Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011, Nature
…
2 pages
1 file
Clive Gamble relishes the inside story on the cognitive abilities of our fossil relatives.
Journal of Anthropological Sciences, vol. 92 (2014), 2014
Philosophical Transactions of the Royal Society, London (B), 2013
Previous research has identified morphological differences between the brains of Neanderthals and anatomically modern humans (AMHs). However, studies using endocasts or the cranium itself are limited to investigating external surface features and the overall size and shape of the brain. A complementary approach uses comparative primate data to estimate the size of internal brain areas. Previous attempts to do this have generally assumed that identical total brain volumes imply identical internal organization. Here, we argue that, in the case of Neanderthals and AMHs, differences in the size of the body and visual system imply differences in organization between the same-sized brains of these two taxa. We show that Neanderthals had significantly larger visual systems than contemporary AMHs (indexed by orbital volume) and that when this, along with their greater body mass, is taken into account, Neanderthals have significantly smaller adjusted endocranial capacities than contemporary AMHs. We discuss possible implications of differing brain organization in terms of social cognition, and consider these in the context of differing abilities to cope with fluctuating resources and cultural maintenance.
Journal of Anatomy, 2008
Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300-400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species' cognitive and linguistic abilities.
Proceedings of the Royal Society B, 2013
Previous research has identified morphological differences between the brains of Neanderthals and anatomically modern humans (AMHs). However, studies using endocasts or the cranium itself are limited to investigating external surface features and the overall size and shape of the brain. A complementary approach uses comparative primate data to estimate the size of internal brain areas. Previous attempts to do this have generally assumed that identical total brain volumes imply identical internal organization. Here, we argue that, in the case of Neanderthals and AMHs, differences in the size of the body and visual system imply differences in organization between the same-sized brains of these two taxa. We show that Neanderthals had significantly larger visual systems than contemporary AMHs (indexed by orbital volume) and that when this, along with their greater body mass, is taken into account, Neanderthals have significantly smaller adjusted endocranial capacities than contemporary AMHs. We discuss possible implications of differing brain organization in terms of social cognition, and consider these in the context of differing abilities to cope with fluctuating resources and cultural maintenance.
Replacement of Neanderthals by Modern Humans Series, 2019
The planned series of volumes will report the results of a major research project entitled "Replacement of Neanderthals by Modern Humans: Testing Evolutionary Models of Learning", offering new perspectives on the process of replacement and on interactions between Neanderthals and modern humans and hence on the origins of prehistoric modern cultures. The projected volumes will present the diverse achievements of research activities, originally designed to implement the project's strategy, in the fields of archaeology, paleoanthropology, cultural anthropology, population biology, earth sciences, developmental psychology, biomechanics, and neuroscience. Comprehensive research models will be used to integrate the discipline-specific research outcomes from those various perspectives. The series, aimed mainly at providing a set of multidisciplinary perspectives united under the overarching concept of learning strategies, will include monographs and edited collections of papers focusing on specific problems related to the goals of the project, employing a variety of approaches to the analysis of the newly acquired data sets.
Dynamics of Learning in Neanderthals and Modern Humans Volume 1, 2013
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
Journal of Human Evolution, 2004
Cognitive neuropsychology, cognitive anthropology, and cognitive archaeology are combined to yield a picture of Neandertal cognition in which expert performance via long-term working memory is the centerpiece of problem solving. This component of Neandertal cognition appears to have been modern in scope. However, Neandertals' working memory capacity, which is the ability to hold a variety of information in active attention, may not have been as large as that of modern humans. This characteristic helps us understand features of the archaeological record, such as the rarity of innovation, and allows us to make empirically based speculations about Neandertal personality.
Wiley Interdisciplinary Reviews: Cognitive Science, 2010
This discussion of archeology of cognition is concerned primarily with the evolutionary emergence of the cognition particular to modern humans but there is an implication for the evolution of cognition among modern humans. Archeological evidence can provide important insights into the evolutionary emergence of human cognition, but theoretical considerations are fundamental in understanding what sorts of cognition there might have been between the ape-like common ancestor and modern humans. Archeology is the only source of evidence for the behavior associated with such theoretical stages. Cognitive archeology, therefore, involves an iterative interaction between theory from outside archeology and more or less direct evidence from the past. This review considers the range of possible evidence from archeology and genetics and summarizes some of the results of analysis of nonhuman primates particularly to assess characteristics of the last common ancestor (LCA) of apes and humans. The history of changes in size and shape of the brain since separation from other apes introduces the need to assess the appropriate cognitive theories to interpret such evidence. The review concentrates on two such approaches: Baddeley's working memory model as interpreted by Coolidge and Wynn, and Barnard's interacting cognitive subsystems as it has been elaborated to define the cognitive conditions for hominins between the LCA and modern people. Most of the rest of the review considers how the evidence from stone tools might be consistent with such theoretical models of cognition. This evidence is consistent with views that modern human behavior only emerged in the last 100,000 years (or so) but it gives an explanation for that in terms of cognition. understanding the evolution of human cognition. Finally, I assess the most abundant behavioral evidence from the past-stone tools-to shed light on how the theoretical models of cognitive evolution played out in the real world of the past.
In David B. Kronenfeld, Giovanni Bennardo, Victor C. De Munck & Michael Fischer (eds.), A companion to cognitive anthropology. Oxford: Wiley-Blackwell, 450-467, 2011
Acta Aquatica: Aquatic Sciences Journal, 2016
Acta historica et archaeologica mediaevalia, 1997
Nutrition Reviews, 2014
От полугроша к шиллингу. «Черные шиллинги» Риги 1623 г. //Русь, Литва, Орда в памятниках нумизматики и сфрагистики. – М., – стр. 310-314., 2023
Die Welt des Orients, 2015
Statistics and Computing, 2014
Journal of Couple & Relationship Therapy
Journal of Applied Sciences, 2013
Biotechnology and Bioengineering, 2012
Acta Crystallographica Section C Crystal Structure Communications, 1996
Journal of the Korean Wood Science and Technology
Asian Academy of Management Journal, 2023
Liebigs Annalen, 1996
Journal of Physics: Conference Series, 2019