofdifferentsnowcoversinSvalbard
mationretrievedfromthisfigureissimilartothat
obtainedfromFig.4,particularlyconcerningthe
first four TM spectral channels and the 1030 -
1085 range. In the 1260 - 1350 nm, TM5 and
TM7wavelengthintervalsdifferencesaremarkedlyhigherthanthoseinFig.4.
Conclusions
Field spectroradiometric data of different snow/
icesurfacesconfirmthenecessityofexamining
thoroughlytherelationbetweensnowreflectance
and snow metamorphic state. Although ice and
snow behaviour is generally well known in the
spectral interval 350 - 2500 nm, a better understanding of snow/ice reflectance under natural
conditionswouldsubstantiallyimprovetheinterpretation of their physical features based on
reflectance data. Fieldwork also revealed that
snowgrainsizeisoftenlargerthanthatusedin
thesnowspectralmodelsproposed(Wiscombe&
Warren 1980): snow is made up of four to five
kindsofgraindifferinginsizeandshape,decisivelyaffectingthesnowspectralresponse,particularlyintheinfrared.
It has also been observed that significant
changes in surface reflectance properties are
relatedtotheoccurrenceofhoarandthatadetailed
characterization of the sub-surface snow (snow
layering,metamorphism)isalsohighlyimportant
fordatainterpretation.Surfaceroughness,which
increasesasfurrowdistancedecreases(Table4),
contributestoincreasingreflectanceparticularly
atwavelengthhigherthan1000nm.Thisisespeciallyevidentinthecaseofdriftedsnowswhere
the smoother the surface the lower the reflectance.Moreover,reflectanceincreaseswhensnow
crystalsarenotrounded(regardlessoftheirsize)
and surface roughness is relatively high, while
reflectancedecreasesasroundedparticlesbecame
largerinsizeandthepresenceofsurfacehoarand
impuritiesishigher.However,itisnotalwayspossibletoidentifypreciselythefeaturethatmainly
determines snow field reflectance, which is the
sum of the above-mentioned factors. This has
important implications when field spectroradiometric data have to be used to support satellite
datainterpretation,unlessabroaddescriptionof
snow physical characteristics is required. Based
onthedatashowninFigs.4and5,betterresults
concern the discrimination between new and
driftedsnowswithrespecttomelt–freezecrust,
Casacchiaetal.2001year:PolarResearch20(1),13–22
bare basal ice and basal ice covered by a thin
snowlayer.Asnowlayer40mmthickoverbasal
iceshowreflectancevaluesclosetothoseofthe
melt–freezecrustinthevisibleandthenear-infrared and is close to that of equilibrium forms at
wavelengths greater than 1000 nm. Reflectance
differencesbetweennewsnowanddriftedsnows
aredifficulttodetect,unlessthe1030-1085and
1260 - 1350 nm wavelength ranges are considered.
Theuseofanumberofspectralchannelslarger
thanthosepresentlyavailableontheTMsensor
would help in snow and ice monitoring, particularly if the 1030 - 1085 and 1260 - 1350 nm
wavelengthrangeswereconsideredindesigning
futuresatellitesensors.Andourknowledgeofthe
interactionbetweensnowandsolarradiationcan
beenhancedbyimprovingfielddataacquisition
techniques, devoting more attention to features
like surface roughness and grain size assemblages.
It is important both to intensify snow field
surveysindifferentglacialenvironmentsandto
repeat the same measurements under different
climatic, atmospheric and solar conditions. It is
alsoofimportancetocollectaccuratedataabout
snow’sphysicalandtexturalcharacteristicsalong
with spectroradiometric data, because a correct
interpretationofsnowspectralresponsewouldbe
extremelydifficultwithoutthisinformation.
Acknowledgements.—This work has been supported by the
CNR (National Research Council of Italy) Arctic Strategic
ProjectandbytheNationalResearchProgrammeinAntarctica (Project Remote Sensing, GIS and Hydrography). SpecialthanksgotoMr.RobertoSparapaniforlogisticsupport
during the field survey. The authors also wish to thank
Dr. J.-G. Winther and Dr. S. Gerland from the Norwegian
PolarInstitute(thelatternowwiththeNorwegianRadiation
Protection Authority) for their availability to discuss snow
reflectanceacquisitionmethods,andDr.B.Johnsenfromthe
NorwegianRadiationProtectionAuthorityforvaluableopticalcalibrationexperience.
References
Boresjö Bronge, L. & Bronge, C. 1999: Ice and snow-type
classificationintheVestfoldHills,EastAntarctica,using
Landsat-TMandgroundradiometermeasurements.Int.J.
RemoteSens.20,225–240.
Bourdelles,B.&Fily,M.1993:Snowgrain-sizedeterminationfromLandsatimageryoverTerreAdélie,Antarctica.
Ann.Glaciol.17,86–92.
Colbeck,S.,Akitaya,E.,Armstrong,R.,Gubler,H.,Lafeuille,
21
J.,Lied,K.,McClung,D.&Morris,E.1990:Theinternationalclassificationforseasonalsnowontheground.Internationalcommissiononsnowandicereport.Wallingford,
UK:InternationalAssociationofScientificHydrology.
Dozier, J. 1989: Spectral signature of alpine snow cover
fromLandsatThematicMapper.RemoteSens.Environ.28,
9–22.
GerlandS.,WintherJ.-G.,ØrbækJ.B.,ListonG.E.,ØritslandN.A.,Blanco,A.&Ivanov,B.1999:PhysicalandopticalpropertiesofsnowcoveringArctictundraonSvalbard.
Hydrol.Process.13,2331–2343.
Hall,D.K.,Bindschadler,R.A.,Foster,J.L.,Chang,A.T.C.
&Siddalingaiah,H.1990:Comparisonofinsituandsatellite-derivedreflectancesofForbindelsGlacier,Greenland.
Int.J.RemoteSens.11,493–504.
Hall, D. K., Chang, A. T. C., Foster, J. L., Benson, C. S. &
Kovalick,W.M.1989:ComparisonofinsituandLandsat
derivedreflectanceofAlaskanglaciers.RemoteSens.Environ.28,23–31.
Hall,D.K.,Chang,A.T.C.&Siddalingaiah,H.1988:Reflectance of glaciers as calculated using Landsat-5 Thematic
Mapperdata.RemoteSens.Environ.25,311–321.
Hall,D.K,Kovalick,W.M.&Chang,A.T.C.1990:Satellitederived reflectance of snow-covered surfaces in northern
Minnesota.RemoteSens.Environ.33,87–96.
Knap, W. H., Reijmer, C. H. & Oerlemans, J. 1999: Narrowband to broadband conversion of Landsat TM glacier
albedoes.Int.J.RemoteSens.20,2091–2110.
Ørbæk,J.B.,HisdalV.&SvaasandL.E.1999:RadiationclimatevariabilityinSvalbard:surfaceandsatelliteobservations.PolarRes.18,127–134.
Thomas,R.H.1993:Icesheets.InR.J.Gurneyetal.(eds.):
22
Atlasofsatelliteobservationsrelatedtoglobalchange.Pp.
385–400.Cambridge:CambridgeUniversityPress.
Warren, S. G. 1982: Optical properties of snow. Rev. Geophys.SpacePhys.20,67–89.
Warren,S.G.,Grenfell,T.C.&Mullen,P.C.1986:Optical
propertiesofAntarcticsnow.Antarct.J.U.S.21,247-248.
Warren,S.G&Wiscombe,W.J.1980:Amodelforthespectralalbedoofsnow.II:Snowcontainingatmosphericaerosols.J.Atmos.Sci.37,2734–2745.
Winther,J.-G.1993a:Studiesofsnowsurfacecharacteristics
byLandsatTMinDronningMaudLand,Antarctica.Ann.
Glaciol.17,27–34.
Winther,J.-G.1993b:LandsatTMderivedandinsitusummer
reflectanceofglaciersinSvalbard.PolarRes.12,37–55.
Winther,J.-G.,Gerland,S.,Ørbæk,J.B.,Ivanov,B.,Blanco,
A.&Boike,J.1998:SpectralreflectivityandphysicalpropertiesofsnowandseaicenearNy-Ålesund,Svalbard.Proceedings of the 4th Ny-Ålesund Seminar the Arctic and
GlobalChange.Ravello,Italy,5-6March1998.NySMAC
Publ.7,113–116.Longyearbyen:Ny-ÅlesundScienceManagersCommittee.
Winther,J.-G.,Gerland,S.,Ørbæk,J.B.,Ivanov,B.,Blanco,
A.&Boike,J.1999:Spectralreflectanceofmeltingsnowin
ahighArcticwatershedonSvalbard:someimplicationsfor
optical satellite remote sensing studies. Hydrol. Process.
13,2033–2049.
Wiscombe, W. J. & Warren, S. G. 1980: A model for the
spectral albedo of snow. I: Pure snow. J. Atmos. Sci. 37,
2712–2733.
Zibordi,G.,Meloni,G.P.&Frezzotti,M.1996:Snowandice
reflectancespectraoftheNansenIceSheetsurfaces.Cold
Reg.Sci.Technol.24,147–151.
RadiometricinvestigationofdifferentsnowcoversinSvalbard