Journal of
Clinical Medicine
Review
Sarcoidosis-Related Uveitis: A Review
Stéphane Giorgiutti 1,2 , Robin Jacquot 3,4 , Thomas El Jammal 3,4,5 , Arthur Bert 3,4 , Yvan Jamilloux 3,4 ,
Laurent Kodjikian 6,7 and Pascal Sève 3,4,8,9, *
1
2
3
4
5
6
7
8
9
*
Citation: Giorgiutti, S.; Jacquot, R.; El
Jammal, T.; Bert, A.; Jamilloux, Y.;
Kodjikian, L.; Sève, P. Sarcoidosis-
Department of Clinical Immunology and Internal Medicine, National Center for Systemic Autoimmune
Diseases (CNR RESO), Strasbourg University Hospital, 67000 Strasbourg, France
INSERM UMR-S1109, Université de Strasbourg, 67000 Strasbourg, France
Department of Internal Medicine, Croix-Rousse University Hospital, Hospices Civils de Lyon,
69004 Lyon, France
Faculté de Médecine et de Maïeutique Lyon-Sud—Charles Mérieux, Lyon, Université de Lyon,
69000 Lyon, France
Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, IBCP, University of Lyon,
69007 Lyon, France
Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon,
69004 Lyon, France
UMR5510 MATEIS, CNRS, INSA Lyon, Université de Lyon 1, 69100 Villeurbanne, France
Pôle IMER, Hospices Civils de Lyon, 69002 Lyon, France
The Health Services and Performance Research (EA 7425 HESPER), Université de Lyon, 69003 Lyon, France
Correspondence:
[email protected]; Tel.: +33-426-732-630; Fax: +33-426-732-637
Abstract: Sarcoidosis is an inflammatory disease that involves the eyes in 10–55% of cases, sometimes
without systemic involvement. All eye structures can be affected, but uveitis is the most common
ocular manifestation and causes vision loss. The typical ophthalmological appearance of these uveitis
is granulomatous (in cases with anterior involvement), which are usually bilateral and with synechiae.
Posterior involvement includes vitritis, vasculitis and choroidal lesions. Tuberculosis is a classic
differential diagnosis to be wary of, especially in people who have spent time in endemic areas. The
diagnosis is based on histology with the presence of non-caseating epithelioid granulomas. However,
due to the technical difficulty and yield of biopsies, the diagnosis of ocular sarcoidosis is often based
on clinico-radiological features. The international criteria for the diagnosis of ocular sarcoidosis have
recently been revised. Corticosteroids remain the first-line treatment for sarcoidosis, but up to 30% of
patients require high doses, justifying the use of corticosteroid-sparing treatments. In these cases,
immunosuppressive treatments such as methotrexate may be introduced. More recent biotherapies
such as anti-TNF are also very effective (as they are in other non-infectious uveitis etiologies).
Related Uveitis: A Review. J. Clin.
Med. 2023, 12, 3194. https://doi.org/
Keywords: sarcoidosis; uveitis; ocular sarcoidosis; granuloma
10.3390/jcm12093194
Academic Editor: Gerard Espinosa
Received: 16 March 2023
1. Introduction
Revised: 24 April 2023
Sarcoidosis is a complex and heterogeneous granulomatous systemic inflammatory
disease. The characteristic histological lesion is the presence of non-caseating epithelioid
giant cell granulomas in the tissues. The first clinical description dates from the second
half of the 19th century and is due to Sir Jonathan Hutchinson [1]. However, to date, the
pathophysiology of the disease remains poorly understood. It could be at the crossroads
of inflammatory processes induced by environmental factors, particularly infectious ones
such as Cutibacterium acnes, on a predisposing genetic terrain [2,3]. The ACCESS study
revealed a familial risk of sarcoidosis with an estimated odds ratio of 5.8 (confidence
interval confidence interval [CI]: 2.1–15.9) for siblings and 3.8 (95% CI: 1.2–11.3) for first
degree relatives [4]. More recently, in two studies from Northern Europe, the heritability of
sarcoidosis has been estimated at between 39 and 66% [5,6]. The typical involvement of
the disease is thoracic with the presence of mediastinal lymph nodes +/− parenchymal
lung involvement. Ten to fifty-five percent of patients develop ophthalmological damage,
Accepted: 26 April 2023
Published: 29 April 2023
Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
J. Clin. Med. 2023, 12, 3194. https://doi.org/10.3390/jcm12093194
https://www.mdpi.com/journal/jcm
J. Clin. Med. 2023, 12, 3194
2 of 20
making the eye the primary extra-thoracic organ affected [7–11]. All ocular tissues can
be affected, including the lacrymal glands and the optic nerve [12–16]. Sarcoid uveitis,
which is the subject of this review, is the most common ocular condition in sarcoidosis
and can be sight-threatening, particularly in the case of posterior involvement [17]. It
affects up to 20–30% of sarcoidosis patients [18]. This review will focus on the most
recent data, including the classification criteria for sarcoidosis-associated uveitis from the
Standardization of Uveitis Nomenclature (SUN) working group and the recommendations
for the management of ocular sarcoidosis from the International Workshop on Ocular
Sarcoidosis (IWOS).
2. Epidemiology
Globally, sarcoidosis incidence ranges from 0.48 to 11.4 cases per 100,000 people per
year [19]. African Americans have the higher incidence of sarcoidosis, reaching 17.8 per
100,000 per year [20,21]. The prevalence of ocular sarcoidosis varies from 10–50% in
Caucasian studies [22–26]. Ocular sarcoidosis is more prevalent in Asian population. In
Japan, sarcoidosis has become the leading cause of uveitis, accounting for approximately
15% of all cases [10,27]. Data regarding ocular sarcoidosis in Africans Americans are scarce;
however, compared with Caucasians, these patients seem to be younger at ophthalmological
presentation with uveitis and/or adnexal granuloma [28]. Uveitis remains the most frequent
ocular condition apart from sicca syndrome [29]. In a population of patients with uveitis,
the prevalence of sarcoidosis depends on demographic factors (age, gender, ethnicity), the
diagnostic investigations employed (i.e., positron emission tomography) and the type of
recruitment (tertiary care center or not) [28,28–31]. Sarcoidosis accounts for 2 to 17% of
cases of uveitis referred to a tertiary center [32–36]. Uveitis is the presenting feature of
sarcoidosis in 60–80% of cases [37–39]. Sarcoidosis uveitis as a manifestation of the disease
remains a strictly ocular disease in more than three-quarters of cases [38,40].
3. Phenotypes of Patients with Sarcoid Uveitis
Two phenotypes are classically described: The first one concerns young subjects from
20 to 30 years old of varied ethnic origin, with more often acute uveitis associated with extraophthalmological manifestations. The second involves mostly women over 50 years of age
of European origin, with more frequently isolated chronic uveitis [41,42]. We have recently
identified a third cluster of patients corresponding to patients of European origin that is
older than the first group; here, the proportion of acute and chronic uveitis is equivalent
and the visual prognosis is better than in the classic cluster of young patients [43]. However,
these studies are conducted in European countries and should be interpreted with caution
for other populations.
Using cluster analysis, Schupp et al. showed an association of ocular, cardiac, skin
and central nervous system manifestations [7]. In accordance, Van Swol et al. recently
reported that 16% of the patients with ocular sarcoidosis had signs of cardiac sarcoidosis
on electrocardiogram at the time of their ocular sarcoidosis diagnosis [44]. In contrast,
in our center, we showed that out of 294 patients with sarcoid uveitis only 2.4% of them
developed cardiac involvement [45]. Niederer et al. also reported 4.4% of cardiac sarcoid
in their retrospective cohort of sarcoid uveitis [39]. However, special attention should be
paid to patients with previously diagnosed sarcoidosis or those who develop systemic
sarcoidosis during follow-up.
4. Clinical Manifestations of Sarcoid Uveitis
Uveitis is defined as inflammation of the uveal tract. In sarcoidosis, uveitis can be of
any anatomical type: anterior, intermediate, posterior or panuveitis [46]. Anterior uveitis is
by far the most common, accounting for 41–81% of sarcoid uveitis [8,47]. Of note, in tertiary
centers, which manage the most severe forms, panuveitis is the most frequent presentation
in studies [37,38,48]. It is typically bilateral and granulomatous with a symmetrical course
in both eyes; however, it remains unilateral in up to 25% of cases [29,49]. The SUN working
J. Clin. Med. 2023, 12, 3194
3 of 20
group published classification criteria for sarcoid uveitis in 2021 [50]. The IWOS group
also proposed seven ophthalmological signs suggestive of sarcoid uveitis and specific
classification criteria [51]. The 2020 American Thoracic Society recommendations suggest
a systematic ophthalmological examination of any patient with sarcoidosis, even in the
absence of ophthalmological symptoms [52]. However, the level of evidence remains low,
and a recent prospective study of 49 patients in the US did not identify a benefit for the
screening of asymptomatic patients [53].
4.1. Anterior Uveitis
Anterior uveitis can be acute (with an abrupt onset and duration of less than three
months) but is more often chronic (prolonged with relapses less than three months after
cessation of treatment) [54]. The inflammation takes the form of an iritis, iridocyclitis or
anterior hyalitis [54]. Uveitis may be associated with increased intraocular pressure, either
due to the ocular inflammation itself or caused by the treatment [50,55]. Typically, there are
anterior (between the cornea and the iris) and posterior synechiae (between the iris and
the lens) [50]. Sarcoid uveitis is most often granulomatous, which is characterized by large
tt
mutton-fat keratic precipitates or iridal nodules located either at the pupil margin (Koeppe
nodules) or in the iridal stroma (Busacca nodules) (Figure 1). However, granulomatous
uveitis is not pathognomonic of sarcoidosis, as other etiologies such as tuberculosis can
also be characterized by granulomatous uveitis. Furthermore, in some studies, more
than half of the patients have non-granulomatous uveitis, especially in cases of Löfgren
syndrome [28,50,56].
Figure 1. Acute granulomatous anterior uveitis with active retrodescemetic precipitates (white arrows).
4.2. Intermediate Uveitis
In intermediate uveitis, inflammation occurs mainly in the vitreous humor as pars
planitis, posterior cyclitis or hyalitis [54,57]. Intermediate uveitis is most often idiopathic,
but sarcoidosis accounts for 7–18% of this anatomical type of uveitis, making it a common
etiology along with multiple sclerosis [35,58,59]. The most common features of intermediate
uveitis in sarcoidosis are vitreous “snowballs” that may be organized into a “string of
pearls”. The leading cause of vision loss in patients with intermediate uveitis is cystoid
macular edema, followed by vitreous opacity, epiretinal membrane, optic neuritis and
glaucoma [58].
J. Clin. Med. 2023, 12, 3194
4 of 20
4.3. Posterior Uveitis
Posterior uveitis concern inflammation involving the retina and/or choroid [46]. Fundus examination is a key part of the clinical examination, but the use of additional examinations such as optical coherence tomography (OCT) and angiography are very useful.
Posterior uveitis accounts for 5–28% of ocular sarcoidosis [28,29,47,49,60]. Although less
common than anterior involvement, it is more threatening to the patient’s vision [61].
Authentic choroidal granulomas in peripheral retina or around the optic nerve have been
described but multifocal choroiditis (Figure 2) is much more common [50,62,63]. Both
lesions can evolve into atrophic scars of the pigmentary epithelium. Retinal and pre-retinal
nodules have rarely been reported as the sole posterior manifestations of ocular sarcoidosis without choroidal involvement [64]. In severe forms, these granulomas can lead to
exudative retinal detachment [65]. OCT/angiography may be useful to visualize changes
in granuloma formation and to assess microvascular and perfusion impairments [66,67].
Indeed, retinal vasculitis is often associated with sarcoidosis. Ten to seventeen percent of
patients suffer
ff from periphlebitis [50]. The classic perivascular sheathing and infiltrates,
called “candle wax dripping”, is rare and can sometimes only be identified by fluorescein
angiography [12]. This condition is classically seen in the acute phase of uveitis and is
usually associated with a poorer visual prognosis and more frequent relapses [68]. Some
vasculitis are associated with vascular occlusions (especially venous) that may be complicated by retinal neovascularization in up to 5% of cases (in association with ischemia and
chronic inflammation) [69]. Arterial involvement in sarcoidosis is scarce [70].
Figure 2. Central and peripheral bilateral multifocal choroiditis.
4.4. Panuveitis
Panuveitis affects all structures of the eye and combines all the lesions we have
already described [46]. They are the most common form of uveitis in tertiary centers
and are estimated to represent 37% of sarcoid uveitis by the SUN working group [29,50].
Sarcoidosis is the most frequently systemic disease associated with panuveitis, ahead of
tuberculosis and Behçet’s disease [35,71,72].
ff
J. Clin. Med. 2023, 12, 3194
5 of 20
4.5. Ocular Complications
Even anterior uveitis can lead to ocular complications, including band keratopathy,
cataract and glaucoma. These complications are both secondary to the inflammatory process
and also iatrogenic under corticosteroids [41]. More seriously, cystoid macular edema
(Figure 3) is the main cause of vision loss in sarcoid uveitis [37]. Epiretinal membranes
may occur in cases of severe vitreoretinal inflammation and may be responsible for retinal
traction, resulting in retinal tears and rhegmatogenous retinal detachment [73].
Figure 3. Cystoid macular edema in spectral domain by optical coherence tomography.
5. Diagnostic Approach
5.1. Sarcoidosis: A Challenging Diagnosis
Again, no clinical feature of the uveitis is specific to sarcoidosis. From a strictly ophthalmological point of view, a diagnosis of uveitis must always lead to the elimination of a
masquerade syndrome with particularly serious consequences, especially in the case of lymphoma [74,75]. Furthermore, granulomatous uveitis are also associated with tuberculosis,
syphilis, multiple sclerosis, Vogt–Koyanagi–Harada syndrome, toxoplasmosis and herpetic
uveitis [76]. Choroidal granulomas are often seen in tuberculosis, making this infectious
disease a challenging differential diagnosis [77,78]. No “simple” marker is available to
ff
make the diagnosis of sarcoidosis and therefore systemic investigations are required. The
gold standard for the diagnosis of sarcoidosis is histological evidence of non-caseating
epithelioid giant-cell granulomas [79]. However, intraocular tissue biopsy is associated
with the risk of potentially sight-threatening lesions. Furthermore, the diagnostic value
of blind conjunctival biopsies remains controversial [80–82]. In practice, the diagnosis of
sarcoid uveitis is therefore frequently based on a combination of clinical and paraclinical
data. International criteria for the diagnosis of ocular sarcoidosis were proposed in 2009 as
a result of the first IWOS [83]. Revised criteria were then proposed in 2017 (Figure 4),
as the original criteria had low sensitivity, with the exception of bilateral hilar adenopathy [51]. In addition to definite sarcoidosis still requiring histological evidence, the group
defined presumed ocular sarcoidosis in the presence of bilateral hilar adenopathies and
probable ocular sarcoidosis in the absence of these adenopathies [51]. More recently, a SUN
working group has proposed diagnostic criteria for 25 uveitis entities including sarcoidosis
uveitis (Table 1) that combines a compatible ophthalmological presentation with evidence
of sarcoidosis (in the form of histological evidence or adenopathy) [50].
In all cases of uveitis, a minimal work-up should be performed with a blood count,
C-reactive protein, syphilis serology and tuberculin skin tests (or IFN-γ release assays,
γ IGRA is an exclusion
IGRA) and chest imaging [84]. In addition, a positive tuberculin test or
criteria in the SUN classification [50]. Nevertheless, 12% of patients with sarcoid uveitis
meeting the inclusion criteria had a positive IGRA in France, a low-endemic country
for tuberculosis [85]. Empirical anti-tuberculosis therapy should be started in doubtful
cases [86].
J. Clin. Med. 2023, 12, 3194
6 of 20
Figure 4. Revised diagnostic criteria for ocular sarcoidosis (OS) as recommended by the “International
Workshop on Ocular Sarcoidosis (IWOS)”, adapted from [51]. Abbreviations: BHL: bilateral hilar
lymphadenopathy; ACE: angiotensin converting enzyme; OS: ocular sarcoidosis.
Table 1. Classification criteria for sarcoid uveitis as recommended by the “Standardization of Uveitis
Nomenclature (SUN)”, reprinted from Standardization of Uveitis Nomenclature (SUN) Working
Group Classification Criteria for Sarcoidosis-Associated Uveitis. Am. J. Ophthalmol. 2021 [50], with
permission from Elsevier.
Criteria
1.
Compatible uveitic picture, either:
a.
b.
c.
d.
Anterior uveitis or
Intermediate or anterior/intermediate uveitis or
Posterior uveitis with either choroiditis (paucifocal choroidal nodule(s) or multifocal
choroiditis) or
Panuveitis with choroiditis or retinal vascular sheathing or retinal vascular occlusion.
AND
2.
Evidence of sarcoidosis, either:
a.
b.
Exclusions
1.
2.
Tissue biopsy demonstrating non-caseating granulomata or
Bilateral hilar adenopathy on chest imaging.
γ
Positive serology for syphilis using a treponemal test.
Evidence of infection with Mycobacterium tuberculosis a , either:
a.
Histologically or microbiologically confirmed infection with M. tuberculosis b or
b.
Positive interferon-γ release assay (IGRA) c or
c.
Positive tuberculin skin test d
a Routine exclusion of tuberculosis is not required in areas where tuberculosis is non-endemic but should be
performed in areas where tuberculosis is endemic or in tuberculosis-exposed patients. With evidence of latent
tuberculosis in a patient with a uveitic syndrome compatible with either sarcoidosis or tubercular uveitis and
bilateral hilar adenopathy, the classification as sarcoid uveitis can be made only with biopsy confirmation of
sarcoidosis (and therefore exclusion of tuberculosis). b For example, biopsy, fluorochrome stain, culture or
polymerase-chain-reaction-based assay. c For example, Quantiferon-gold or T-spot. d For example, a purifiedprotein-derivative skin test positive result should be >10 mm induration.
J. Clin. Med. 2023, 12, 3194
7 of 20
5.2. In Search of Serum Predictive Biomarkers for Sarcoidosis
To date, no biomarker is robust enough to make a diagnosis of sarcoidosis (Table 2).
Anti-retinal antibodies have been described in ocular sarcoidosis as in other types of uveitis;
however, their sensitivity and specificity currently remain insufficient to recommend
them [87]. A simple biological finding, lymphopenia, appears in the 2017 IWOS criteria [51].
In the population with a first episode of uveitis, Groen-Hakan et al. showed the sensitivity and specificity of lymphopenia to be 75% and 77%, respectively, taking a cut-off of
1.5 × 109 /L [88]. Angiotensin-converting enzyme (ACE) is probably the best known and
most used marker described in the 1970s [89]. The sensitivity varies among the series from
38.2–84% and the specificity from 83–97.8% for ACE [84,90,91]. The large variability in
the sensitivity of ACE is probably due to different thresholds for positivity in different
studies. In a retrospective study of 709 patients with undifferentiated uveitis, 43 subjects
(6.1%) had high serum ACE. Of these, 29 (67.4%) had systemic sarcoidosis [91]. In addition,
patients treated with ACE inhibitors have uninterpretable results [92]. The combination of
elevated serum ACE and lymphopenia more convincingly suggests sarcoid uveitis than
these investigational tests alone, especially in patients with granulomatous uveitis (positive
predictive value of 73.3%), whereas the absence of these markers corresponds to a high
negative predictive value (negative predictive value of 89.5%) [93]. The serum lysozyme
assay has an estimated sensitivity of 60–78% and a specificity of 76–95% [84]. However,
lysozyme may be increased in patients with latent tuberculosis and latent syphilis, and
its interpretation alone should be treated with caution [94]. The other studied markers of
sarcoidosis are not available in clinical routine. Nevertheless, we can mention the soluble
interleukin-2 receptor (sIL-2R) [95]. In patients with ocular sarcoidosis, this marker would
have better sensitivity (69.2 to 94%) and specificity (64 to 98%) than ACE [95–98]. sIL-2R
may correlate with disease activity and predict relapse after treatment discontinuation [99].
Other biomarkers are being investigated in sarcoidosis such as chitotriosidase and Krebs
von den Lungen (KL-6); however, in the absence of clinical implications, they will not be
detailed here [100–102]. All of these serum biomarkers alone are insufficient to make a
diagnosis of sarcoidosis, and it is their combination with morphological examinations that
increases the diagnostic efficiency [42,103].
Table 2. Diagnostic performances of the main biomarkers available in ocular sarcoidosis.
Biomarker
Test Performance
Comments
References
Lymphopenia *
Se: 0.75
Sp: 0.77
PPV: 0.48
NPV: 0.85
Increased Sp (0.97) with 1000/mm3 cut-off.
Increased Sp (0.99) and PPV (0.73) with
elevated ACE.
Easily accessible and non-invasive.
[88,93,104]
Elevated ACE *
(>52–61 UI/I)
Se: 0.38–0.84
Sp: 0.83–0.98
PPV: 0.44
NPV: 0.89–0.97
Highly specific.
Interesting to rule out OS diagnosis NPV (0.97).
Uninterpretable if patient uses ACE inhibitors.
[84,90,91,93]
Lysozyme *
Se: 0.6–0.78
Sp: 0.76–0.95
High lysozyme levels can be found in
infectious uveitis (tuberculosis, latent syphilis).
[84,94]
sIL-2R
(Threshold according to
manufacturer)
Se: 0.69–0.94
Sp: 0.64–0.98
PPV: 0.77
NPV: 0.99
The best test performance.
No validated threshold.
Not validated in revised IWOS criteria.
[95–98]
Chitotriosidase activity
No data in sarcoidosis uveitis.
Elevated in systemic sarcoidosis and
pulmonary diseases (COPD, asbestosis).
[102]
Abbreviations: Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive
value; sIL-2R: soluble interleukin-2 receptor; ACE: angiotensin-converting enzyme; OS: ocular sarcoidosis;
COPD: chronic obstructive pulmonary disease. * Biomarker included in the IWOS criteria.
J. Clin. Med. 2023, 12, 3194
8 of 20
5.3. Imaging Modalities
Chest CT is probably the most frequently used imaging test in sarcoidosis screening at
present, supplanting chest X-rays [105]. Parenchymal lung abnormalities consistent with
sarcoidosis are now included in the IWOS criteria for ocular sarcoidosis, provided that
imaging is reviewed by specialized pulmonologists or radiologists [51]. More recently,
nuclear imaging with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG
PET) has become an imaging modality of choice in the diagnosis and management of
sarcoidosis, although large-scale prospective studies will be needed to clarify its place in
the diagnostic work-up [106]. 18F-FDG PET would be of interest: (1) in cases of suspected
extra-pulmonary involvement, such as neurosarcoidosis or cardiac sarcoidosis, where it
can help to define a target for biopsy, (2) in cases of pulmonary fibrosis to assess active
lesions that may regress with anti-inflammatory treatment, (3) in cardiac sarcoidosis to
assess the response to treatment (cardiac 18F-FDG-PET), (4) in the most complex cases
to assess the therapeutic response and the relapse risk [107]. Older age at diagnosis, the
presence of posterior synechiae and increased ACE levels are significantly associated with
an abnormal 18F-FDG PET [108,109]. In this study, although chest CT was normal, 30% of
patients with suspected sarcoid uveitis had hypermetabolic foci on 18F-FDG PET [109]. We
must, however, remain cautious about the contribution of 18F-FDG PET in comparison
with chest CT, particularly in the differential diagnosis with ocular tuberculosis, where
conflicting data exist in tuberculosis endemic areas [110].
5.4. Invasive Investigations
Several studies have reported the value of bronchoalveolar lavage (BAL) for the
diagnosis of sarcoid uveitis [25]. The sensitivity of BAL is estimated at 63% in patients with
histologically proven sarcoidosis, whereas the specificity is 75% [94]. Lymphocytic alveolitis
(>15%) with a predominance of CD4 T cells (ratio CD4/CD8 > 3.5) can be demonstrated
even in the absence of radiological abnormalities [25,60,111,112]. However, the biopsy
is never positive in cases with a normal CT scan [111]. Other studies have reported that
CD4/CD8 ratios in other biological fluids (e.g., vitreous fluid) were significantly higher
in patients with sarcoidosis compared with other causes of uveitis. [8,113,114]. Work such
as that by De Simone et al. is attempting to identify cytokine profiles in the aqueous
humor to guide the diagnosis between sarcoidosis and tuberculosis [115]. Proteomic
analysis of vitreous humor samples in ocular sarcoidosis are also performed in search of
new biomarkers [116]. However, the highly invasive nature of this type of sample will
limit its widespread use. Minor salivary gland biopsy (MSGB) is not mentioned in the
revised IWOS criteria. The diagnostic performance of which is low in ocular sarcoidosis
with a sensitivity of 5.2 and 3%, respectively, in studies [117,118]. Furthermore, MSGB
does not exclude tuberculosis, which is an integral part of the differential diagnosis of
granuloma on MSGB [119,120]. Therefore, MSBG should only be considered in patients
with elevated serum ACE or compatible CT abnormalities, where its performance is slightly
better [118]. Endobronchial ultrasound-guided transbronchial lymph node aspiration has a
good performance in the diagnosis of sarcoidosis in general [121]. However, very few data
are available for ocular sarcoidosis [122].
5.5. An Algorithm for the Assessment of Patients with Suspected Sarcoid Uveitis
To sum up, our group has proposed a diagnostic strategy with simple or non-invasive
biological and radiological investigations that can be followed by the more complex investigations required if there is posterior segment involvement worsening the visual prognosis
or an indication for systemic treatment (Figure 5) [74].
J. Clin. Med. 2023, 12, 3194
9 of 20
Figure 5. Diagnostic algorithm for suspected ocular sarcoidosis adapted from [74,123]. Abbreviations: ACE: angiotensin-converting enzyme; BAL: bronchoalveolar lavage; EBUS: endoscopic
ultrasound-guided fine-needle aspiration of intrathoracic nodes; IGRA: interferon-γ
γ release assay;
MSGB: minor salivary-gland biopsy; OS: ocular sarcoidosis; 18F-FDG PET: 18-fluorodeoxyglucose
positron emission tomography.
6. Visual Prognosis of Sarcoid Uveitis
The visual prognosis for ocular sarcoid uveitis is generally good [124]. Fewer than 10% of
patients have severe visual impairment, defined as visual acuity below 20/200 [37,38,125,126].
Complications of ocular inflammation are very frequent, in particular cataracts, which affect
up to 73% of patients
depending on the study [124,127]. In the report by Suzuki et al.,
ff
cataract occurred in 62.2% of cases, glaucoma in 28.5%, epiretinal membrane in 24.1% and
cystoid macular edema in 22.6% [124]. Nevertheless, the main cause of vision loss remains
cystoid macular edema (as a consequence of uveitis) [37]. Several risk factors have been
associated with poor functional prognosis such as a late-age onset, an African American
origin, female sex, underlying chronic systemic sarcoidosis, posterior segment involvement,
chronic cystoid macular edema, multifocal choroiditis, persistent ocular inflammation and
glaucoma [12,28,38,41,124,128]. In a French tertiary center, slightly more than a quarter of the
patients recover from their disease; two variables are associated with this favorable outcome:
a Caucasian origin and an anterior location of the uveitis [40]. For women of childbearing
age, the evolution during pregnancy seems reassuring even if few data exist. Our recent
retrospective work suggests that it evolves in the same way as other uveitis (i.e., with a
decreased frequency of relapses in the last trimester) [129].
7. Treatments
The level of evidence in the literature on the management of sarcoid uveitis is low
and is mainly based on small retrospective studies [123]. The recent recommendations of
the European Respiratory Society (ERS), based on the GRADE methodology and drafted
with a committee of clinicians, methodologists and patients, did not take a position on the
J. Clin. Med. 2023, 12, 3194
10 of 20
tt
treatment of ocular sarcoidosis. Indeed, the expert group judged that the scientific data
ffi
remained insufficient
at the moment, with a particular absence of a study specific to ocular
sarcoidosis [130]. In contrast, the therapeutic management of sarcoid uveitis was discussed
during the 7th IWOS and recommendations according to anatomical type, based on the
opinion of 13 experts, were published in 2020 [131]. The treatment of uveitis is medical, but
surgery may be necessary to treat complications such as cataract or glaucoma [18,132]. In
cases of epiretinal membrane with decreased visual acuity despite good control of ocular
inflammation, vitrectomy with membranectomy may be beneficial [133]. Local or systemic
corticosteroid therapy is the cornerstone of treatment for sarcoid uveitis. In refractory or
cortico-dependent forms, immunosuppressive or biological treatment is sometimes used.
In observational studies, almost all patients receive local treatment, whereas 45–70% require systemic treatment either because of ocular involvement or systemic disease [123].
We will detail the management according to the anatomical type of uveitis and discuss
immunosuppressants and biological treatments (Figure 6).
Figure 6. Therapeutic management in ocular sarcoidosis adapted from [123]. Abbreviations: ON: optic neuritis; ME: macular edema; ORV: occlusive retinal vasculitis; MTX: methotrexate; AZA: azathioprine; MMF: mycophenolate mofetil; LFN: leflunomide; RTX: rituximab; TCZ: tocilizumab;
JAKi: Janus kinase inhibitor; IV: intravenous.
J. Clin. Med. 2023, 12, 3194
11 of 20
7.1. Anterior Uveitis
Local treatment is the first-line treatment for anterior uveitis [131]. Topical ophthalmic solutions are often combined with mydriatic/cycloplegic agents to limit synechia.
Second-line treatments include corticosteroid eye drops, dexamethasone subconjunctival
injection, triamcinolone acetonide periocular injection and, as a last resort, systemic corticosteroids [131]. Systemic corticosteroid therapy is only appropriate as a second-line
treatment for severe anterior uveitis [131].
7.2. Intermediate and Posterior Uveitis
The decision to treat intermediate and posterior uveitis depends not only on symptomatology but also on visual acuity and anatomical involvement such as macular edema,
severity of retinal vasculitis or active choroiditis [131]. Topical corticosteroids are not
efficient in treating the posterior segment [134,135]. According to the IWOS experts, intermediate uveitis (uni- or bilateral) can be treated locally (periocular, intravitreal, implant)
or with systemic steroids [131]. The MUST trial, which compared systemic treatment in
intermediate and posterior non-infectious uveitis with dexamethasone intravitreal implants, showed no difference in visual acuity at 24 months [136]. However, this study
was not specific to sarcoidosis. Systemic treatment is preferred in cases of severe bilateral
involvement, severe glaucoma and in young phakic patients. The first-line treatment of
active posterior uveitis (macular edema, papillary nodules/granulomas, periphlebitis, peripheral chorioretinal lesions, choroidal nodules) includes systemic corticosteroid therapy
alone or in combination with an immunosuppressive therapy and local corticosteroid
therapy [131]. Argon laser photocoagulation is required for retinal ischaemia, whereas
intravitreal injections of anti-vascular endothelial growth factor (VEGF) in combination
with anti-inflammatory therapy is the treatment for choroidal neovascularization [18].
In practice, dexamethasone intravitreal implants (Ozurdex® , Abbvie, North Chicago,
IL, USA) are currently taking over from subconjunctival injections with a duration of action
of 4–6 months compared with 3 weeks [134,137,138]. Fluocinolone acetonide intravitreal
implants (Iluvien® Alimera Sciences Inc., Alpharetta, GA, USA) cover a period of 3 years
and could decrease the frequency of non-infectious uveitis [139]. However, no specific
data on sarcoidosis exist to our knowledge. The dosage of systemic corticosteroids ranges
from 0.5–1 mg/kg up to a maximum of 80 mg/d, with an initial treatment of 2–4 weeks
before starting a 3–6 month taper according to IWOS experts [131]. In the most severe
forms of uveitis, the use of intravenous corticosteroid pulses can be discussed, but the level
of evidence remains low [140,141].
7.3. Immunosuppressive Agents and Biologics
In 5–27% of cases, cortisone-sparing therapy is required, either because of highdose corticosteroid dependence (more than 7.5–10 mg/day of prednisone equivalent
needed to control the disease) or because of the side effects of systemic corticosteroid
therapy [37,49,55]. The IWOS recommendations include the use of methotrexate, azathioprine, mycophenolate mofetil and ciclosporin. Biologics are then used as third-line
therapies if necessary, particularly in the case of posterior uveitis [131]. The choice of the
immunosuppressive agent must be made in agreement with the patient after discussion of
their comorbidities and life plans (particularly the desire for pregnancy in young women).
In general, methotrexate remains the cortisone-sparing treatment for which there is the most
data on sarcoidosis in the literature [130]. In a single-center retrospective study of 50 patients with sarcoidosis, Baughman et al. showed a response in two-thirds of patients after
six months of treatment [142]. The same author, from the largest ocular sarcoidosis series
(465 patients), reported that methotrexate was both effective (77% of 365 treated patients
were still on methotrexate at the end of follow-up whereas only 7% had discontinued treatment due to ineffectiveness) and well tolerated (3.8% discontinued for toxicity) [143]. In the
same series, azathioprine had similar efficacy but was less well tolerated: of the 68 patients
treated, 46 (67.7%) were still on treatment at the end of the follow-up whereas 13 (19.1%) had
J. Clin. Med. 2023, 12, 3194
12 of 20
stopped it due to toxicity [143]. Studies on mycophenolate mofetil are very scarce, limited
to a small series of seven patients by Bhat et al. and case reports [144,145]. Leclercq et al.
compared the efficacy of several immunosuppressants for the treatment of sarcoid uveitis
affecting the posterior segment in a two-center study including 67 patients. The comparison
of first-line treatments showed superiority of MTX over MMF in terms of risk of relapse
and adverse events [146]. Data on cyclosporine are anecdotal, even though it is used in
Japan [147,148]. Leflunomide has also been reported as an alternative to methotrexate in
cases of intolerance. Recently, our team reported the use of hydroxychloroquine (HCQ)
for the treatment of sarcoid uveitis despite the potential ocular toxicity of antimalarials.
In a retrospective series of 27 patients, HCQ (mean duration of treatment of 20 months)
resulted in a significant reduction in systemic corticosteroid therapy and the number of
relapses. However, HCQ was discontinued in 12 patients during follow-up, including 8 for
ineffectiveness [149]. Its use could be particularly interesting in anterior and intermediate
uveitis, but larger prospective studies will first need to confirm the results [149]. Altogether,
initial resistance to corticosteroids and conventional immunosuppressants should rule out
non-compliance, infectious granulomatosis or lymphoma before initiating treatment with
biologics [150].
The reference biological treatments are anti-TNF [131]. Paradoxically, there are cases
of drug-induced sarcoid uveitis with anti-TNF in patients with rheumatoid arthritis, ankylosing spondylitis and juvenile idiopathic arthritis [151,152]. Adalimumab is often the first
choice because it is administered subcutaneously, allowing for outpatient management. In
practice, infliximab is often reserved as a second-line treatment but may be used in cases of
doubtful compliance. Three randomized trials have confirmed the efficacy of adalimumab
in non-infectious uveitis but without subgroup analysis in sarcoidosis [153–155]. These
studies have shown a significant reduction in the risk of treatment failure, defined as recurrence of ocular inflammation, in patients treated with adalimumab. Of note, adalimumab
was not more effective in the subgroup of patients receiving concomitant immunosuppressive therapy [153]. After failure of a conventional immunosuppressant, infliximab appears
to have similar efficacy and safety to adalimumab [156]. In contrast, in a retrospective study
from the same group, infliximab appears to be more effective than adalimumab for the
treatment of vision-threatening uveitis, particularly in Behçet’s disease [157]. Etanercept
should probably not be used in uveitis due to a lower response rate than other anti-TNF
agents [158]. Sarcoidosis uveitis is no exception to this rule, and the work of Baughman
et al. found no efficacy of this drug [159]. Further studies will also be needed to position
certolizumab pegol and golimumab in the therapeutic arsenal [160–163]
The use of other biotherapies is more exceptional in sarcoid uveitis [164]. Tocilizumab,
an IL-6 receptor inhibitor, was shown to improve visual acuity and reduced foveal thickness in non-anterior uveitis in the randomized open-label study STOP [165]. This drug
shows interesting efficacy on macular edema [166]. The BIOVASC retrospective study,
which included 29 cases of sarcoidosis among the 149 uveitis cases included, recently
demonstrated superior efficacy of TCZ compared with anti-TNF-α in the treatment of
refractory macular edema in terms of inflammatory response, with no difference in relapse and cortisone sparing [167]. Several authors have shown the efficacy of the Janus
kinase (JAK) inhibitors tofacitinib or ruxolitinib in pulmonary and cutaneous sarcoidosis
refractory to other drugs [168]. We report an observation of paradoxical sarcoidosis panuveitis induced by adalimumab in the context of rheumatoid arthritis. Although the uveitis
and inflammatory rheumatism remained active upon discontinuation of anti-TNFα, the
ocular inflammation and mediastino-hilar adenopathy disappeared with tofacitinib treatment [169]. Tofacitinib is currently being tested in non-infectious uveitis (NCT03580343).
J. Clin. Med. 2023, 12, 3194
13 of 20
8. Conclusions
Sarcoidosis is one of the most common causes of uveitis. Uveitis is the most common
ophthalmological involvement in sarcoidosis, hence the requirement for knowledge on
ophthalmological semiology in the management of sarcoidosis. The ophthalmic symptomatology should be known not only by ophthalmologists but also by all specialists dealing
with patients with sarcoidosis. A close collaboration between the different specialists is
necessary for both diagnosis and therapeutic management. Larger prospective studies are
still needed to improve the level of evidence for the recommendations on the management
of sarcoid uveitis.
Author Contributions: Writing—review and editing was performed by all authors (S.G., R.J., T.E.J.,
A.B., Y.J., L.K. and P.S.). All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Spagnolo, P. Sarcoidosis: A Critical Review of History and Milestones. Clin. Rev. Allergy Immunol. 2015, 49, 1–5. [CrossRef]
[PubMed]
Grunewald, J.; Grutters, J.C.; Arkema, E.V.; Saketkoo, L.A.; Moller, D.R.; Müller-Quernheim, J. Sarcoidosis. Nat. Rev. Dis. Primers
2019, 5, 45. [CrossRef] [PubMed]
Eishi, Y. Potential Association of Cutibacterium Acnes with Sarcoidosis as an Endogenous Hypersensitivity Infection. Microorganisms
2023, 11, 289. [CrossRef]
Rybicki, B.A.; Iannuzzi, M.C.; Frederick, M.M.; Thompson, B.W.; Rossman, M.D.; Bresnitz, E.A.; Terrin, M.L.; Moller, D.R.;
Barnard, J.; Baughman, R.P.; et al. Familial Aggregation of Sarcoidosis. A Case-Control Etiologic Study of Sarcoidosis (ACCESS).
Am. J. Respir. Crit. Care Med. 2001, 164, 2085–2091. [CrossRef] [PubMed]
Sverrild, A.; Backer, V.; Kyvik, K.O.; Kaprio, J.; Milman, N.; Svendsen, C.B.; Thomsen, S.F. Heredity in Sarcoidosis: A RegistryBased Twin Study. Thorax 2008, 63, 894–896. [CrossRef]
Rossides, M.; Grunewald, J.; Eklund, A.; Kullberg, S.; Di Giuseppe, D.; Askling, J.; Arkema, E.V. Familial Aggregation and
Heritability of Sarcoidosis: A Swedish Nested Case-Control Study. Eur. Respir. J. 2018, 52, 1800385. [CrossRef]
Schupp, J.C.; Freitag-Wolf, S.; Bargagli, E.; Mihailović-Vučinić, V.; Rottoli, P.; Grubanovic, A.; Müller, A.; Jochens, A.; Tittmann, L.;
Schnerch, J.; et al. Phenotypes of Organ Involvement in Sarcoidosis. Eur. Respir. J. 2018, 51, 1700991. [CrossRef]
Baughman, R.P.; Teirstein, A.S.; Judson, M.A.; Rossman, M.D.; Yeager, H.; Bresnitz, E.A.; DePalo, L.; Hunninghake, G.; Iannuzzi,
M.C.; Johns, C.J.; et al. Clinical Characteristics of Patients in a Case Control Study of Sarcoidosis. Am. J. Respir. Crit. Care Med.
2001, 164, 1885–1889. [CrossRef]
Khanna, A.; Sidhu, U.; Bajwa, G.; Malhotra, V. Pattern of Ocular Manifestations in Patients with Sarcoidosis in Developing
Countries. Acta Ophthalmol. Scand. 2007, 85, 609–612. [CrossRef]
Morimoto, T.; Azuma, A.; Abe, S.; Usuki, J.; Kudoh, S.; Sugisaki, K.; Oritsu, M.; Nukiwa, T. Epidemiology of Sarcoidosis in Japan.
Eur. Respir. J. 2008, 31, 372–379. [CrossRef]
Hattori, T.; Konno, S.; Shijubo, N.; Yamaguchi, T.; Sugiyama, Y.; Honma, S.; Inase, N.; Ito, Y.M.; Nishimura, M. Nationwide Survey
on the Organ-Specific Prevalence and Its Interaction with Sarcoidosis in Japan. Sci. Rep. 2018, 8, 9440. [CrossRef]
Rothova, A. Ocular Involvement in Sarcoidosis. Br. J. Ophthalmol. 2000, 84, 110–116. [CrossRef] [PubMed]
Prabhakaran, V.C.; Saeed, P.; Esmaeli, B.; Sullivan, T.J.; McNab, A.; Davis, G.; Valenzuela, A.; Leibovitch, I.; Kesler, A.; SivakCallcott, J.; et al. Orbital and Adnexal Sarcoidosis. Arch. Ophthalmol. 2007, 125, 1657–1662. [CrossRef] [PubMed]
Pasadhika, S.; Rosenbaum, J.T. Ocular Sarcoidosis. Clin. Chest Med. 2015, 36, 669–683. [CrossRef] [PubMed]
Koczman, J.J.; Rouleau, J.; Gaunt, M.; Kardon, R.H.; Wall, M.; Lee, A.G. Neuro-Ophthalmic Sarcoidosis: The University of Iowa
Experience. Semin. Ophthalmol. 2008, 23, 157–168. [CrossRef]
Yates, W.B.; McCluskey, P.J.; Fraser, C.L. Neuro-Ophthalmological Manifestations of Sarcoidosis. J. Neuroimmunol. 2022, 367,
577851. [CrossRef]
Niederer, R.L.; Sharief, L.; Tomkins-Netzer, O.; Lightman, S.L. Uveitis in Sarcoidosis-Clinical Features and Comparison with
Other Non-Infectious Uveitis. Ocul. Immunol. Inflamm. 2023, 31, 367–373. [CrossRef] [PubMed]
Bodaghi, B.; Touitou, V.; Fardeau, C.; Chapelon, C.; LeHoang, P. Ocular Sarcoidosis. Presse Med. 2012, 41, e349–e354. [CrossRef]
J. Clin. Med. 2023, 12, 3194
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
14 of 20
Arkema, E.V.; Cozier, Y.C. Sarcoidosis Epidemiology: Recent Estimates of Incidence, Prevalence and Risk Factors. Curr. Opin.
Pulm. Med. 2020, 26, 527–534. [CrossRef]
Baughman, R.P.; Field, S.; Costabel, U.; Crystal, R.G.; Culver, D.A.; Drent, M.; Judson, M.A.; Wolff, G. Sarcoidosis in America.
Analysis Based on Health Care Use. Ann. Am. Thorac. Soc. 2016, 13, 1244–1252. [CrossRef]
Duchemann, B.; Annesi-Maesano, I.; Jacobe de Naurois, C.; Sanyal, S.; Brillet, P.-Y.; Brauner, M.; Kambouchner, M.; Huynh, S.;
Naccache, J.M.; Borie, R.; et al. Prevalence and Incidence of Interstitial Lung Diseases in a Multi-Ethnic County of Greater Paris.
Eur. Respir. J. 2017, 50, 1602419. [CrossRef] [PubMed]
Cardoso, A.V.; Mota, P.C.; Melo, N.; Guimarães, S.; Souto Moura, C.; Jesus, J.M.; Cunha, R.; Morais, A. Analysis of Sarcoidosis in
the Oporto Region (Portugal). Rev. Port. Pneumol. 2017, 23, 251–258. [CrossRef] [PubMed]
Pérez-Alvarez, R.; Brito-Zerón, P.; Kostov, B.; Feijoo-Massó, C.; Fraile, G.; Gómez-de-la-Torre, R.; De-Escalante, B.; López-Dupla,
M.; Alguacil, A.; Chara-Cervantes, J.; et al. Systemic Phenotype of Sarcoidosis Associated with Radiological Stages. Analysis of
1230 Patients. Eur. J. Intern. Med. 2019, 69, 77–85. [CrossRef]
Jabs, D.A.; Johns, C.J. Ocular Involvement in Chronic Sarcoidosis. Am. J. Ophthalmol. 1986, 102, 297–301. [CrossRef]
Obenauf, C.D.; Shaw, H.E.; Sydnor, C.F.; Klintworth, G.K. Sarcoidosis and Its Ophthalmic Manifestations. Am. J. Ophthalmol. 1978,
86, 648–655. [CrossRef]
Crick, R.P.; Hoyle, C.; Smellie, H. THE EYES IN SARCOIDOSIS. Br. J. Ophthalmol. 1961, 45, 461–481. [CrossRef]
Kitamei, H.; Kitaichi, N.; Namba, K.; Kotake, S.; Goda, C.; Kitamura, M.; Miyazaki, A.; Ohno, S. Clinical Features of Intraocular
Inflammation in Hokkaido, Japan. Acta Ophthalmol. 2009, 87, 424–428. [CrossRef]
Evans, M.; Sharma, O.; LaBree, L.; Smith, R.E.; Rao, N.A. Differences in Clinical Findings between Caucasians and African
Americans with Biopsy-Proven Sarcoidosis. Ophthalmology 2007, 114, 325–333. [CrossRef] [PubMed]
Jamilloux, Y.; Kodjikian, L.; Broussolle, C.; Sève, P. Sarcoidosis and Uveitis. Autoimmun. Rev. 2014, 13, 840–849. [CrossRef]
Ungprasert, P.; Tooley, A.A.; Crowson, C.S.; Matteson, E.L.; Smith, W.M. Clinical Characteristics of Ocular Sarcoidosis: A
Population-Based Study 1976–2013. Ocul. Immunol. Inflamm. 2019, 27, 389–395. [CrossRef]
Tsirouki, T.; Dastiridou, A.; Symeonidis, C.; Tounakaki, O.; Brazitikou, I.; Kalogeropoulos, C.; Androudi, S. A Focus on the
Epidemiology of Uveitis. Ocul. Immunol. Inflamm. 2018, 26, 2–16. [CrossRef]
Luca, C.; Raffaella, A.; Sylvia, M.; Valentina, M.; Fabiana, V.; Marco, C.; Annamaria, S.; Luisa, S.; Alessandro, D.F.; Lucia, B.; et al.
Changes in Patterns of Uveitis at a Tertiary Referral Center in Northern Italy: Analysis of 990 Consecutive Cases. Int. Ophthalmol.
2018, 38, 133–142. [CrossRef] [PubMed]
Hermann, L.; Falcão-Reis, F.; Figueira, L. Epidemiology of Uveitis in a Tertiary Care Centre in Portugal. Semin. Ophthalmol. 2021,
36, 51–57. [CrossRef] [PubMed]
Bajwa, A.; Osmanzada, D.; Osmanzada, S.; Khan, I.; Patrie, J.; Xin, W.; Reddy, A.K. Epidemiology of Uveitis in the Mid-Atlantic
United States. Clin. Ophthalmol. 2015, 9, 889–901. [CrossRef]
Bertrand, P.-J.; Jamilloux, Y.; Ecochard, R.; Richard-Colmant, G.; Gerfaud-Valentin, M.; Guillaud, M.; Denis, P.; Kodjikian, L.;
Sève, P. Uveitis: Autoimmunity . . . and Beyond. Autoimmun. Rev. 2019, 18, 102351. [CrossRef] [PubMed]
Bro, T.; Tallstedt, L. Epidemiology of Uveitis in a Region of Southern Sweden. Acta Ophthalmol. 2020, 98, 32–35. [CrossRef]
Ma, S.P.; Rogers, S.L.; Hall, A.J.; Hodgson, L.; Brennan, J.; Stawell, R.J.; Lim, L.L. Sarcoidosis-Related Uveitis: Clinical Presentation,
Disease Course, and Rates of Systemic Disease Progression After Uveitis Diagnosis. Am. J. Ophthalmol. 2019, 198, 30–36.
[CrossRef]
Rochepeau, C.; Jamilloux, Y.; Kerever, S.; Febvay, C.; Perard, L.; Broussolle, C.; Burillon, C.; Kodjikian, L.; Seve, P. Long-Term
Visual and Systemic Prognoses of 83 Cases of Biopsy-Proven Sarcoid Uveitis. Br. J. Ophthalmol. 2017, 101, 856–861. [CrossRef]
[PubMed]
Niederer, R.L.; Ma, S.P.; Wilsher, M.L.; Ali, N.Q.; Sims, J.L.; Tomkins-Netzer, O.; Lightman, S.L.; Lim, L.L. Systemic Associations
of Sarcoid Uveitis: Correlation with Uveitis Phenotype and Ethnicity. Am. J. Ophthalmol. 2021, 229, 169–175. [CrossRef] [PubMed]
Bienvenu, F.-H.; Tiffet, T.; Maucort-Boulch, D.; Gerfaud-Valentin, M.; Kodjikian, L.; Perard, L.; Burillon, C.; Durel, C.-A.; Hot, A.;
Jamilloux, Y.; et al. Factors Associated with Ocular and Extraocular Recovery in 143 Patients with Sarcoid Uveitis. J. Clin. Med.
2020, 9, 3894. [CrossRef]
Rothova, A.; Alberts, C.; Glasius, E.; Kijlstra, A.; Buitenhuis, H.J.; Breebaart, A.C. Risk Factors for Ocular Sarcoidosis. Doc.
Ophthalmol. 1989, 72, 287–296. [CrossRef] [PubMed]
Febvay, C.; Kodjikian, L.; Maucort-Boulch, D.; Perard, L.; Iwaz, J.; Jamilloux, Y.; Broussolle, C.; Burillon, C.; Seve, P. Clinical
Features and Diagnostic Evaluation of 83 Biopsy-Proven Sarcoid Uveitis Cases. Br. J. Ophthalmol. 2015, 99, 1372–1376. [CrossRef]
[PubMed]
Fermon, C.; El-Jammal, T.; Kodjikian, L.; Burillon, C.; Hot, A.; Pérard, L.; Mathis, T.; Jamilloux, Y.; Sève, P. Identification
of Multidimensional Phenotypes Using Cluster Analysis in Sarcoid Uveitis Patients. Am. J. Ophthalmol. 2022, 242, 107–115.
[CrossRef] [PubMed]
Van Swol, J.M.; Hawkins, E.T.; Joseph, E.D.; Nguyen, S.A.; Anderson, R.J.; Thompson, E.B.; Perry, L.J.; Sandhu, H.S. Cardiac
Screening and Disease Characteristics of Patients with Ocular Sarcoidosis. Ocul. Immunol. Inflamm. 2022; in press. [CrossRef]
Richard, M.; Jamilloux, Y.; Courand, P.-Y.; Perard, L.; Durel, C.-A.; Hot, A.; Burillon, C.; Durieu, I.; Gerfaud-Valentin, M.;
Kodjikian, L.; et al. Cardiac Sarcoidosis Is Uncommon in Patients with Isolated Sarcoid Uveitis: Outcome of 294 Cases. J. Clin.
Med. 2021, 10, 2146. [CrossRef] [PubMed]
J. Clin. Med. 2023, 12, 3194
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
15 of 20
Standardization of Uveitis Nomenclature (SUN) Working Group Development of Classification Criteria for the Uveitides. Am. J.
Ophthalmol. 2021, 228, 96–105. [CrossRef]
Birnbaum, A.D.; French, D.D.; Mirsaeidi, M.; Wehrli, S. Sarcoidosis in the National Veteran Population: Association of Ocular
Inflammation and Mortality. Ophthalmology 2015, 122, 934–938. [CrossRef]
Reid, G.; Williams, M.; Compton, M.; Silvestri, G.; McAvoy, C. Ocular Sarcoidosis Prevalence and Clinical Features in the Northern
Ireland Population. Eye 2022, 36, 1918–1923. [CrossRef]
Coulon, C.; Kodjikian, L.; Rochepeau, C.; Perard, L.; Jardel, S.; Burillon, C.; Broussolle, C.; Jamilloux, Y.; Seve, P. Ethnicity and
Association with Ocular, Systemic Manifestations and Prognosis in 194 Patients with Sarcoid Uveitis. Graefes Arch. Clin. Exp.
Ophthalmol. 2019, 257, 2495–2503. [CrossRef]
Standardization of Uveitis Nomenclature (SUN) Working Group Classification Criteria for Sarcoidosis-Associated Uveitis. Am. J.
Ophthalmol. 2021, 228, 220–230. [CrossRef]
Mochizuki, M.; Smith, J.R.; Takase, H.; Kaburaki, T.; Acharya, N.R.; Rao, N.A.; International Workshop on Ocular Sarcoidosis
Study Group. Revised Criteria of International Workshop on Ocular Sarcoidosis (IWOS) for the Diagnosis of Ocular Sarcoidosis.
Br. J. Ophthalmol. 2019, 103, 1418–1422. [CrossRef]
Crouser, E.D.; Maier, L.A.; Wilson, K.C.; Bonham, C.A.; Morgenthau, A.S.; Patterson, K.C.; Abston, E.; Bernstein, R.C.; Blankstein,
R.; Chen, E.S.; et al. Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline.
Am. J. Respir. Crit. Care Med. 2020, 201, e26–e51. [CrossRef] [PubMed]
Lee, J.; Zaguia, F.; Minkus, C.; Koreishi, A.F.; Birnbaum, A.D.; Goldstein, D.A. The Role of Screening for Asymptomatic Ocular
Inflammation in Sarcoidosis. Ocul. Immunol. Inflamm. 2022, 30, 1936–1939. [CrossRef] [PubMed]
Jabs, D.A.; Nussenblatt, R.B.; Rosenbaum, J.T.; Standardization of Uveitis Nomenclature (SUN) Working Group Standardization
of Uveitis Nomenclature for Reporting Clinical Data. Results of the First International Workshop. Am. J. Ophthalmol. 2005, 140,
509–516. [CrossRef] [PubMed]
Edelsten, C.; Pearson, A.; Joynes, E.; Stanford, M.R.; Graham, E.M. The Ocular and Systemic Prognosis of Patients Presenting
with Sarcoid Uveitis. Eye 1999, 13 Pt 6, 748–753. [CrossRef]
Grumet, P.; Kerever, S.; Gilbert, T.; Kodjikian, L.; Gerfaud-Valentin, M.; De Parisot, A.; Jamilloux, Y.; Sève, P. Clinical and Etiologic
Characteristics of de Novo Uveitis in Patients Aged 60 Years and above: Experience of a French Tertiary Center. Graefes Arch. Clin.
Exp. Ophthalmol. 2019, 257, 1971–1979. [CrossRef]
Standardization of Uveitis Nomenclature (SUN) Working Group Classification Criteria for Pars Planitis. Am. J. Ophthalmol. 2021,
228, 268–274. [CrossRef]
Ness, T.; Boehringer, D.; Heinzelmann, S. Intermediate Uveitis: Pattern of Etiology, Complications, Treatment and Outcome in a
Tertiary Academic Center. Orphanet. J. Rare Dis. 2017, 12, 81. [CrossRef]
Jones, N.P. The Manchester Uveitis Clinic: The First 3000 Patients–Epidemiology and Casemix. Ocul. Immunol. Inflamm. 2015, 23,
118–126. [CrossRef]
Heiligenhaus, A.; Wefelmeyer, D.; Wefelmeyer, E.; Rösel, M.; Schrenk, M. The Eye as a Common Site for the Early Clinical
Manifestation of Sarcoidosis. Ophthalmic Res. 2011, 46, 9–12. [CrossRef]
Dana, M.R.; Merayo-Lloves, J.; Schaumberg, D.A.; Foster, C.S. Prognosticators for Visual Outcome in Sarcoid Uveitis. Ophthalmology
1996, 103, 1846–1853. [CrossRef]
Hage, D.G.; Wahab, C.H.; Kheir, W.J. Choroidal Sarcoid Granuloma: A Case Report and Review of the Literature. J. Ophthalmic
Inflamm. Infect. 2022, 12, 31. [CrossRef] [PubMed]
Oyeniran, E.; Katz, D.; Kodati, S. Isolated Optic Disc Granuloma as a Presenting Sign of Sarcoidosis. Ocul. Immunol. Inflamm.
2022; in press. [CrossRef]
de Saint Sauveur, G.; Gratiot, C.; Debieb, A.C.; Monnet, D.; Brézin, A.P. Retinal and Pre-Retinal Nodules: A Rare Manifestation of
Probable Ocular Sarcoidosis. Am. J. Ophthalmol. Case Rep. 2022, 26, 101525. [CrossRef] [PubMed]
Campo, R.V.; Aaberg, T.M. Choroidal Granuloma in Sarcoidosis. Am. J. Ophthalmol. 1984, 97, 419–427. [CrossRef] [PubMed]
Cerquaglia, A.; Iaccheri, B.; Fiore, T.; Fruttini, D.; Belli, F.B.; Khairallah, M.; Lupidi, M.; Cagini, C. New Insights on Ocular
Sarcoidosis: An Optical Coherence Tomography Angiography Study. Ocul. Immunol. Inflamm. 2019, 27, 1057–1066. [CrossRef]
Usui, Y.; Goto, H. Granuloma-like Formation in Deeper Retinal Plexus in Ocular Sarcoidosis. Clin. Ophthalmol. 2019, 13, 895–896.
[CrossRef]
Lezrek, O.; El Kaddoumi, M.; Cherkaoui, O. “Candle Wax Dripping” Lesions in Sarcoidosis. JAMA Ophthalmol. 2017, 135, e171845.
[CrossRef]
Fajnkuchen, F.; Badelon, I.; Battesti, J.P.; Valeyre, D.; Chaine, G. Retinal vascularization in sarcoidosis. Presse Med. 2000, 29,
1801–1806.
Vongkulsiri, S.; Vanichseni, S.; Choontanom, R.; Keorochana, N. Characteristics, Etiology, and Clinical Outcome of Retinal
Vasculitis in Tertiary Hospital in Thailand. Ocul. Immunol. Inflamm. 2023; in press. [CrossRef]
Zaidi, A.A.; Ying, G.-S.; Daniel, E.; Gangaputra, S.; Rosenbaum, J.T.; Suhler, E.B.; Thorne, J.E.; Foster, C.S.; Jabs, D.A.; Levy-Clarke,
G.A.; et al. Hypopyon in Patients with Uveitis. Ophthalmology 2010, 117, 366–372. [CrossRef]
Ohguro, N.; Sonoda, K.-H.; Takeuchi, M.; Matsumura, M.; Mochizuki, M. The 2009 Prospective Multi-Center Epidemiologic
Survey of Uveitis in Japan. Jpn. J. Ophthalmol. 2012, 56, 432–435. [CrossRef]
J. Clin. Med. 2023, 12, 3194
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
16 of 20
Lobo, A.; Barton, K.; Minassian, D.; du Bois, R.M.; Lightman, S. Visual Loss in Sarcoid-Related Uveitis. Clin. Exp. Ophthalmol.
2003, 31, 310–316. [CrossRef]
Sève, P.; Cacoub, P.; Bodaghi, B.; Trad, S.; Sellam, J.; Bellocq, D.; Bielefeld, P.; Sène, D.; Kaplanski, G.; Monnet, D.; et al. Uveitis:
Diagnostic Work-up. A Literature Review and Recommendations from an Expert Committee. Autoimmun. Rev. 2017, 16,
1254–1264. [CrossRef] [PubMed]
Akpek, E.K.; Ahmed, I.; Hochberg, F.H.; Soheilian, M.; Dryja, T.P.; Jakobiec, F.A.; Foster, C.S. Intraocular-Central Nervous System
Lymphoma: Clinical Features, Diagnosis, and Outcomes. Ophthalmology 1999, 106, 1805–1810. [CrossRef]
Cowan, C.L. Review for Disease of the Year: Differential Diagnosis of Ocular Sarcoidosis. Ocul. Immunol. Inflamm. 2010, 18,
442–451. [CrossRef] [PubMed]
Mehta, S.; Peters, R.P.; Smit, D.P.; Gupta, V. Ocular Tuberculosis in HIV-Infected Individuals. Ocul. Immunol. Inflamm. 2020, 28,
1251–1258. [CrossRef] [PubMed]
Babu, K.; Biswas, J.; Agarwal, M.; Mahendradas, P.; Bansal, R.; Rathinam, S.R.; Basu, S.; Ganesh, S.K.; Konana, V.K.; Vedhanayaki,
R.; et al. Diagnostic Markers in Ocular Sarcoidosis in A High TB Endemic Population-A Multicentre Study. Ocul. Immunol.
Inflamm. 2022, 30, 163–167. [CrossRef] [PubMed]
Heinle, R.; Chang, C. Diagnostic Criteria for Sarcoidosis. Autoimmun. Rev. 2014, 13, 383–387. [CrossRef] [PubMed]
Crick, R.; Hoyle, C.; Mather, G. Conjunctival Biopsy in Sarcoidosis. Br. Med. J. 1955, 2, 1180–1181. [CrossRef]
Spaide, R.F.; Ward, D.L. Conjunctival Biopsy in the Diagnosis of Sarcoidosis. Br. J. Ophthalmol. 1990, 74, 469–471. [CrossRef]
Zina, S.; Khairallah, M.; Ben Amor, H.; Ksiaa, I.; Hadhri, R.; Attia, S.; Khochtali, S.; Khairallah, M. Conjunctival granulomas
leading to the diagnosis of systemic sarcoidosis. J. Fr. Ophtalmol. 2022, 45, e67–e69. [CrossRef]
Herbort, C.P.; Rao, N.A.; Mochizuki, M.; Members of Scientific Committee of First International Workshop on Ocular Sarcoidosis.
International Criteria for the Diagnosis of Ocular Sarcoidosis: Results of the First International Workshop On Ocular Sarcoidosis
(IWOS). Ocul. Immunol. Inflamm. 2009, 17, 160–169. [CrossRef]
Grumet, P.; Kodjikian, L.; de Parisot, A.; Errera, M.-H.; Sedira, N.; Heron, E.; Pérard, L.; Cornut, P.-L.; Schneider, C.; Rivière, S.;
et al. Contribution of Diagnostic Tests for the Etiological Assessment of Uveitis, Data from the ULISSE Study (Uveitis: Clinical
and Medicoeconomic Evaluation of a Standardized Strategy of the Etiological Diagnosis). Autoimmun. Rev. 2018, 17, 331–343.
[CrossRef] [PubMed]
Garneret, E.; Jamilloux, Y.; Gerfaud-Valentin, M.; Kodjikian, L.; Trad, S.; Sève, P. Prevalence of Positive QuantiFERON-TB Test
among Sarcoid Uveitis Patients and Its Clinical Implications in a Country Non-Endemic for Tuberculosis. Ocul. Immunol. Inflamm.
2022; in press. [CrossRef]
Amara, A.; Ben Salah, E.; Guihot, A.; Fardeau, C.; Touitoue, V.; Saadoun, D.; Bodaghi, B.; Sève, P.; Trad, S. Observational study of
QuantiFERON® management for ocular tuberculosis diagnosis: Analysis of 244 consecutive tests. Rev. Med. Interne 2021, 42,
162–169. [CrossRef] [PubMed]
Avendaño-Monje, C.L.; Cordero-Coma, M.; Mauriz, J.L.; Calleja-Antolín, S.; Fonollosa, A.; Garrote Llordén, A.; Martin GarcíaSancho, J.; Sánchez-Salazar, M.I.; Ruiz de Morales, J.G. Anti-Retinal Antibodies in Sarcoidosis. Ocul. Immunol. Inflamm. 2022; in
press. [CrossRef]
Groen-Hakan, F.; Eurelings, L.; Rothova, A.; van Laar, J. Lymphopaenia as a Predictor of Sarcoidosis in Patients with a First
Episode of Uveitis. Br. J. Ophthalmol. 2019, 103, 1296–1300. [CrossRef] [PubMed]
Lieberman, J. Elevation of Serum Angiotensin-Converting-Enzyme (ACE) Level in Sarcoidosis. Am. J. Med. 1975, 59, 365–372.
[CrossRef]
Niederer, R.L.; Al-Janabi, A.; Lightman, S.L.; Tomkins-Netzer, O. Serum Angiotensin-Converting Enzyme Has a High Negative
Predictive Value in the Investigation for Systemic Sarcoidosis. Am. J. Ophthalmol. 2018, 194, 82–87. [CrossRef]
Niederer, R.L.; Sims, J.L. Utility of Screening Investigations for Systemic Sarcoidosis in Undifferentiated Uveitis. Am. J. Ophthalmol.
2019, 206, 149–153. [CrossRef]
d’Alessandro, M.; Bergantini, L.; Perrone, A.; Cameli, P.; Cameli, M.; Prasse, A.; Plataroti, D.; Sestini, P.; Bargagli, E. Serial
Investigation of Angiotensin-Converting Enzyme in Sarcoidosis Patients Treated with Angiotensin-Converting Enzyme Inhibitor.
Eur. J. Intern. Med. 2020, 78, 58–62. [CrossRef]
Cotte, P.; Pradat, P.; Kodjikian, L.; Jamilloux, Y.; Seve, P. Diagnostic Value of Lymphopaenia and Elevated Serum ACE in Patients
with Uveitis. Br. J. Ophthalmol. 2020, 105, 1399–1404. [CrossRef]
Sahin, O.; Ziaei, A.; Karaismailoğlu, E.; Taheri, N. The Serum Angiotensin Converting Enzyme and Lysozyme Levels in Patients
with Ocular Involvement of Autoimmune and Infectious Diseases. BMC Ophthalmol. 2016, 16, 19. [CrossRef]
Gundlach, E.; Hoffmann, M.M.; Prasse, A.; Heinzelmann, S.; Ness, T. Interleukin-2 Receptor and Angiotensin-Converting Enzyme
as Markers for Ocular Sarcoidosis. PLoS ONE 2016, 11, e0147258. [CrossRef]
Suzuki, K.; Namba, K.; Mizuuchi, K.; Iwata, D.; Ito, T.; Hase, K.; Kitaichi, N.; Ishida, S. Validation of Systemic Parameters for the
Diagnosis of Ocular Sarcoidosis. Jpn. J. Ophthalmol. 2021, 65, 191–198. [CrossRef]
Groen-Hakan, F.; Eurelings, L.; ten Berge, J.C.; van Laar, J.; Ramakers, C.R.B.; Dik, W.A.; Rothova, A. Diagnostic Value of
Serum-Soluble Interleukin 2 Receptor Levels vs Angiotensin-Converting Enzyme in Patients with Sarcoidosis-Associated Uveitis.
JAMA Ophthalmol. 2017, 135, 1352–1358. [CrossRef] [PubMed]
J. Clin. Med. 2023, 12, 3194
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
17 of 20
Ishihara, M.; Meguro, A.; Ishido, M.; Takeuchi, M.; Shibuya, E.; Mizuki, N. Usefulness of Combined Measurement of Serum
Soluble IL-2R and Angiotensin-Converting Enzyme in the Detection of Uveitis Associated with Japanese Sarcoidosis. Clin.
Ophthalmol. 2020, 14, 2311–2317. [CrossRef] [PubMed]
Vorselaars, A.D.M.; Verwoerd, A.; van Moorsel, C.H.M.; Keijsers, R.G.M.; Rijkers, G.T.; Grutters, J.C. Prediction of Relapse after
Discontinuation of Infliximab Therapy in Severe Sarcoidosis. Eur. Respir. J. 2014, 43, 602–609. [CrossRef] [PubMed]
Bergantini, L.; Bianchi, F.; Cameli, P.; Mazzei, M.A.; Fui, A.; Sestini, P.; Rottoli, P.; Bargagli, E. Prognostic Biomarkers of Sarcoidosis:
A Comparative Study of Serum Chitotriosidase, ACE, Lysozyme, and KL-6. Dis. Markers 2019, 2019, 8565423. [CrossRef]
Di Francesco, A.M.; Verrecchia, E.; Sicignano, L.L.; Massaro, M.G.; Antuzzi, D.; Covino, M.; Pasciuto, G.; Richeldi, L.; Manna, R.
The Use of Chitotriosidase as a Marker of Active Sarcoidosis and in the Diagnosis of Fever of Unknown Origin (FUO). J. Clin.
Med. 2021, 10, 5283. [CrossRef]
Bennett, D.; Cameli, P.; Lanzarone, N.; Carobene, L.; Bianchi, N.; Fui, A.; Rizzi, L.; Bergantini, L.; Cillis, G.; d’Alessandro, M.; et al.
Chitotriosidase: A Biomarker of Activity and Severity in Patients with Sarcoidosis. Respir. Res. 2020, 21, 6. [CrossRef]
Birnbaum, A.D.; Oh, F.S.; Chakrabarti, A.; Tessler, H.H.; Goldstein, D.A. Clinical Features and Diagnostic Evaluation of BiopsyProven Ocular Sarcoidosis. Arch. Ophthalmol. 2011, 129, 409–413. [CrossRef]
Jones, N.P.; Tsierkezou, L.; Patton, N. Lymphopenia as a Predictor of Sarcoidosis in Patients with Uveitis. Br. J. Ophthalmol. 2016,
100, 1393–1396. [CrossRef]
Zhang, Y.; Du, S.-S.; Zhao, M.-M.; Li, Q.-H.; Zhou, Y.; Song, J.-C.; Chen, T.; Shi, J.-Y.; Jie, B.; Li, W.; et al. Chest High-Resolution
Computed Tomography Can Make Higher Accurate Stages for Thoracic Sarcoidosis than X-Ray. BMC Pulm. Med. 2022, 22, 146.
[CrossRef]
Vender, R.J.; Aldahham, H.; Gupta, R. The Role of PET in the Management of Sarcoidosis. Curr. Opin. Pulm. Med. 2022, 28,
485–491. [CrossRef] [PubMed]
Nishiyama, Y.; Yamamoto, Y.; Fukunaga, K.; Takinami, H.; Iwado, Y.; Satoh, K.; Ohkawa, M. Comparative Evaluation of 18F-FDG
PET and 67Ga Scintigraphy in Patients with Sarcoidosis. J. Nucl. Med. 2006, 47, 1571–1576. [PubMed]
Rahmi, A.; Deshayes, E.; Maucort-Boulch, D.; Varron, L.; Grange, J.D.; Kodjikian, L.; Seve, P. Intraocular Sarcoidosis: Association
of Clinical Characteristics of Uveitis with Findings from 18F-Labelled Fluorodeoxyglucose Positron Emission Tomography. Br. J.
Ophthalmol. 2012, 96, 99–103. [CrossRef]
Chauvelot, P.; Skanjeti, A.; Jamilloux, Y.; de Parisot, A.; Broussolle, C.; Denis, P.; Ramackers, J.M.; Giammarile, F.; Kodjikian, L.;
Seve, P. 18F-Fluorodeoxyglucose Positron Emission Tomography Is Useful for the Diagnosis of Intraocular Sarcoidosis in Patients
with a Normal CT Scan. Br. J. Ophthalmol. 2019, 103, 1650–1655. [CrossRef]
Burger, C.; Holness, J.L.; Smit, D.P.; Griffith-Richards, S.; Koegelenberg, C.F.N.; Ellmann, A. The Role of 18F-FDG PET/CT in
Suspected Intraocular Sarcoidosis and Tuberculosis. Ocul. Immunol. Inflamm. 2021, 29, 530–536. [CrossRef]
Takahashi, T.; Azuma, A.; Abe, S.; Kawanami, O.; Ohara, K.; Kudoh, S. Significance of Lymphocytosis in Bronchoalveolar Lavage
in Suspected Ocular Sarcoidosis. Eur. Respir. J. 2001, 18, 515–521. [CrossRef] [PubMed]
Hadjadj, J.; Dechartres, A.; Chapron, T.; Assala, M.; Salah, S.; Dunogué, B.; Musset, L.; Baudin, B.; Groh, M.; Blanche, P.; et al.
Relevance of Diagnostic Investigations in Patients with Uveitis: Retrospective Cohort Study on 300 Patients. Autoimmun. Rev.
2017, 16, 504–511. [CrossRef]
Maruyama, K.; Inaba, T.; Tamada, T.; Nakazawa, T. Vitreous Lavage Fluid and Bronchoalveolar Lavage Fluid Have Equal
Diagnostic Value in Sarcoidosis. Medicine (Baltimore) 2016, 95, e5531. [CrossRef]
Kojima, K.; Maruyama, K.; Inaba, T.; Nagata, K.; Yasuhara, T.; Yoneda, K.; Sugita, S.; Mochizuki, M.; Kinoshita, S. The CD4/CD8
Ratio in Vitreous Fluid Is of High Diagnostic Value in Sarcoidosis. Ophthalmology 2012, 119, 2386–2392. [CrossRef] [PubMed]
De Simone, L.; Bonacini, M.; Aldigeri, R.; Alessandrello, F.; Mastrofilippo, V.; Gozzi, F.; Bolletta, E.; Adani, C.; Zerbini, A.;
Cavallini, G.M.; et al. Could Different Aqueous Humor and Plasma Cytokine Profiles Help Differentiate between Ocular
Sarcoidosis and Ocular Tuberculosis? Inflamm. Res. 2022, 71, 949–961. [CrossRef] [PubMed]
Komatsu, H.; Usui, Y.; Tsubota, K.; Fujii, R.; Yamaguchi, T.; Maruyama, K.; Wakita, R.; Asakage, M.; Shimizu, H.; Yamakawa, N.;
et al. Comprehensive Proteomic Profiling of Vitreous Humor in Ocular Sarcoidosis Compared with Other Vitreoretinal Diseases.
J. Clin. Med. 2022, 11, 3606. [CrossRef] [PubMed]
Blaise, P.; Fardeau, C.; Chapelon, C.; Bodaghi, B.; Le Hoang, P. Minor Salivary Gland Biopsy in Diagnosing Ocular Sarcoidosis. Br.
J. Ophthalmol. 2011, 95, 1731–1734. [CrossRef] [PubMed]
Bernard, C.; Kodjikian, L.; Bancel, B.; Isaac, S.; Broussolle, C.; Seve, P. Ocular Sarcoidosis: When Should Labial Salivary Gland
Biopsy Be Performed? Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 855–860. [CrossRef] [PubMed]
Delcey, V.; Morgand, M.; Lopes, A.; Mouly, S.; Jarrin, I.; Sellier, P.; Wassef, M.; Bergmann, J.-F. Prevalence of granulomatous lesions
in minor salivary gland biopsy in a case series of 65 patients with tuberculosis. Rev. Med. Interne 2016, 37, 80–83. [CrossRef]
[PubMed]
Handra-Luca, A. Granuloma of the Labial Minor Salivary Glands in Tuberculosis. J. Oral. Maxillofac. Pathol. 2018, 22, 150.
[CrossRef]
Crombag, L.M.M.; Mooij-Kalverda, K.; Szlubowski, A.; Gnass, M.; Tournoy, K.G.; Sun, J.; Oki, M.; Ninaber, M.K.; Steinfort, D.P.;
Jennings, B.R.; et al. EBUS versus EUS-B for Diagnosing Sarcoidosis: The International Sarcoidosis Assessment (ISA) Randomized
Clinical Trial. Respirology 2022, 27, 152–160. [CrossRef]
J. Clin. Med. 2023, 12, 3194
18 of 20
122. Sudheer, B.; Agarwal, M.; Sharma, D.; Mehta, R.; Babu, K. Role of Endobronchial Ultrasound Guided Transbronchial Needle
Aspiration in the Diagnosis of Intraocular Inflammation in India-Our Experience. Ocul. Immunol. Inflamm. 2019, 27, 995–997.
[CrossRef]
123. Sève, P.; Jamilloux, Y.; Tilikete, C.; Gerfaud-Valentin, M.; Kodjikian, L.; El Jammal, T. Ocular Sarcoidosis. Semin. Respir. Crit. Care
Med. 2020, 41, 673–688. [CrossRef]
124. Suzuki, K.; Ishihara, M.; Namba, K.; Ohno, S.; Goto, H.; Takase, H.; Kawano, S.; Shibuya, E.; Hase, K.; Iwata, D.; et al. Clinical
Features of Ocular Sarcoidosis: Severe, Refractory, and Prolonged Inflammation. Jpn. J. Ophthalmol. 2022, 66, 447–454. [CrossRef]
125. Groen, F.; Rothova, A. Ocular Involvement in Sarcoidosis. Semin. Respir. Crit. Care Med. 2017, 38, 514–522. [CrossRef]
126. Paovic, J.; Paovic, P.; Sredovic, V.; Jovanovic, S. Clinical Manifestations, Complications and Treatment of Ocular Sarcoidosis: Correlation between Visual Efficiency and Macular Edema as Seen on Optical Coherence Tomography. In Seminars in Ophthalmology;
Taylor & Francis: New York, NY, USA, 2016; pp. 202–209. [CrossRef]
127. Nagahori, K.; Keino, H.; Nakayama, M.; Watanabe, T.; Ando, Y.; Hayashi, I.; Abe, S.; Okada, A.A. Clinical Features and Visual
Outcomes of Ocular Sarcoidosis at a Tertiary Referral Center in Tokyo. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 3357–3363.
[CrossRef]
128. Stavrou, P.; Linton, S.; Young, D.W.; Murray, P.I. Clinical Diagnosis of Ocular Sarcoidosis. Eye 1997, 11 Pt 3, 365–370. [CrossRef]
129. Giorgiutti, S.; Jamilloux, Y.; Gerfaud-Valentin, M.; Bert, A.; Ballonzoli, L.; Kodjikian, L.; Korganow, A.S.; Poindron, V.; Sève, P. The
Course of Non-Infectious Uveitis in Pregnancy: A Retrospective Study of 79 Pregnancies. Graefes Arch. Clin. Exp. Ophthalmol.
2022; in press. [CrossRef]
130. Baughman, R.P.; Valeyre, D.; Korsten, P.; Mathioudakis, A.G.; Wuyts, W.A.; Wells, A.; Rottoli, P.; Nunes, H.; Lower, E.E.; Judson,
M.A.; et al. ERS Clinical Practice Guidelines on Treatment of Sarcoidosis. Eur. Respir. J. 2021, 58, 2004079. [CrossRef] [PubMed]
131. Takase, H.; Acharya, N.R.; Babu, K.; Bodaghi, B.; Khairallah, M.; McCluskey, P.J.; Tesavibul, N.; Thorne, J.E.; Tugal-Tutkun, I.;
Yamamoto, J.H.; et al. Recommendations for the Management of Ocular Sarcoidosis from the International Workshop on Ocular
Sarcoidosis. Br. J. Ophthalmol. 2020, 105, 1515–1519. [CrossRef] [PubMed]
132. Akova, Y.A.; Foster, C.S. Cataract Surgery in Patients with Sarcoidosis-Associated Uveitis. Ophthalmology 1994, 101, 473–479.
[CrossRef] [PubMed]
133. Coassin, M.; Mori, T.; Mastrofilippo, V.; Sborgia, G.; De Maria, M.; Carlà, M.M.; Di Zazzo, A.; Fontana, L.; Cimino, L. Surgical
Management of Post-Uveitic Epiretinal Membranes. Eur. J. Ophthalmol. 2021, 32, 1122–1128. [CrossRef] [PubMed]
134. Gaballa, S.A.; Kompella, U.B.; Elgarhy, O.; Alqahtani, A.M.; Pierscionek, B.; Alany, R.G.; Abdelkader, H. Corticosteroids in
Ophthalmology: Drug Delivery Innovations, Pharmacology, Clinical Applications, and Future Perspectives. Drug Deliv. Transl.
Res. 2021, 11, 866–893. [CrossRef]
135. Carbonnière, C.; Couret, C.; Blériot, A.; Lebreton, O.; Massé, H.; Le Meur, G.; Lebranchu, P.; Weber, M. Treatment of macular
edema: Comparison of efficacy and tolerability of subconjunctival triamcinolone injections, sub-tenon’s triamcinolone injections
and intravitreal dexamethasone implant. J. Fr. Ophtalmol. 2017, 40, 177–186. [CrossRef]
136. Multicenter Uveitis Steroid Treatment (MUST) Trial Research Group; Kempen, J.H.; Altaweel, M.M.; Holbrook, J.T.; Jabs, D.A.;
Louis, T.A.; Sugar, E.A.; Thorne, J.E. Randomized Comparison of Systemic Anti-Inflammatory Therapy versus Fluocinolone
Acetonide Implant for Intermediate, Posterior, and Panuveitis: The Multicenter Uveitis Steroid Treatment Trial. Ophthalmology
2011, 118, 1916–1926. [CrossRef]
137. Kim, M.; Kim, S.A.; Park, W.; Kim, R.Y.; Park, Y.-H. Intravitreal Dexamethasone Implant for Treatment of Sarcoidosis-Related
Uveitis. Adv. Ther. 2019, 36, 2137–2146. [CrossRef]
138. Iovino, C.; Mastropasqua, R.; Lupidi, M.; Bacherini, D.; Pellegrini, M.; Bernabei, F.; Borrelli, E.; Sacconi, R.; Carnevali, A.;
D’Aloisio, R.; et al. Intravitreal Dexamethasone Implant as a Sustained Release Drug Delivery Device for the Treatment of Ocular
Diseases: A Comprehensive Review of the Literature. Pharmaceutics 2020, 12, 703. [CrossRef]
139. Bodaghi, B.; Nguyen, Q.D.; Jaffe, G.; Khoramnia, R.; Pavesio, C. Preventing Relapse in Non-Infectious Uveitis Affecting the
Posterior Segment of the Eye-Evaluating the 0.2 Mg/Day Fluocinolone Acetonide Intravitreal Implant (ILUVIEN® ). J. Ophthalmic
Inflamm. Infect. 2020, 10, 32. [CrossRef] [PubMed]
140. Charkoudian, L.D.; Ying, G.; Pujari, S.S.; Gangaputra, S.; Thorne, J.E.; Foster, C.S.; Jabs, D.A.; Levy-Clarke, G.A.; Nussenblatt,
R.B.; Rosenbaum, J.T.; et al. High-Dose Intravenous Corticosteroids for Ocular Inflammatory Diseases. Ocul. Immunol. Inflamm.
2012, 20, 91–99. [CrossRef]
141. Vegas-Revenga, N.; Martín-Varillas, J.L.; Calvo-Río, V.; González-Mazón, I.; Sánchez-Bilbao, L.; Beltrán, E.; Fonollosa, A.; Maíz,
O.; Blanco, A.; Cordero-Coma, M.; et al. Intravenous Methylprednisolone Induces Rapid Improvement in Non-Infectious Uveitis:
A Multicentre Study of 112 Patients. Clin. Exp. Rheumatol. 2022, 40, 142–149. [CrossRef] [PubMed]
142. Baughman, R.P.; Lower, E.E. A Clinical Approach to the Use of Methotrexate for Sarcoidosis. Thorax 1999, 54, 742–746. [CrossRef]
143. Baughman, R.P.; Lower, E.E.; Ingledue, R.; Kaufman, A.H. Management of Ocular Sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis.
2012, 29, 26–33.
144. Bhat, P.; Cervantes-Castañeda, R.A.; Doctor, P.P.; Anzaar, F.; Foster, C.S. Mycophenolate Mofetil Therapy for Sarcoidosis-Associated
Uveitis. Ocul. Immunol. Inflamm. 2009, 17, 185–190. [CrossRef] [PubMed]
145. Nso, N.; Toz, B.; Ching, T.H.; Kondaveeti, R.; Abrudescu, A. Tattoo-Associated Sarcoidosis with Severe Uveitis Successfully
Treated with Mycophenolate Mofetil: A Report of Two Cases. Cureus 2021, 13, e17197. [CrossRef] [PubMed]
J. Clin. Med. 2023, 12, 3194
19 of 20
146. Leclercq, M.; Sève, P.; Biard, L.; Vautier, M.; Domont, F.; Maalouf, G.; Leroux, G.; Toutée, A.; Fardeau, C.; Touhami, S.; et al. Effet
bénéfique du traitement immunosuppresseur dans les uvéites non-antérieures de la sarcoïdose. Rev. Médecine Interne 2022, 43,
A97–A98. [CrossRef]
147. Maruyama, K. Current Standardized Therapeutic Approach for Uveitis in Japan. Immunol. Med. 2019, 42, 124–134. [CrossRef]
148. Baughman, R.P.; Lower, E.E. Leflunomide for Chronic Sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2004, 21, 43–48. [CrossRef]
[PubMed]
149. Bert, A.; El Jammal, T.; Kodjikian, L.; Gerfaud-Valentin, M.; Jamilloux, Y.; Seve, P. Hydroxychloroquine Therapy in SarcoidosisAssociated Uveitis. Ocul. Immunol. Inflamm. 2023, in press. [CrossRef] [PubMed]
150. Wartique, L.; Jamilloux, Y.; De Parisot De Bernecourt, A.; Kodjikian, L.; Ghesquieres, H.; Ide, C.; Sève, P. Development of
Vitreoretinal Lymphoma in a Patient with Sarcoid Uveitis. Ocul. Immunol. Inflamm. 2020, 28, 647–650. [CrossRef] [PubMed]
151. Sobolewska, B.; Baglivo, E.; Edwards, A.O.; Kramer, M.; Miserocchi, E.; Palestine, A.G.; Schwab, I.R.; Zamir, E.; Doycheva, D.;
Zierhut, M. Drug-Induced Sarcoid Uveitis with Biologics. Ocul. Immunol. Inflamm. 2022, 30, 907–914. [CrossRef] [PubMed]
152. Saifee, M.; Bansal, A.; Bever, G.J.; Stewart, J.M. Late-Onset Etanercept-Associated Ocular Sarcoidosis with Profound Vision Loss.
Ocul. Immunol. Inflamm. 2022, 30, 2055–2059. [CrossRef] [PubMed]
153. Jaffe, G.J.; Dick, A.D.; Brézin, A.P.; Nguyen, Q.D.; Thorne, J.E.; Kestelyn, P.; Barisani-Asenbauer, T.; Franco, P.; Heiligenhaus, A.;
Scales, D.; et al. Adalimumab in Patients with Active Noninfectious Uveitis. N. Engl. J. Med. 2016, 375, 932–943. [CrossRef]
154. Suhler, E.B.; Adán, A.; Brézin, A.P.; Fortin, E.; Goto, H.; Jaffe, G.J.; Kaburaki, T.; Kramer, M.; Lim, L.L.; Muccioli, C.; et al. Safety
and Efficacy of Adalimumab in Patients with Noninfectious Uveitis in an Ongoing Open-Label Study: VISUAL III. Ophthalmology
2018, 125, 1075–1087. [CrossRef]
155. Nguyen, Q.D.; Merrill, P.T.; Jaffe, G.J.; Dick, A.D.; Kurup, S.K.; Sheppard, J.; Schlaen, A.; Pavesio, C.; Cimino, L.; Van Calster, J.;
et al. Adalimumab for Prevention of Uveitic Flare in Patients with Inactive Non-Infectious Uveitis Controlled by Corticosteroids
(VISUAL II): A Multicentre, Double-Masked, Randomised, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 1183–1192.
[CrossRef]
156. Vallet, H.; Seve, P.; Biard, L.; Baptiste Fraison, J.; Bielefeld, P.; Perard, L.; Bienvenu, B.; Abad, S.; Rigolet, A.; Deroux, A.; et al.
Infliximab Versus Adalimumab in the Treatment of Refractory Inflammatory Uveitis: A Multicenter Study From the French
Uveitis Network. Arthritis Rheumatol. 2016, 68, 1522–1530. [CrossRef]
157. Maalouf, G.; Andrillon, A.; Leclercq, M.; Sève, P.; Bielefeld, P.; Gueudry, J.; Sené, T.; Titah, C.; Moulinet, T.; Rouvière, B.; et al.
Lower Relapses Rate with Infliximab Versus Adalimumab in Sight-Threatening Uveitis: A Multicenter Study of 330 Patients. Am.
J. Ophthalmol. 2022, 238, 173–180. [CrossRef]
158. Brito-Zerón, P.; Perez-Alvarez, R.; Ramos-Casals, M.; BIOGEAS Study Group. Etanercept and Uveitis: Friends or Foes? Curr. Med.
Res. Opin. 2015, 31, 251–252. [CrossRef] [PubMed]
159. Baughman, R.P.; Lower, E.E.; Bradley, D.A.; Raymond, L.A.; Kaufman, A. Etanercept for Refractory Ocular Sarcoidosis: Results of
a Double-Blind Randomized Trial. Chest 2005, 128, 1047–1062. [CrossRef] [PubMed]
160. Llorenç, V.; Mesquida, M.; Sainz de la Maza, M.; Blanco, R.; Calvo, V.; Maíz, O.; Blanco, A.; de Dios-Jiménez de Aberásturi, J.R.;
Adán, A. Certolizumab Pegol, a New Anti-TNF-α in the Armamentarium against Ocular Inflammation. Ocul. Immunol. Inflamm.
2016, 24, 167–172. [CrossRef] [PubMed]
161. Tosi, G.M.; Sota, J.; Vitale, A.; Rigante, D.; Emmi, G.; Lopalco, G.; Guerriero, S.; Orlando, I.; Iannone, F.; Frediani, B.; et al. Efficacy
and Safety of Certolizumab Pegol and Golimumab in the Treatment of Non-Infectious Uveitis. Clin. Exp. Rheumatol. 2019, 37,
680–683.
162. Calvo-Río, V.; de la Hera, D.; Blanco, R.; Beltrán-Catalán, E.; Loricera, J.; Cañal, J.; Ventosa, J.; Cifrián, J.M.; Ortiz-Sanjuán, F.;
Rueda-Gotor, J.; et al. Golimumab in Uveitis Previously Treated with Other Anti-TNF-Alpha Drugs: A Retrospective Study of
Three Cases from a Single Centre and Literature Review. Clin. Exp. Rheumatol. 2014, 32, 864–868.
163. Martín-Varillas, J.L.; Sanchez-Bilbao, L.; Calvo-Río, V.; Adán, A.; Hernanz, I.; Gallego-Flores, A.; Beltran-Catalan, E.; CastroOreiro, S.; Fanlo, P.; Garcia Martos, A.; et al. Long-Term Follow-up of Certolizumab Pegol in Uveitis Due to Immune-Mediated
Inflammatory Diseases: Multicentre Study of 80 Patients. RMD Open 2022, 8, e002693. [CrossRef]
164. Leclercq, M.; Desbois, A.-C.; Domont, F.; Maalouf, G.; Touhami, S.; Cacoub, P.; Bodaghi, B.; Saadoun, D. Biotherapies in Uveitis.
J. Clin. Med. 2020, 9, E3599. [CrossRef]
165. Sepah, Y.J.; Sadiq, M.A.; Chu, D.S.; Dacey, M.; Gallemore, R.; Dayani, P.; Hanout, M.; Hassan, M.; Afridi, R.; Agarwal, A.; et al.
Primary (Month-6) Outcomes of the STOP-Uveitis Study: Evaluating the Safety, Tolerability, and Efficacy of Tocilizumab in
Patients with Noninfectious Uveitis. Am. J. Ophthalmol. 2017, 183, 71–80. [CrossRef]
166. Deuter, C.M.E.; Zierhut, M.; Igney-Oertel, A.; Xenitidis, T.; Feidt, A.; Sobolewska, B.; Stuebiger, N.; Doycheva, D. Tocilizumab
in Uveitic Macular Edema Refractory to Previous Immunomodulatory Treatment. Ocul. Immunol. Inflamm. 2017, 25, 215–220.
[CrossRef]
167. Leclercq, M.; Andrillon, A.; Maalouf, G.; Sève, P.; Bielefeld, P.; Gueudry, J.; Sené, T.; Moulinet, T.; Rouvière, B.; Sène, D.; et al.
Anti-Tumor Necrosis Factor α versus Tocilizumab in the Treatment of Refractory Uveitic Macular Edema: A Multicenter Study
from the French Uveitis Network. Ophthalmology 2022, 129, 520–529. [CrossRef]
J. Clin. Med. 2023, 12, 3194
20 of 20
168. Friedman, M.A.; Le, B.; Stevens, J.; Desmarais, J.; Seifer, D.; Ogle, K.; Choi, D.; Harrington, C.A.; Jackson, P.; Rosenbaum, J.T.
Tofacitinib as a Steroid-Sparing Therapy in Pulmonary Sarcoidosis, an Open-Label Prospective Proof-of-Concept Study. Lung
2021, 199, 147–153. [CrossRef] [PubMed]
169. Sejournet, L.; Kodjikian, L.; Grange, L.; Grumet, P.; Jamilloux, Y.; Seve, P. Resolution of Ocular and Mediastinal Sarcoidosis after
Janus Kinase Inhibitor Therapy for Concomitant Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2021, 39, 225–226. [CrossRef]
[PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.