Academia.eduAcademia.edu

Progress in Landslide Science

2007

AI-generated Abstract

Natural disasters, particularly landslides, have seen a rise in frequency and severity, necessitating a shift towards pre-disaster action and enhanced disaster preparedness. Emphasizing the importance of scientific knowledge in assessing natural hazards, this paper discusses various modeling approaches and theories related to landslides and debris flows. Key contributions include improved understanding of rapid landslide mechanisms, effective mitigation strategies, and the need for ongoing public education regarding disaster risk reduction.

This book presents current progress in landslide science and consists of four parts: (1) Progress in Landslide Science, (2) Landslide Dynamics, (3) Landslide Monitoring, and (4) Landslide Risk Assessment. It provides useful information to academics, practitioners, and government officers working on landslide risk-mitigation planning. This book can be also used as an introductory textbook for college students who wish to learn fundamental scientific achievements in the field of landslide disaster reduction. Professor Kyoji Sassa is the first President of the International Consortium on Landslides which consists of 45 organizations from 30 countries, and is supported by UN organizations and the national governments of Japan, USA, Italy, and others. He is Professor and Director of the Research Centre on Landslides of the Disaster Prevention Research Institute, Kyoto University. Dr. Hiroshi Fukuoka is an Associate Professor, and Dr. Fawu Wang and Dr. Gonghui Wang are Assistant Professors at the Research Centre on Landslides of the Disaster Prevention Research Institute at Kyoto University. Sassa · Fukuoka · Wang · Wang (Eds.) Kyoji Sassa · Hiroshi Fukuoka · Fawu Wang · Gonghui Wang (Eds.) Progress in Landslide Science Kyoji Sassa Hiroshi Fukuoka Fawu Wang Gonghui Wang (Eds.) 1 Inserted photo in the back cover: A flow-mound found in the runout area of the Guinsaugon Landslide. Sassa and his colleagues are taking soil samples from the base of the flow-mound. springer.de Progress in Landslide Science ISBN 978-3-540-70964-0 Cover: Air photo of the 17 February 2006 Guinsaugon Landslide on Leyte Island, Philippines, which killed more than 1,000 people. This photo was taken by Kyoji Sassa from a chartered helicopter in March 2006. Progress in Landslide Science 13 Kyoji Sassa Hiroshi Fukuoka Fawu Wang Gonghui Wang (Editors) Progress in Landslide Science First Edition Kyoji Sassa Hiroshi Fukuoka Fawu Wang Gonghui Wang (Editors) Progress in Landslide Science With 431 Images, 349 in Color Editors Sassa, Kyoji President of the International Consortium on Landslides Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan Tel: +81-774-38-4110, Fax: +81-774-32-5597, E-mail: [email protected] Fukuoka, Hiroshi Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan Tel: +81-774-38-4111, Fax: +81-774-38-4300, E-mail: [email protected] Wang, Fawu Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan Tel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: [email protected] Wang, Gonghui Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan Tel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: [email protected] Library of Congress Control Number: 2007920433 ISBN-13 978-3-540-70964-0 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover Photo: Guinsaugon landslide, Southern Leyte, Philippines Cover design: de’blik, Berlin Typesetting: Stasch · Bayreuth ([email protected]) Production: Almas Schimmel Printing and binding: Stürtz AG, Würzburg Printed on acid-free paper 32/3141/as – 5 4 3 2 1 0 Foreword Natural disasters are increasing in terms of frequency, complexity, scope and destructive capacity. They have been particularly severe during the last few years when the world has experienced several large-scale natural disasters: the Indian Ocean earthquake and tsunami, Hurricane Katrina and Hurricane Rita; the Kashmir earthquake in Pakistan; floods and forest fires in Europe, India and China; and drought in Africa. Images of these events have shocked us all and will remain with us for a long time. Numerous landslides and mudflows have also occurred, causing deaths, injuries and material losses. The most recent tragic ones were the large-scale landslides which struck the Philippines in 2006, hitting the Albay province on 02 December and the Leyte Island on 17 February respectively, resulting in terrible loss of life, suffering and damage. National authorities and the international community, of course, should continue to provide the practical support needed by the affected communities. At the same time, it is important to quickly learn appropriate lessons that may help individuals, families, communities and whole societies to be better prepared for other disasters, whether caused by natural forces or otherwise. The time has come for putting more emphasis on pre-disaster action rather than remaining content with post-disaster reaction. We must mobilize scientific knowledge and technological know-how to assess natural hazards and to strengthen disaster mitigation measures. We should promote a better understanding of natural disasters. We must promote and enforce sound scientific, engineering and construction principles. And we must promote education and public awareness about natural disaster reduction. Landslides pose considerable risks to people’s livelihoods and to the environment. They cause great disruption and economic losses by the destruction of infrastructure works such as roads and other communications and utility lines and of cultural heritage and the environment. Today there is a need more than ever before to address the problem of landslides in an integrated and internationally concerted way. These are the purposes of the International Consortium on Landslides (ICL) and the International Programme on Landslides (IPL). Both initiatives encompass research, education and capacity-building in landslide risk reduction. They both enjoy the participation and support of numerous international, governmental and non-governmental organizations and entities. They contribute to the International Strategy for Disaster Reduction (ISDR) and to the implementation of the Hyogo Framework for Action 2005–2015 which was adopted at the World Conference on Disaster Reduction held in Kobe, Japan in January 2005. The 2006 Tokyo Action Plan on Landslides, which was adopted during the Tokyo Round Table Discussion on Landslides in January 2006, provides a roadmap for strengthening international collaboration and identifying focus areas for reducing landslide risk worldwide. UNESCO had the privilege to accompany from the very beginning the establishment of the ICL and the launching of the IPL. In so doing, the Organization enjoys partnership with a large number of stakeholders including the World Meteorological Organization (WMO), the United Nations University (UNU), the Food and Agriculture Organization (FAO) of the United Nations, the UN/ISDR Secretariat and the In- VI Foreword ternational Council for science (ICSU) and its Unions. I am glad that the ICL and IPL have also been marked with the establishment of a UNITWIN Cooperation Programme on Landslide Risk Mitigation for Society and the Environment in the framework of the UNITWIN/UNESCO Chairs Programme, at Kyoto University (KU). This Programme is now hosted in the UNESCO-KU-ICL UNITWIN Headquarters at the Research Centre on Landslides of the Disaster Prevention Research Institute in Kyoto University. Furthermore UNESCO and ICL have established in August 2006 a Memorandum of Understanding for cooperation. Finally I am especially pleased that UNESCO will serve as co-organizer with ICL of the World Landslide Forum scheduled to take place in 2008. This Forum will constitute a milestone in our efforts to strengthen global risk preparedness. The “Landslides” Journal of the International Consortium on Landslides plays a key role for the progress of landslide study as an integrated research field by putting together knowledge and technologies in many related fields of natural sciences, engineering, social sciences and culture. The present Publication “Progress of Landslide Science” comes in this context to provide an overview of the current status of this science. The diversity of subjects which are presented in this publication represents a rich collaborative work regarding landslides. I wish to commend the editors and the numerous authors involved in it. My particular greetings go to Professor Kyoji Sassa, Chairperson of ICL who continues to spare no effort in promoting ICL and IPL. It is with great pleasure that I praise the edition of this publication as a means of disseminating good knowledge in the area of landslide risk reduction. Koïchiro Matsuura Director-General of UNESCO Foreword A series of extremely high-profile disasters – the Indian Ocean tsunami of December in 2004, Atlantic hurricane season, the South Asian earthquake and the East African drought in 2005 underscored the importance of how better cooperation between Government authorities and the international community including scientific community would have played a critical role in helping people make life changing decisions about where and how they live before the disaster strikes, in particular high-risk urban areas. Landslide, floods, drought, wildfire, storms, tsunami, earthquakes and other types of natural hazards are increasingly affecting the world. In the decade 1976–1985, close to billion people were affected by disasters. But by the most recent decade, 1996–2005, the decade total had more than doubled, to nearly two and a half billion people. In the last decade alone, disasters affected 3 billion people, killed over 750 000 people and cost around US$ 600 billion1. We cannot let this trend continue. Disaster risk concerns every person, every community, and every nation; indeed, disaster impacts are slowing down development, and their impact and actions in one region can have an impact on risks in another, and vice versa. Without taking into consideration the urgent need to reduce risk and vulnerability, the world simply cannot hope to move forward in its quest for sustainable development and reduction of poverty. The Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters, adopted at the World Conference on Disaster Reduction (WCDR, Kobe, Hyogo, Japan, in January 2005), represents the most comprehensive action-oriented policy guidance in universal understanding of disasters induced by vulnerability to natural hazards and reflects a solid commitment to implementation of an effective disaster reduction agenda. In order to ensure effective implementation of the Hyogo Framework at all levels, tangible activities must be carried out. For the last two years as post WCDR, we have seen many activities and initiatives developed to implement the Hyogo Framework in various areas. As a concrete activity in the area of landslide risk reduction, the International Programme on Landslides has maintained the momentum created at the WCDR and has been moving forward, led by the International Consortium on Landslides. This publication is a valuable contribution to the implementation of the priority area 2 of the HFA – “Identify, assess and monitor disaster risks and enhance early warning”, by gearing landslide risk assessment, both hazard identification, monitoring and vulnerability analysis, as well as preparedness and landslide risk management. The combination of landslide scientific knowledge and risk reduction measures are essential to reduce the impact of landslides. The Hyogo Framework calls for the international coordination and collaboration among different actors dealing with disaster risk reduction. In this sense, the Global Cooperation Platform for research and investigation for landslide risk reduction in the 2006 Tokyo Action Plan consist of very 1 Data derived from the EM-DAT: The OFDA/CRED International Disaster Database, www.en-dat.net, Universite Catholiqué de Louvain, Brussels, Belgium. VIII Foreword important activities to promote the thematic coordination to research and reduce impacts of landslides. This initiative also contributes to the priority area 3 of the HFA, which emphasizes the importance of education and public awareness of the disaster risk reduction. Education and public awareness about the hazards, in this case landslide, are also key for people to be able to reduce risks and their vulnerabilities. I welcome the work of the Global Cooperation Platform for research and investigation for landslide risk reduction and the International Consortium on Landslides. I look forward to collaboration with them, in particular through the International Programme on Landslides (IPL) and its Global Promotion Committee. Sálvano Briceño Director of United Nations Secretariat of the International Strategy for Disaster Reduction Preface – Aims of This Volume Large and small landslides occur almost every year in nearly all regions of the world. However, the number of landslides is difficult to ascertain, and even the number of landslide-caused casualties is not correctly counted worldwide. Most casualties caused by rain-induced landslides are included in those tabulated for hurricane or storm disasters, and casualties caused by earthquake-induced landslides are often included in those for earthquake disasters. Thus, the casualties due to landslide disasters are often extremely underestimated. Japan has statistics of casualties by various types of landslides (small and large debris or rock slides, debris flows, rock falls, et al. since 1967), even though they occurred during typhoons, earthquakes, or volcanic activities. Figure 0.1 shows the statistics of casualties caused by landslides, earthquakes, and volcanic activities in Japan for the period of 1967–2004. Casualties by earthquake-induced landslides are included both in the landslide disasters and earthquake disasters. Landslide disasters in Japan for this period have occurred every year; the total number of deaths (3 285) due to landslides is about one half of the deaths (7 008) caused by earthquakes, including the catastrophic 1995 Kobe earthquake. Extensive landslide prevention works have been constructed in Japan. Thanks to those preventive works, the number of casualties has gradually decreased as seen in Fig. 0.1 in spite of progress of urban and mountain development all over Japan during those years. Although there are no reliable data for damages, or even for casualties due to landslides in many countries of the world, Fig. 0.1 provides a clear evidence of the strong negative impact of landslides to society. One clear difference of landslides, as compared to earthquakes and volcanic eruptions, is that humans can prevent or mitigate many landslide phenomena, while earthquakes and volcanic eruptions can not be prevented. The hazard assessment of landslides is very effective for disaster reduction because of relatively small affected area comparing to earthquakes and typhoons. Therefore, we can do much for landslide disaster mitigation. In addition to human damages, landslides often destroy cultural and natural heritage, and the natural environment, which cannot Fig. 0.1. Comparison of the numbers of victims in Japan from 1967–2004 due to landslide disasters, earthquake disasters including deaths by earthquake-induced-landslides, and volcanic disasters including deaths due to volcanic gas (The data on victims due to landslide disasters since 1967 were published by the Sabo Technical Center) XIV Preface – Aims of This Volume be recovered. Landslide disaster reduction, protection of cultural and natural heritage sites, and the invaluable environment are vital factors for human society. However, studies of landslides have not been conducted in an integrated manner, although the phenomena are targets of many scientific and engineering fields. Landsides are a target of application of many technical fields, but they are not the major interest of any individual field. Therefore, no national landslide society has been established, except the Japan Landslide Society (JLS), and the very recent Nepal Landslide Society. No international society on landslides has been established because there are only one or two national societies. The Japan Landslide Society was founded in 1963, and the society organized the first International Symposium on Landslides (ISL) in Kyoto in 1972, and the second International Symposium on Landslides in Tokyo in 1977. The Japan Landslide Society also initiated the International Conference and Field Workshop on Landslides (ICFL) in Tokyo, 1985. The society started to publish the International Newsletter “Landslide News” in 1987. Five thousand copies were printed in three colors and 2 000 copies were distributed free of charge over the world. Landslide News It continued to be published until 2003 with supports from the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Food and Agriculture Organization of the United Nations (FAO), the United Nations Secretariat for International Strategy for Disaster Reduction (UN/ISDR). This long-term activity gradually built up an infrastructure of international landslide community. It led to the formation of the International Consortium on Landslides (ICL) in 2002 and the new journal of ICL, “Landslides”, in 2004. The publication of journal is the essential and necessary platform to create an independent field of science dealing with landslides. This book “Progress in Landslide Science” aims to present an overview of the current status of research by major landslide researchers worldwide. This volume can be a part of series of publications of ICL that may contributes to the education system of landslide science and landslide disaster management in the future. The International Consortium on Landslides (ICL), United Nations Educational, Scientific and Cultural Organization (UNESCO), World Meteorological Organization (WMO), Food and Agriculture Organization of the United Nations (FAO), United Nations International Strategy for Disaster Risk Reduction (UN/ISDR), United Nations University (UNU), United Nations Environment Programme (UNEP), United Nations Development Programme (UNDP), World Bank (IBRD), International Council for Science (ICSU), World Federation of Engineering Organizations (WFEO), Kyoto University (KU), and the Japan Landslide Society (JLS) have jointly been organizing the First World Landslide Forum for Strengthening Research and Learning on Earth System Risk Analysis and Sustainable Disaster Management within the UN-ISDR as Regards “Landslides” which will be held in November 2008 in Tokyo. This forum will be a milestone in developing research and learning on landslide disaster reduction. Tangible progress in Landslide Science is foreseen during this process. It is hoped that this volume will be read by partners working for landslide risk mitigation and that further works will be published as increasingly wider support is obtained. Kyoji Sassa Kyoto, January 2007 Contents Part I Progress in Landslide Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1.1 1.2 1.3 1.4 2 Landslide Science as a New Scientific Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Definition of Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Landslide Science as a New Scientific Discipline and Landslide Dynamics as its Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Foundation of the International Consortium on Landslides . . . . . . . . . . . . . . . . . . . . 6 Development of the International Landslide Community: the 2005 Letter of Intent, the 2006 Tokyo Action Plan, and the 2008 First World Landslide Forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 The First World Landslide Forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 An Overview of Landslide Problems in the British Isles, with Reference to Geology, Geography and Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Strong Rocks and Discontinuity-controlled Slope Instability . . . . . . . . . . . . . . . . . . Weak Rocks and Strong Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Coastline of South Eastern Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bedding-Control of Slip Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slides in Strata with Low Angle Dips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grabens and Graben Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perched Slip Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slip Surfaces at or close to the Base of a Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identification of Slip Surface Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three Dimensions and the Plan Shape of Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . Conservation and Conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 15 17 18 18 19 21 22 22 23 24 24 25 3 3.1 3.2 3.3 3.4 3.5 Considerations about the Mechanics of Slow Active Landslides in Clay . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Features of Slow Active Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Considerations about the Mechanics of Active Slides and Mudslides . . . . . . . . Consideration about the Mechanics of Active Lateral Spreads . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 27 28 39 43 44 4 4.1 4.2 Dynamics of Rapid Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Mechanisms Causing Strength Loss in Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 XVIII Contents 4.3 4.4 Types of Extremely Rapid Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 5.1 5.2 Progress in Debris Flow Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processes of Initiation and Development in the Erosion Type Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Criteria of Debris Flow Occurrence for Erosion Type . . . . . . . . . . . . . . . . . . . . . . . . . . . Processes in Transformation and Stoppage of Landslide-induced Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Models for Debris Flow Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-phase Continuum Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-phase Fluid Flow Model (Mixture Theory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 5.4 5.5 5.6 5.7 5.8 5.9 59 59 60 61 63 64 65 66 69 75 76 Part II Landslide Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 8 8.1 8.2 8.3 8.4 8.5 8.6 Undrained Stress-controlled Dynamic-loading Ring-shear Test to Simulate Initiation and Post-failure Motion of Landslides . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison with Triaxial Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structure and Control System of Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undrained Shear Behavior on Sands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geotechnical Simulation of Earthquake-induced Landslides . . . . . . . . . . . . . . . . . . Slide-triggered Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 81 83 84 87 89 91 93 97 97 97 Influence of Shear Speed and Normal Stress on the Shear Behavior and Shear Zone Structure of Granular Materials in Naturally Drained Ring Shear Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Ring Shear Apparatus and Observation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Samples and Their Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Testing Conditions and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Test Results on Mixed Sands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Rockslides and Their Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What is a Rockslide? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Size Distribution from Grain Crushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Waikaremoana Blockslide Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 113 113 121 124 125 131 132 Contents 9 9.1 9.2 9.3 9.4 9.5 Residual Shear Strength of Tertiary Mudstone and Influencing Factors . . . . . . . . . . Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Properties of Tertiary Mudstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shear Strength Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factors Influencing the Residual Shear Strength of Mudstone . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 135 136 140 143 144 145 10 10.1 10.2 10.3 10.4 10.5 On Failure of Municipal Waste Landfill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Failure of Waste Leuwigajah Landfill in Bandung, Indonesia . . . . . . . . . . . . . . . . Significance of Landfill Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposals for Better Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 147 147 148 149 149 149 149 11 Experimental Study with Ring Shear Apparatus on the May 2004 Landslide–Debris Flow at Bettou-dani Valley, Haku-san Mountain, Japan . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Conditions of the Jinnosuke-dani Landslide on Haku-san Mountain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The May 2004 Landslide–Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ring Shear Tests on the Initiation and Traveling Mechanisms of the Landslide–Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ring-shear Tests on Soil Samples Taken from the Landslide Travel Path in the Bettou-dani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 11.2 11.3 11.4 11.5 11.6 12 151 151 154 155 159 162 165 165 165 On the Pore-pressure Generation and Movement of Rainfall-induced Landslides in Laboratory Flume Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Properties of the Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flume Test Apparatus and Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Observed Phenomena in Flume Tests and Discussion . . . . . . . . . . . . . . . . . . . . . . . . Double-cylinder Apparatus and Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pore-pressure-maintaining Mechanism during Movement . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 167 168 169 171 177 178 180 180 13.1 13.2 13.3 13.4 13.5 Ring Shear Tests on Clays of Fracture Zone Landslides and Clay Mineralogical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features of Fracture Zone Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimental Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 183 184 186 189 191 192 192 14 14.1 14.2 Landslides Induced by a Combined Effect of Earthquake and Rainfall . . . . . . . . . . . . 193 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Combined Effect of Rainfall and Earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12.1 12.2 12.3 12.4 12.5 12.6 12.7 13 XIX XX Contents 14.3 14.4 14.5 15 15.1 15.2 15.3 The 2006 Leyte Landslide Triggered by a Small Near-by Earthquake (M2.6) Five Days after a Heavy Rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The 2004 Higashi-Takezawa Triggered by the Magnitude (M6.8) Earthquake Three Days after the Typhoon No. 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Landslide Experiments on Artificial and Natural Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Landslide Fluidization Process by Flume Experiment . . . . . . . . . . . . . . . . . . . . . . . . A Fluidized Landslide on Natural Slope Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 200 206 206 209 209 210 217 225 226 Part III Landslide Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 16 16.1 16.2 16.3 16.4 17 Enlargement of a Failed Area along a Sliding Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Field Monitoring of Deformation Area Enlargement in a Landslide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Study of the Formation of Sliding Surface in Laboratory Tests . . . . . . . . . . . . . . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 229 229 232 235 236 Airborne LIDAR Data Measurement and Topography Classification Mapping in Tomari-no-tai Landslide Area, Shirakami Mountains, Japan . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Airborne LIDAR Data Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 237 237 238 241 242 249 249 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 Integration of Remote Sensing Techniques in Different Stages of Landslide Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contributions to Landslide Inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Improvements to Landslide Hazard Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basin Scale Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Landslide Modeling Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Landslide Monitoring by Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Innovative Early Warning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Support for Emergency Management and Scenario Analysis . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 251 251 253 253 254 256 257 258 258 259 259 19 19.1 19.2 19.3 19.4 Rock Deformation Monitoring at Cultural Heritage Sites in Slovakia . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Works and Techniques Employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spis Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Strecno Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 261 261 262 268 17.1 17.2 17.3 17.4 17.5 17.6 18 Contents 19.5 19.6 19.7 19.8 19.9 Skalka Monastery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lietava Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lednica Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C̀´achticky hrad Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 270 270 271 272 272 273 Part IV Landslide Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 20 Extracting Necessary Parameters from Real Landslide Mass for Mitigating Landslide Disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation of Velocity of Fluidized Soil Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extracting Parameters for Estimating Travel Distances for Coherent Mass Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 283 284 Landslide Dams Formed by the 2004 Mid-Niigata Prefecture Earthquake in Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics of the 2004 Mid-Niigata Prefecture Earthquake . . . . . . . . . . . . Distribution of Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . River Blockage by Landslide Dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emergency Operations against Collapse by Landslide Dam . . . . . . . . . . . . . . . . . Monitoring and Observation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Successive Landslides Caused by Snowmelt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remarks for Mitigation of Future Disasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 285 285 286 288 290 291 291 293 293 22 22.1 22.2 22.3 22.4 22.5 Shear Behavior of Clay in Slope for Pore Water Pressure Increase . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pore Water Pressure Loading Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consideration on Landslide Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress Controlled Ring Shear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 295 295 297 299 302 303 23 23.1 23.2 23.3 23.4 Static and Dynamic Analyses of Slopes by the FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finite Element Analysis of Slopes and Slope Stabilization . . . . . . . . . . . . . . . . . . . . Dynamic Elasto-plastic Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 305 305 309 311 311 24 24.1 24.2 24.3 Debris Flows in the Vicinity of the Machu Picchu Village, Peru . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preliminary Field Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Triggering Factors of the Debris Flows in the Machu Picchu Village and Surrounding Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 313 313 20.1 20.2 20.3 20.4 21 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 277 277 277 315 318 318 XXI XXII Contents 25 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.13 25.14 25.15 25.16 25.17 25.18 25.19 25.20 26 26.1 26.2 26.3 26.4 26.5 26.6 26.7 Engineering Geology and Cultural Heritage: the Conservation of Remaining Bamiyan Buddhas (Central Afghanistan) . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Meteo-climatic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geological, Mineralogical and Petro-geophysical Setting . . . . . . . . . . . . . . . . . . . . Scanning Electron Microscopy (SEM) of Siltstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical and Mechanical Properties of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geomorphological Setting and Most Unstable Areas . . . . . . . . . . . . . . . . . . . . . . . . . Seismological Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geomechanic Characters of Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structural Analysis of Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinematic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Previous Restoration Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Long-term Conservation Strategy for Repair, Enhancement, Research, and Risk-preparedness for the Preservation of the Site . . . . . . . . . . Identification of Most Unstable Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emergency Measures in the Upper Eastern Part of the Eastern Giant Buddha Niche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Completion of Emergency Intervention in the Eastern Giant Buddha Niche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First Interventions in the Western Giant Buddha Niche . . . . . . . . . . . . . . . . . . . . . . The Back Side of Both Buddha Niches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Manual Crack Gauge Monitoring System: Current Results . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debris Flow Hazard Defense Magnitude Assessment with Numerical Simulation . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Literature Review on Flood Hazard Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assessment of Debris Flow Hazard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Land Utilization within the Influenced Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Expected Disaster Loss in the Influenced Area . . . . . . . . . . . . . . . . . . . . . . . . . . . Case Study – Assessment for Taipei 021 Debris Flow Potential Stream . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 319 320 321 322 324 326 326 326 327 328 328 330 333 336 336 340 341 342 344 345 346 347 347 348 348 350 350 355 360 360 360 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 A.1 A1.1 A1.2 A1.3 The Tokyo Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . After the 2006 Tokyo Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 363 364 366 366 A.2 MoUs between ICL and Global Stakeholders to Promote the 2006 Tokyo Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MoU between ICL and UN/ISDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MoU between ICL and UNU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MoU between ICL and WMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MoU between ICL and WFEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MoU between ICL and UNESCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MoU between ICL and ICSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 367 368 369 370 371 373 A2.1 A2.2 A2.3 A2.4 A2.5 A2.6