
Wing Pro Reference Manual

This manual documents the entire feature set of Wing Pro, which is a Python IDE designed for

professional developers.

It covers installation, customization, setting up a project, package management, editing, code warnings,

refactoring, comparing files and directories, navigating source code, using the integrated Python shell,

executing operating system commands, unit testing, debugging, version control, source code analysis,

remote development, and extending the IDE with user-defined scripts and plugins.

Trouble-shooting information is also included, for installation and usage problems, as well as a complete

reference for Wing Pro's preferences, command set, and available key bindings.

If you are looking for a gentler introduction to Wing's feature set, try the Tutorial in Wing's Help menu. A

more concise overview of Wing's features is also available in the Quick Start Guide.

Our How-Tos explain how to use Wing with specific Python frameworks for web and GUI development,

2D and 3D modeling, rendering, and compositing applications, matplotlib, Raspberry Pi, and other

Python-based libraries and tools.

A collection of Wing Tips, available on our website and by weekly email subscription, provides additional

tips and tricks for using Wing productively.

Wingware, the feather logo, Wing Python IDE, Wing Pro, Wing Personal, Wing 101, Wing IDE, Wing

IDE 101, Wing IDE Personal, Wing IDE Professional, Wing IDE Pro, Wing Debugger, and "The

Intelligent Development Environment for Python" are trademarks or registered trademarks of Wingware

in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without notice. Wingware

shall not be liable for technical or editorial errors or omissions contained in this document; nor for

incidental or consequential damages resulting from furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification purposes only and may

be trademarks of their respective owners.

Copyright (c) 1999-2022 by Wingware. All rights reserved.

Wingware
P.O. Box 400527
Cambridge, MA 02140-0006
United States of America

https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/howtos/index
https://wingware.com/hints

Contents

Wing Pro Reference Manual 1

Introduction 22

1.1. Product Levels 22

1.2. Licenses 22

1.3. Supported Platforms 23

Windows 23

Mac 23

Linux 23

Remote Development 23

1.4. Supported Python versions 23

1.5. Technical Support 24

1.6. Prerequisites for Installation 24

1.7. Installing Wing 24

1.8. Running Wing 25

1.9. Installing Your License 25

1.10. Settings Directory 29

1.11. Upgrading 30

Upgrading Without an Internet Connection 30

Upgrading to a New Major Release 30

Upgrading Your License 30

1.11.1. Migrating From Older Versions 30

Compatibility Changes in Wing 8 31

1.11.2. Fixing a Failed Upgrade 32

1.12. Installation Details and Options 32

1.12.1. Linux Installation Notes 32

1.12.2. Remote Display on Linux 34

1.12.3. Source Code Installation 35

1.13. Backing Up and Sharing Settings 35

1.14. Removing Wing 36

1.15. Command Line Usage 37

Opening Files and Projects 37

Command Line Options 37

Customization 39

2.1. High Level Configuration Options 39

2.2. User Interface Options 40

2.2.1. Display Style and Colors 40

2.2.2. Windowing Policies 40

2.2.3. User Interface Layout 41

2.2.4. Text Font and Size 42

2.3. Keyboard Personalities 43

2.3.1. Key Bindings 43

2.3.2. Key Maps 45

Includes 46

Examples 46

2.3.3. Key Names 47

2.4. Preferences 48

2.4.1. Preferences File Layers 48

2.4.2. Preferences File Format 49

2.5. Custom Syntax Coloring 49

Minor Adjustments 49

Comprehensive Changes 50

Overriding Preferences 50

Color Palette-Specific Configuration 50

Print-Only Colors 50

Automatic Color Adjustment 50

Color Names for Python 51

2.6. Perspectives 51

Perspective Manager 52

Preferences 52

Auto-Perspectives 53

Restoring the Default Toolset 53

2.7. File Filters 53

Project Manager 55

3.1. Creating a Project 55

Select the Host 55

Select the Source Directory 55

Select the Python Environment 56

3.1.1. Creating Python Environments 57

3.1.2. About Project Configuration 58

3.2. Moving Projects 60

3.3. Display Options 60

3.4. Opening Files 60

3.5. File Operations 61

3.6. Creating, Renaming, and Deleting Files 62

3.7. Project Properties 63

Environment 63

Debug/Execute 65

Options 66

Extensions 67

Testing 67

VCS 68

3.7.1. Environment Variable Expansion 68

3.8. File Properties 69

File Attributes 69

Editor 70

Debug/Execute 70

Testing 70

3.9. Sharing Projects 71

Making Project Files More Sharable 71

Changing Which Properties are Shared 71

File Format 72

3.10. Launch Configurations 72

Python Tab 72

Environment Tab 73

Shared Launch Configurations 74

Working on Different Machines or OSes 74

Package Manager 76

Configuration 76

Setting up pipenv 76

Setting up conda 76

Packages List 76

Working with Containers and Clusters 77

4.1. Package Management Operations 77

Installing Packages 77

Upgrading/Downgrading Packages 78

Removing Packages 78

Other Operations 79

Managing Configuration Files 79

4.2. Package Manager Options 79

4.3. Package Management with pipenv 80

Configuring Python Executable 80

Manual Configuration 80

Pipenv Auto-Install 80

Removing the pipenv Virtualenv 81

Selecting Python Version 81

4.4. Package Management with conda 81

4.5. Package Management Security 82

Source Code Editor 83

5.1. Opening, Creating, and Closing Files 83

5.2. File Status and Read-Only Files 83

5.3. Transient, Sticky, and Locked Editors 84

5.4. Editor Context Menu 84

5.5. Navigating Source 85

5.6. Source Assistant 86

Docstring Type and Validity 86

Source Assistant Options 87

Goto Definition from Documentation 87

Python Standard Library Documentation Links 88

5.7. Folding 88

Editor Fold Margin 88

Folding Menus 89

Folding Preferences 89

5.8. Bookmarks 89

5.9. Syntax Coloring 91

5.10. Selecting Text 92

5.10.1. Multiple Selections 93

5.11. Copy/Paste 94

5.12. Auto-completion 95

5.12.1. Turbo Completion Mode for Python 96

5.12.2. Auto-completion Icons 96

5.12.3. How Auto-completion Works 98

5.13. Auto-Editing 98

5.14. Auto-Reformatting 100

5.14.1. PEP 8 Reformatting Options 101

5.14.2. Black Formatting Options 102

5.14.3. YAPF Formatting Options 102

5.14.4. Other Reformatters 102

5.15. Code Snippets 103

Snippets Tool 103

Contexts 103

Key Bindings 104

Execution and Data Entry 104

Scripting Snippets 104

5.15.1. Snippet Syntax 105

Indentation and Line Endings 106

Cursor Placement 106

5.15.2. Snippets Directory Layout 107

5.16. Indentation 107

5.16.1. How Indent Style is Determined 107

5.16.2. Indent Guides, Policies, and Warnings 108

5.16.3. Auto-Indent 109

5.16.4. The Tab Key 109

5.16.5. Adjusting Indentation 110

5.16.6. Indentation Tool 111

5.17. Keyboard Macros 112

5.18. Auto-Reloading Changed Files 112

5.19. Auto-Save 112

5.20. File Sets 113

5.21. Other Editor Features 114

Search and Replace 116

6.1. Toolbar Quick Search 116

6.2. Keyboard-Driven Search and Replace 116

6.3. Search Tool 117

Search Type 117

Search Options 118

Special Characters 118

6.4. Search in Files Tool 118

Search Type 119

Options 119

Special Characters 120

6.5. Find Points of Use 120

6.6. Wildcard Search Syntax 121

Code Warnings and Quality Inspection 122

7.1. Code Warnings Tool 122

7.2. Warnings on the Editor 123

7.3. Warnings Types 124

7.4. Advanced Configuration 125

7.5. External Code Quality Checkers 126

Refactoring 128

8.1. Rename Symbol 128

8.2. Move Symbol 128

8.3. Extract Function / Method 128

8.4. Delete Symbol 129

8.5. Introduce Variable 129

8.6. Rename Current Module 130

8.7. Symbol to * 130

Difference and Merge 131

Session Types 131

Options 132

Source Code Browser 133

10.1. Display Choices 133

10.2. Symbol Types 133

10.3. Display Filters 134

10.4. Sorting the Display 134

10.5. Navigating the Views 134

Integrated Python Shell 136

11.1. Python Shell Environment 137

11.2. Active Ranges in the Python Shell 137

11.3. Debugging Code in the Python Shell 137

11.4. Python Shell Options 139

OS Commands Tool 141

12.1. OS Command Properties 142

12.2. Sharing Projects with OS Commands 144

Unit Testing 145

13.1. Project Test Files 146

13.2. Running and Debugging Tests 146

Debugging 146

Execution Options 147

13.3. Running unittest Tests from the Command Line 148

Debugger 149

14.1. Debugger Quick Start 150

14.2. Debug Environment 151

14.3. Named Entry Points 151

Named Entry Point Fields 152

14.4. Specifying Main Entry Point 152

14.5. Setting Breakpoints 153

Breakpoint Types 153

Breakpoint Attributes 153

Breakpoints Tool 153

Keyboard Modifiers for Breakpoint Margin 154

14.6. Starting Debug 154

14.7. Debugger Status 155

14.8. Flow Control 155

14.9. Viewing the Stack 157

14.10. Viewing Debug Data 157

14.10.1. Stack Data Tool 158

14.10.1.1. Array, Data Frame, and Textual Data Views 160

14.10.1.2. Stack Data Options Menu 161

14.10.1.3. Stack Data Context Menu 161

14.10.1.4. Filtering Value Display 162

14.10.1.5. Advanced Data Display 162

14.10.2. Viewing Data on the Editor 163

Hovering Over the Editor 163

Showing All Available Values 163

14.10.3. Watching Values 163

14.10.4. Evaluating Expressions 165

14.10.5. Problems Handling Values 165

Managing Value Errors 166

14.11. Debug Process I/O 167

Options 167

14.11.1. External I/O Consoles 168

14.11.2. Debug Process I/O Multiplexing 169

14.12. Interactive Debug Console 170

14.12.1. Managing Program State 171

14.12.2. Debugging Code Recursively 171

14.12.3. Debug Console Options 171

14.12.4. Debug Console Limitations 172

Nested Function Scope 172

List Comprehensions and Generators 173

14.13. Multi-Process Debugging 174

14.13.1. Debugging Child Processes 174

14.13.2. Process Control 175

14.14. Debugging Multi-threaded Code 177

14.15. Managing Exceptions 177

14.16. Running Without Debug 179

Advanced Debugging Topics 180

15.1. Debugging Externally Launched Code 180

15.1.1. Debugging Externally Launched Remote Code 181

15.1.2. Externally Launched Process Behavior 182

15.1.3. Debugging Embedded Python Code 183

15.1.4. Configuring wingdbstub 184

15.1.5. Starting Debug Automatically Using sitecustomize 186

Starting Debug 187

Remote Hosts and Containers 187

Trouble-Shooting 187

15.1.6. Debugger API 187

15.2. Manually Configured Remote Debugging 188

15.2.1. Manually Configuring SSH Tunneling 190

15.2.2. File Location Maps 191

15.2.2.1. Manually Configured File Location Maps 192

15.2.2.2. Manually Configured File Location Map Examples 193

15.2.3. Manually Configured Remote Debugging Example 195

15.2.4. Manually Installing the Debugger 196

15.3. Using wingdb to Initiate Debug 196

15.4. Attaching and Detaching 198

15.5. Debugging C/C++ and Python Together 199

15.5.1. Debugging Extension Modules on Linux/Unix 199

15.6. Debugging Non-Python Mainloops 200

15.7. Debugging Code with XGrab* Calls 201

15.8. Debugger Limitations 202

Integrated Version Control 205

16.1. Setting Up Version Control in Wing 205

16.2. Version Control Tools 206

16.3. Common Version Control Operations 206

16.4. CVS 207

16.5. Git 207

16.6. Mercurial 208

16.7. Perforce 209

16.8. Subversion 209

Source Code Analysis 211

17.1. How Analysis Works 211

17.2. Helping Wing Analyze Code 211

17.2.1. Setting the Correct Python Environment 212

17.2.2. Using Live Runtime State 212

17.2.3. Adding Type Hints 212

17.2.4. Defining Interface Files 213

17.2.5. Helping Wing Analyze Cython Code 214

17.3. Analysis Disk Cache 215

Working with Containers and Clusters 216

Overview 216

How it Works 216

18.1. Individual Containers 217

Configuration Overview 217

Manual Configuration 217

Container Instance Management 219

Multiple Containers 219

Container-Only Files 220

18.2. Working with Clusters 220

Configuration 220

How Debugging Clusters Works 221

Container Instance Management 221

Cluster Life Cycle 222

Details and Notes 223

18.3. Containers Tool 223

Individual Containers 223

Clusters 223

Consoles 224

Remote Development 225

How it Works 225

Configuration Overview 227

19.1. Setting up SSH for Remote Development 227

Choosing an SSH Implementation 227

Using OpenSSH or PuTTY Executables 227

Using Wing's Built-in SSH Implementation 227

Setting up SSH Access 228

How Wing Stores Passphrases 228

Preventing Access to an SSH User Agent 229

Custom SSH Connection Responses 229

19.2. Configuring Remote Hosts 229

Installing and Running the Remote Agent 232

Shared Remote Hosts Configurations 233

19.3. Setting up Remote Projects 233

Local Project Files 233

Remote Project Files 234

Creating Project Files 234

Storing Project Files Remotely 234

19.4. Remote Development Features 234

19.5. Remote Agent User Settings 236

19.6. Specifying Environment for the Remote Python 236

19.7. Manually Installing the Remote Agent 237

19.8. SSH Setup Details 238

19.8.1. Working With OpenSSH 238

Using Login Passwords 238

Generating an SSH Key Pair 239

Moving the SSH Public Key to the Remote Host 239

Loading the SSH Private Key into the User Agent 240

Trouble-Shooting 241

Using a Non-Default SSH Port 241

19.8.2. Working With PuTTY 241

Logging in with Passwords 242

Generating an SSH Key Pair 242

Moving the SSH Public Key to the Remote Host 242

Loading the SSH Private Key into the User Agent 243

Trouble-Shooting 243

Using a Non-Default SSH Port 243

19.8.3. Working With Wing's Built-In SSH Implementation 244

Configuration 244

Using Login Passwords 244

Using SSH Key Pairs 244

Using an SSH Agent 245

Specifying or Searching for Keys 245

Host Keys 245

Limitations 245

19.8.4. Enabling Windows 10 OpenSSH Client 246

Scripting and Extending Wing 247

20.1. Scripting Example Tutorial 247

20.2. Overview of the Scripting Framework 249

20.3. Scripting API 252

20.4. Script Syntax 252

20.4.1. Script Attributes 252

20.4.2. Adding Scripts to the GUI 254

20.4.3. Argument Collection 255

Example 255

CArgInfo 255

Commonly Used Types 256

Commonly Used Interface 256

20.4.4. Importing Other Modules 258

20.4.5. Internationalization and Localization 259

20.4.6. Plugin Extensions 259

20.5. Debugging Extension Scripts 260

20.6. Advanced Scripting 261

Working with Wing's Source Code 261

How Script Reloading Works 262

20.7. API Reference 262

20.7.1. API Reference - Utilities 263

A Note on Filenames 263

20.7.2. API Reference - Application 263

Class CAPIApplication 263

Top-level Settings and Environment 264

Command Execution 265

Asynchronous Timeouts 266

Access to Key Objects 266

Manage Windows 269

Manage Editors 269

Clipboard 270

Application State 270

Preferences 271

Messages and Status 272

Sub-Process Control 272

Sub-Process Control with OS Commands 276

Scripting Framework Utilities 277

20.7.3. API Reference - Editor 277

Class CAPIDocument 278

General Access 279

Buffer Access 279

Undo/Redo 280

Saving 281

Class CAPIEditor 281

General Access 282

Selections 282

Scrolling and Visual State 283

Folding 284

Indentation 284

Snippets and Data Entry mode 285

Utilities 287

20.7.4. API Reference - Project 287

Class CAPIProject 287

Project Contents 287

Project Properties 288

Launch Configurations 291

Named Entry Points 293

Utilities 294

Run Arguments 295

20.7.5. API Reference - Debugger 295

Class CAPIDebugger 295

Class CAPIDebugRunState 296

Starting and Stopping Debug 296

Flow Control 297

Threads and Stacks 297

Breakpoints 298

Utilities 299

20.7.6. API Reference - Search 300

Class CAPISearch 300

20.7.7. API Reference - Analysis 302

Class CAPISymbolInfo 302

Class CAPIStaticAnalysis 303

IDE Plugins 305

21.1. Container Plugins 305

21.2. Cluster Plugins 306

Trouble-shooting Guide 307

22.1. Trouble-shooting Failure to Start 307

22.2. Speeding up Wing 307

22.3. Trouble-shooting Failure to Debug 308

22.3.1. Failure to Start Debug 308

22.3.2. Failure to Stop on Breakpoints or Show Source Code 309

22.3.3. Failure to Stop on Exceptions 310

22.3.4. Extra Debugger Exceptions 311

22.4. Trouble-shooting Other Known Problems 311

22.5. Obtaining Diagnostic Output 312

Preferences Reference 315

User Interface 315

Projects 324

Files 327

Editor 333

Debugger 358

Source Analysis 377

Version Control 380

Remote Development 385

IDE Extension Scripting 386

Network 386

Internal Preferences 387

Core Preferences 387

User Interface Preferences 391

Editor Preferences 394

Project Manager Preferences 396

Debugger Preferences 397

Source Analysis Preferences 401

Command Reference 402

24.1. Top-level Commands 402

Application Control Commands 402

Dock Window Commands 418

Document Viewer Commands 419

Global Documentation Commands 420

Window Commands 421

Wing Tips Commands 421

24.2. Project Manager Commands 422

Project Manager Commands 422

Project View Commands 424

24.3. Editor Commands 425

Editor Browse Mode Commands 425

Editor Insert Mode Commands 426

Editor Non Modal Commands 427

Editor Panel Commands 427

Editor Replace Mode Commands 428

Editor Split Commands 428

Editor Visual Mode Commands 429

Active Editor Commands 430

General Editor Commands 449

Shell Or Editor Commands 463

Source Assistant Commands 463

Bookmark View Commands 464

Snippet Commands 464

Snippet View Commands 465

24.4. Search Manager Commands 466

Toolbar Search Commands 466

Search Manager Commands 468

Search Manager Instance Commands 470

24.5. Refactoring Commands 470

Refactoring Commands 470

24.6. Unit Testing Commands 471

Unit Testing Commands 471

24.7. Version Control Commands 474

Subversion Commands 474

Git Commands 475

C V S Commands 476

Mercurial Commands 477

Perforce Commands 479

24.8. Debugger Commands 480

Debugger Commands 480

Debugger Watch Commands 489

Call Stack View Commands 489

Exceptions Commands 489

Breakpoint View Commands 490

24.9. Script-provided Add-on Commands 490

Django Script 490

Django Script 491

Emacs Extensions Script 491

Editor Extensions Script 491

Testapi Script 495

Debugger Extensions Script 495

Key Binding Reference 497

25.1. Wing Personality 497

25.2. Emacs Personality 511

25.3. VI/VIM Personality 529

25.4. Visual Studio Personality 556

25.5. macOS Personality 571

25.6. Eclipse Personality 585

25.7. Brief Personality 602

License Information 616

26.1. Wing Pro Software License 616

26.2. Open Source License Information 622

26.3. Privacy Policy 637

Introduction
This chapter describes how to install and start using Wing Pro. See also the Quick Start Guide and

Tutorial.

1.1. Product Levels
This manual is for the Wing Pro product level of the Wing family of Python IDEs, which currently

includes Wing Pro, Wing Personal, and Wing 101.

Wing Pro is the full-featured Python IDE for professional developers. It is a commercial product for sale

on our website, and may be licensed either for Commercial Use or Non-Commercial Use. You may

download Wing Pro for free and then use it on a 30-day trial period or with a purchased license.

Wing Personal is a simplified Python IDE that contains a subset of the features found in Wing Pro. It is

designed for students, hobbyists, and other users that don't need all the features of Wing Pro. Wing

Personal is free to download and use.

Wing 101 is a heavily scaled back IDE that was designed specifically for teaching entry level computer

science courses. It omits most of the features of Wing Pro and Personal, and is free to download and

use.

Wing Pro, Wing Personal, and Wing 101 are independent products and may be installed at the same

time on your system without interfering with each other.

For a list of the features in each product level, see https://wingware.com/downloads

1.2. Licenses
Wing Pro requires a separate license for each developer working with the product, or a site license

configured for the licensed number of users. For the end user license agreement, see the Software

License.

To run for more than 10 minutes, Wing Pro requires activation of a time-limited trial or permanent

purchased license. Time-limited trials last for 10 days and can be renewed two times, for a total or 30

days.

Purchased licenses come with ten activations per year by default and additional activations can be

obtained from the self-serve license manager or by emailing sales at wingware.com. As a fall-back in

cases of emergency where we cannot be contacted and you don't have an activation, Wing Pro will run

for 10 minutes at a time without any license at all, or a trial license can be used until any license

problem is resolved.

See Installing Your License for more information on activating licenses.

Introduction

22

https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/downloads
https://wingware.com/doc/legal/software-license
https://wingware.com/doc/legal/software-license
https://wingware.com/license
mailto:sales@wingware.com
https://wingware.com/doc/install/installing-your-license

1.3. Supported Platforms
Wing 8 is available for Microsoft Windows, Linux, and macOS. Some additional platforms and devices

are supported through remote development in Wing Pro only.

Windows

Wing runs on Windows 10+ for Intel processors. Windows 8 may work in some cases but is not

recommended or supported. Earlier versions of Windows will not work.

Mac

Wing runs on macOS 10.13+ as a notarized native application, both on Intel and Apple Silicon (M1)

processors.

Linux

Wing runs on 64-bit Intel Linux versions with glibc version 2.17 or later (such as Ubuntu 14.04+, CentOS

7+, Kali 2+, and Fedora 20+). It requires libraries that are typically installed for a graphical desktop

environment including libX11, libxcb, libxcb-xkb, libglib, and libexpat. It also requires an X windows

server with the X keyboard extension.

Remote Development

Wing Pro's remote development features are fully supported on the same platforms as those listed for

the IDE above, with the following additions:

• 32-bit and 64-bit Intel Linux systems that are compatible with the manylinux1 policy as defined in

PEP 513 -- glibc version 2.5 or later (such as CentOS and RHEL 5.5+, Ubuntu 9+, and Debian

5.0+)

• ARMv6 and ARMv7 Linux running on Raspberry Pi -- glibc 2.19 and later

• ARMv7 Linux running on the Jolla phone -- glibc 2.19 and later

• Other ARMv6 and ARMv7 Linux systems -- glibc 2.19 and later

Partial support for remote development is available on all other systems that can be accessed via SSH,

as described in Manually Installing the Remote Agent.

1.4. Supported Python versions
Wing 8 supports versions 2.6 to 2.7 and 3.3 to 3.10 of Python from python.org, Anaconda,

ActivePython, EPD, Stackless Python, cygwin, MacPorts, Fink, Homebrew, and other distributions

based on CPython.

macOS and Linux come with Python. On Windows, you will need to install one of the above before

using Wing.

Introduction

23

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/manual-remote-install
https://python.org/downloads
https://www.continuum.io/downloads
http://activestate.com/activepython
http://www.enthought.com/products/epd
http://stackless.com/
http://cygwin.com

Wing can also be used with alternative Python implementations such as PyPy, IronPython, and Jython,

but the debugger and Python Shell will not work.

Both 32-bit and 64-bit compilations of Python are supported on Windows. On Linux and macOS only

64-bit Python is supported. However, Linux 32-bit Python can be debugged using Wing Pro's remote

development feature.

Wing Pro users can also compile Wing's debugger on other operating systems, and against custom

versions of Python (requires NDA).

1.5. Technical Support
If you have problems installing or using Wing, please submit a bug report or feedback using the

Submit Bug Report or Submit Feedback items in Wing's Help menu.

Wingware Technical Support can also be contacted by email at support at wingware.com, or online at

https://wingware.com/support.

Bug reports can also be sent by email to bugs at wingware.com. Please include your OS and product

version number and details of the problem with each report.

If you are submitting a bug report via email, see Obtaining Diagnostic Output for more information on

how to capture a log of Wing and debug process internals. Whenever possible, these should be

included with email-based bug reports.

1.6. Prerequisites for Installation
To run Wing, you will need to obtain and install the following, if not already on your system:

• A system running a supported OS version

• A downloaded copy of Wing

• A supported version of Python

• A working TCP/IP network configuration (for the debugger; no outside access to the internet is

required)

1.7. Installing Wing
Before installing Wing, be sure that you have installed the necessary prerequisites. If you are upgrading

from a previous version, see Upgrading first.

Note: The installation location for Wing is referred to as WINGHOME. On macOS this is the name of

Wing's .app folder.

Windows

Install Wing by running the downloaded executable. Wing's files are installed by default in

C:\Program Files (x86)\Wing Pro 8, but this location may be modified during installation. Wing will also

Introduction

24

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/pub/wingide/support/source-non-discl.pdf
mailto:support@wingware.com
https://wingware.com/support
mailto:bugs@wingware.com
https://wingware.com/doc/install/trouble-diagnostic
https://wingware.com/doc/install/supported-platforms
https://wingware.com/downloads
https://wingware.com/doc/install/supported-python-versions
https://wingware.com/doc/install/prerequisites
https://wingware.com/doc/install/upgrading

create a Settings Directory in the location appropriate for your version of Windows. This is used to store

preferences and other settings.

The Windows installer supports a /silent command line option that uses the default options, including

removing any prior install of Wing 8. If a prior install is removed, a dialog with a progress bar will appear.

You can also use a /dir=<dir name> option to specify an alternate installation directory.

The /verysilent command line option has the same effect as /silent but also prevents display of a

progress bar.

Linux

Use the RPM, Debian package, or tar file installer as appropriate for your system type. Installation from

packages is at /usr/lib/wingpro8 or at the selected location when installing from the tar file. Wing will

also create a Settings Directory in ~/.wingpro8, which is used to store preferences and other settings.

Wing Pro is also available in the Snapcraft Store.

For more information, see the Linux installation details.

macOS

On macOS, Wing is installed simply by opening the distributed disk image and dragging to the

Applications folder, and optionally from there to the task bar.

1.8. Running Wing
For a quick introduction to Wing's features, refer to the Quickstart Guide. For a more gentle in-depth

start, see the Wing Tutorial.

On Windows, launch Wing from the start menu in the lower left.

On macOS, start Wing by double clicking on the app folder.

On Linux, execute wing8 (which is on the PATH by default for RPM and Debian installs) or execute

wing located inside the Wing installation directory.

To run Wing from the command line see Command Line Usage.

1.9. Installing Your License
Wing Pro requires a license in order to run, either a trial license obtained from Wing at startup, or a

purchased license. If Wing is running without any license at all it displays the following dialog at startup:

Introduction

25

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir
https://snapcraft.io/wing8
https://wingware.com/doc/install/linux-installation-detail
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/install/command-line-usage

From here, you can choose either to start a trial, visit the Wingware store to purchase a license, activate

a purchased license, or start a 10-minute emergency session running without any license.

Starting a Trial

To start a full-featured time-limited trial, select the first option in the dialog above and then press

Continue. You will be offered the option to connect directly to wingware.com to complete the activation

of the trial, or to activate manually, as described below.

Trials are valid for 10 days, with an option to extend twice for up to 30 days total (or more on request by

sending the trial license id to sales@wingware.com).

While Wing is running on a trial license, a reminder dialog is shown at startup, with the option to obtain

or activate a purchased license.

If you run into problems or need additional evaluation time, please email your trial license id to

sales@wingware.com.

Activating a Purchased License

Purchased licenses may either be non-expiring Perpetual licenses for a particular major version of

Wing or expiring Annual licenses. See License Terms for details on the available license types.

All licenses must be activated on each machine where they are used by entering the license into the

license dialog at startup. If Wing Pro already has a valid trial license, a different dialog is shown initially,

with a button for activating a permanent license. Or, if Wing has already been started and is running on

a trial license, Enter License in the Help menu can be used to enter the permanent license.

In all of these cases, the purchased license id from your license delivery email must be pasted or typed

into the activation dialog. Then press Continue to select how to activate the license.

The most convenient way to activate a license is to ask Wing Pro to connect directly to wingware.com

(which it does via https, TCP/IP port 443):

Introduction

26

mailto:sales@wingware.com
mailto:sales@wingware.com
https://wingware.com/wingide/license

If you're unable to connect directly, you can go to https://wingware.com/activate in your browser or on

another device to enter the license id and activation request code obtained from the license dialog (the

second option in the above screenshot). You will be given an activation key which you can then enter

into Wing's dialog box to complete the activation. This is exactly the same exchange of information that

occurs when Wing Pro connects directly to wingware.com to obtain a trial license.

If activation fails, Wing will provide a way to configure an HTTP proxy. Wing tries to detect and use

proxies by default but in some cases they will need to be manually configured. Please ask your network

administrator if you do not know what proxy settings to use. See also how to determine proxy settings.

Obtaining Additional Activations

If you run out of activations, you can use the self-serve license manager or email us at

sales@wingware.com to obtain additional activations on any valid license.

Transferring a License

Wing Pro Commercial Use licenses may be transferred from one individual to another, as needed from

time to time as employees come and go or change roles. To do this the current user must stop using

Wing before the new user starts using the license. The license activation may be removed from the

current user's machine as described in the next section.

Deactivating a License

If you wish to deactivate and remove your license id from a machine, click License in Wing's About

dialog box and then Deactivate. This will remove the license activation and quit Wing.

Note that this just removes your license id from the machine. If you are out of activations you will still

need to follow the instructions in Obtaining Additional Activations above.

Activating on Shared Drives

If Wing's Settings Directory (where the license activation is stored) is accessed from several different

computers, the license must be reactivated once on each computer. The resulting extra activations will

Introduction

27

https://wingware.com/activate
http://superuser.com/questions/346372/how-do-i-know-what-proxy-server-im-using
https://wingware.com/license
mailto:sales@wingware.com
https://wingware.com/doc/install/user-settings-dir

be stored in the settings directory as license.act1, license.act2, and so forth, and Wing will

automatically select the appropriate activation depending on where it is running.

A Vendor File (described below) can be used to automate activation on each additional computer.

Computer Labs

Computer labs consisting of identical hosts mirrored from a master may accept a single activation of a

license for all the hosts. This may be used for site licenses and free permanent educational use licenses

as follows:

1. Activate the license on the master host

2. Move the license.act file from the Settings Directory to the Wing installation directory (on macOS,

place it into Content/Resources within the application bundle)

3. Mirror the activation to all the clones

Note that Wing's acceptance of a shared activation in this configuration in no way relieves you of the

responsibility to pay for one license per user.

Vendor Files

To make it easier to reactivate in a case where Wing is on a shared drive, and for computer labs where

the above method does not work, you can store your license code in the file resources/vendor in your

Wing installation, in the following form:

license="XXXXX-XXXXX-XXXXX-XXXXX"

This file should be named vendor (without any extension) and go into the existing resources directory

in the top level of your Wing installation (or on macOS, within Content/Resources/resources inside

the application bundle). You will need to create the file if it does not exist.

Once this is done Wing will read this file at startup and try to automatically activate the license,

prompting you only if the activation fails. If many activations are expected, you will need to contact

sales@wingware.com to obtain additional activations for your license.

Country or Region of Use

Most Wing Pro licenses are Worldwide licenses that may be used in any country or region. Some

discounted licenses may be designated as geographically restricted licenses, for use in a specific

country or region. These licenses are invalid and may fail to activate elsewhere.

Introduction

28

https://wingware.com/doc/install/user-settings-dir
mailto:sales@wingware.com

1.10. Settings Directory
The first time you run Wing, it will create your Settings Directory automatically. This directory is used

to store your license, preferences, default project, history, and other files used internally by Wing. It also

contains any user-defined snippets, scripts, color palettes, syntax colors, file sets, and shared

perspectives.

Wing cannot run without this directory. If it cannot be created, Wing will exit.

The settings directory is created in a location appropriate to your operating system. That location is

listed as your Settings Directory in the About Box accessible from the Help menu.

On Windows the settings directory is called Wing Pro 8 and is placed within the per-user application

data directory. For Windows running on c: with an English localization the location is:

c:\Users\${username}\AppData\Roaming\Wing Pro 8

On Linux and macOS the settings directory is a sub-directory of your home directory:

~/.wingpro8

Cache Directory

Wing also creates a Cache Directory that contains the source analysis caches, auto-save directory, and

a few other things. This directory is also listed in Wing's About box, accessed from the Help menu.

On Windows, the cache directory is located in the AppData\Local area. On Linux, it is

~/.cache/wingpro8 and on macOS, it can be found with the symbolic link

~/.wingpro8/cache-dir-symlink.

Overriding Settings and Cache Directories

The default location of the settings directory can be changed by passing --settings=fullpath on the

command line, where fullpath is the full path of the directory to use. If the directory does not exist it will

be created only if its parent directory exists. Otherwise, Wing falls back to using the default location for

the settings directory.

Similarly, the default location of the cache directory can be changed with --cache=fullpath.

Shared Settings Directory

Another way to override the default settings directory is to create a directory named user-settings

inside of the Wing installation directory. When this is present, Wing will use it instead of the default

location.

Creating this directory allows settings to move with Wing if your installation is on a portable drive, or to

be shared among multiple users that log into the same machine. Permissions on the directory need to

allow read and write for all users that will be using Wing.

Introduction

29

This is not recommended if multiple users log into the same machine concurrently because settings

changed by one user will be overwritten by another user without any notice, and the default project file

will be locked if opened by multiple users.

1.11. Upgrading
Upgrades within the same major version number (for example from 8.0.4 to 8.0.5 or 8.1) can usually be

made with Check for Updates in Wing's Help menu. Once you have upgraded, your previous

preferences and settings remain in place. After restarting Wing, you should immediately be able to start

using the new version.

The current version number is shown at startup and can be found in Wing's About box. A list of

retained updates is also available here, allowing you to revert back to recent versions.

Upgrading Without an Internet Connection

If the machine where Wing is running does not have an internet connection, you will need to generate

an update and https://wingware.com/update using a machine that does have an internet connection,

move it to the target machine, and then apply it manually with Apply Update in Wing's Help menu.

Upgrading to a New Major Release

If you are upgrading across major releases (for example from Wing 7 to Wing 8), then you will need to

download and install Wing as described in Installing. This will install the new version along side your

older major release of Wing, and they can be used independently.

New major releases of Wing will read and convert any existing Wing preferences, settings, and projects.

Projects should be saved to a new name for use with the new major release since they cannot be read

by earlier versions.

See also Migrating From Older Versions.

Upgrading Your License

Valid annual licenses for Wing Pro, and perpetual licenses covered by Support+Upgrades can upgrade

to any new release for free.

Other licenses must be upgraded before they can be activated in a newer major release. This can be

done in the online store.

1.11.1. Migrating From Older Versions

Moving to Wing 8 from earlier versions should be easy. The first time you start Wing 8, it will

automatically convert your preferences from the most recent older version of Wing found on your

system, and place them into your Wing 8 Settings Directory.

Introduction

30

https://wingware.com/update
https://wingware.com/doc/install/installing
https://wingware.com/doc/install/migrating
https://wingware.com/store/upgrade
https://wingware.com/doc/install/user-settings-dir

Wing 8 can be installed and used side by side with older major releases (Wing 7 and earlier) and

operates completely independently. Projects from earlier versions of Wing will be converted and opened

as untitled, and should be saved to a new file name since older versions of Wing cannot open Wing 8

projects.

Compatibility Changes in Wing 8

Wing 8 makes some incompatible changes, including functional changes and changes to the scripting

API:

• Wing Personal no longer includes documentation and features specifically designed for third party

modules, packages, and frameworks

• Wing runs on Python 3.9 internally, requiring update of all user extension scripts

• Use utf-8 as the default encoding for Python files when working with Python 3

• Change the color palette and theme selection preferences to the easier to understand Display

Theme and Editor Theme

• Remove deprecated commands: * show-panel-debug-probe (use show-panel-debug-console) *

debug-probe-clear (use debug-console-clear) * debug-probe-toggle-active-range (use

debug-console-toggle-active-range) * debug-probe-evaluate-active-range (use

debug-console-evaluate-active-range) * debug-probe-show-active-range (use

debug-console-show-active-range) * evaluate-sel-in-debug-probe (use

evaluate-sel-in-debug-console) * set-current-as-main-debug-file (use

set-current-as-main-entry-point) * clear-project-main-debug-file (use

clear-project-main-entry-point) * set-selected-as-main-debug-file (use

set-selected-as-main-entry-point)

• Remove deprecated symbols in the scripting API: * kArg* magic default argument values (other

than kArgNumericModifier) * 'sheet' argument for CAPIApplication.ShowMessageDialog *

CAPIProject.Get/SetMainDebugFile (use Get/SetMainEntryPoint) *

CAPIDebugRunState.GetStackFrame (use GetStackIndex)

• Remove legacy support for Zope2 name space merging and debugging with WingDBG

• Omit minor version number from the installation directory name on Windows

• Add spaces into the app installation directory name on macOS

• Change the names of executables on Linux to wing8, wing-personal8, and wing-101-8

• Dropped support for Django 1.3 and earlier

• Dropped support for version control with Bazaar

• When using PuTTY for remote development, Wing does not use the PuTTY configuration but

requires setting the port number in the Wing remote host configuration, in order to work around a

long-standing bug in PuTTY

Introduction

31

• Auto-editing block management requires typing : a second time if working in a context where a

type annotation or := could be used. This can be disabled with the Editor > Auto-Editing > Prefer

Block Management in Assignments preference.

• Quotes are auto-closed in fewer contexts to avoid conflicts during editing

1.11.2. Fixing a Failed Upgrade

If an upgrade installed via Check for Updates causes problems, Wing can be reverted to the earlier

installed version from the About box. If Wing won't start, use the command line option

--disable-updates to start Wing without loading the update and then revert to the desired version.

A corrupted installation, resulting in random or bizarre behaviors and crashing, may be fixed by

completely uninstalling Wing and manually removing any remaining files before installing again.

If this does not solve the problem, the ide.log file in User Settings may contain clues to the problem. Or

try moving aside that directory while Wing is not running and then start Wing again. If this solves it, try

restoring files from the old settings directory one by one to find the broken file. Files that could cause

problems if corrupted include default.wpr, license.act*, preferences and recent*.

If you encounter any problems with an update, please email support@wingware.com or submit a bug

report from Wing's Help menu so we can try to fix the problem for you.

1.12. Installation Details and Options
This section provides some additional detail for installing Wing and describes installation options for

advanced users.

1.12.1. Linux Installation Notes

On Linux, Wing can be installed from RPM, Debian package, or from tar archive. Use the latter if you do

not have root access on your machine or wish to install Wing somewhere other than /usr/lib/wingpro8.

Only 64-bit Linux is supported, although in Wing Pro remote development can be used to develop on a

32-bit host.

Installing Wingware's Public Key

Some systems will complain when you try to install Wing without first installing our public key into your

key repository. The key is available here. Copy and paste the key into a file wingware.pub and then

use the following to import the key.

For RPM systems:

sudo rpm --import wingware.pub

For Debian systems:

Introduction

32

https://wingware.com/doc/install/removing-wing-ide
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/pgpkey

sudo apt-key add wingware.pub

An alternative is just to bypass the key check with --nogpg command line option for rpm,

--nogpgcheck for yum, and --no-debsig for dpkg.

Installing from RPM

Wing can be installed from an RPM package on RPM-based systems, such as RedHat and Mandriva.

To install, run rpm -i wingpro8-8.3.3.0.x86_64.rpm as root or use your favorite RPM administration

tool. Most files for Wing are placed under the /usr/lib/wingpro8 directory and the wing8 command is

placed in the /usr/bin directory.

Installing from Debian package

Wing can be installed from a Debian package on Debian, Ubuntu, and other Debian-based systems.

To install, run dpkg -i wingpro8_8.3.3.0_amd64.deb as root or use your favorite package

administration tool. Most files for Wing are placed under the /usr/lib/wingpro8 directory and the wing8

command is placed in the /usr/bin directory.

It may be necessary to install some dependencies before the installation will complete, as requested by

dpkg. The easiest way to do this is sudo apt-get -f install -- this installs the missing dependencies and

completes the configuration step for Wing's package.

Installing from Tar Archive

Wing may also be installed from a tar archive. This can be used on systems that do not use RPM or

Debian packages, or if you wish to install Wing into a directory other than /usr/lib/wingpro8. Unpacking

this archive with tar -zxvf wingpro-8.3.3.0-linux-x64.tar.gz will create a wingpro-8.3.3.0-linux-x64

directory that contains the wing-install.py script.

Running the wing-install.py script will prompt for the location to install Wing, and the location in which

to place the executable wing8. These locations default to /usr/local/lib/wingpro and /usr/local/bin,

respectively. The install program must have read/write access to both of these directories, and all users

running Wing must have read access to both.

Installing from the Snapcraft Store

Wing Pro, Wing Personal, and Wing 101 are also available through the Snapcraft Store. Assuming you

have snap on your system, you can install Wing as follows:

sudo snap install wing8 --classic

Notice that you must specify the --classic option for snap to indicate that you understand Wing uses an

unrestricted application confinement model, which is necessary so that it can work with files on your

local disk and start sub-processes for debugging, testing, and other IDE operations.

Introduction

33

https://snapcraft.io/store

Configuring Wing for High DPI Displays

Wing's UI is implemented with the Qt toolkit, which includes support for high DPI displays, but the

support varies depending on the desktop environment in use:

On KDE, as of early 2019, Wing should display correctly.

On Gnome, as of early 2019, Wing may suggest an interface scale factor based on the size of a

character on the primary display.

If Wing is not displaying correctly, the user interface may be scaled manually. To scale icons, windows,

and other elements other than fonts, use the

User Interface > Other > Icon and Window Scale Factor preference. To scale the entire UI, including

fonts, use Presentation Mode in the common configuration menu, which is accessed from the menu

icon in the top right of Wing's window.

The QT_* environment variables described at https://doc.qt.io/qt-5/highdpi.html may also be used to

scale Wing's display.

1.12.2. Remote Display on Linux

Wing for Linux can be displayed remotely by enabling X11 forwarding in ssh as described here.

In summary: You need to send the -X option to ssh when you connect from the machine where you

want windows to display to the machine where Wing will be running, and you need to add

X11Forwarding yes to your ssh configuration (usually in ~/.ssh/config) on the machine where Wing

will be running.

XKEYBOARD extension needed

The graphics toolkit that Wing uses, Qt 5, requires the XKEYBOARD extension for the keyboard to work

properly. This is an extension to the X11 protocol but has been available for 20+ years. However, there

are X11 servers that do not support it including a few used for vnc.

If the keyboard isn't working correctly with Wing, check to see if the X11 server supports XKEYBOARD;

sometimes it can be enabled in the server configuration. If it can't be enabled, consider switching to a

server that does support the XKEYBOARD extension or try executing

export XKB_DEFAULT_RULES=base before starting wing. Setting other environment variables is

possible according to a bug report at https://bugreports.qt.io/browse/QTBUG-44938

Speeding up the Connection

To improve performance, in most cases you should avoid using the -C option for ssh, even though it is

often mentioned in instructions for setting up X11 forwarding. The compression that is enabled with -C is

only useful over extremely slow connections and otherwise increases latency and reduces

responsiveness of the GUI.

Introduction

34

https://doc.qt.io/qt-5/highdpi.html
https://unix.stackexchange.com/questions/12755/how-to-forward-x-over-ssh-from-ubuntu-machine
https://bugreports.qt.io/browse/QTBUG-44938

Another option to try is -Y (trusted X11 port forwarding) instead of -X (untrusted X11 port forwarding) as

this may reduce overhead as well. However, this disables security options so it's a good idea to

understand what it does before using it.

If you are displaying to Windows, the choice of X11 server software running on Windows can make a

huge difference in performance. If the GUI seems very slow, try a different X11 server.

Other Options

Other options for displaying Wing remotely from Linux include:

• XRDP -- implements the protocol for Windows Remote Desktop.

• NoMachine -- Another free remote desktop toolkit.

• In Wing Pro, another option is not to display Wing remotely but instead to use the remote

development feature to access the remote host from Wing running on another machine.

1.12.3. Source Code Installation

Source code is available to licensed users of Wing Pro who have completed a non-disclosure

agreement. Upon receipt of this agreement, you will be provided with instructions for obtaining and

working with the product source code.

1.13. Backing Up and Sharing Settings
To back up your license, preferences, and other settings, you only need to back up the Settings

Directory, which is listed in Wing's About box, accessed from the Help menu.

The process of restoring Wing or moving to a new machine consists simply of installing Wing again,

restoring the above directory, and (in Wing Pro) reactivating your license if necessary.

The only other Wing-specific data that the IDE will write to your disk is in your project files (*.wpr and

*.wpu if you are using the Shared style of project in Wing Pro; see Project Types for details). We

recommend using the default Shared project type and checking the *.wpr into revision control.

The *.wpu contains user-specific and machine-specific data such as environment, path, window

position, list of open files, and other GUI state. The file is worth backing up, but usually not hard to

recreate if lost.

Wing also writes to a cache directory (also listed in the About box) and your OS-provided temporary

directory, but those can be recreated from scratch if lost. The only possible exception to this is

autosave in the cache directory, which contains unsaved files open in the IDE.

For more information on the location of these directories, see User Settings Directory.

Sharing Settings

Introduction

35

http://www.xrdp.org/
https://www.nomachine.com/
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/pub/wingide/support/source-non-discl.pdf
https://wingware.com/pub/wingide/support/source-non-discl.pdf
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/proj/project-types
https://wingware.com/doc/install/user-settings-dir

Many of the settings found in the Settings Directory can be shared to other machines or with other users

of Wing. This includes the following files and directories:

• filesets -- shared file sets used for selecting files to search or include in the project.

• launch -- shared launch configurations used for defining environment for debugging and executing

code.

• palettes -- any user-defined color palettes used for configuring the user interface.

• perspectives -- shared perspectives which store particular configurations of tools and editors.

• oscommands -- shared OS Commands which can be used from any project file.

• preferences -- Wing's preferences, as configured in the Preferences dialog.

• recent* -- lists of recent files, projects, commands, and so forth.

• remote-hosts -- shared remote hosts configurations used for remote development.

• containers -- shared container configurations.

• clusters -- shared cluster configurations.

• scripts -- scripts that extend IDE functionality.

• snippets -- user-defined code snippets for quick entry of predefined blocks of code.

• syntax -- user-defined syntax colors for file types available in the editor.

Follow the links above to find details on the file formats involved. Most are simple textual formats that

are easy to generate or modify if necessary. Wing does need to be restarted when replacing these files,

and may overwrite changes made while it is running.

1.14. Removing Wing
Windows

On Windows, use the Add/Remove Programs control panel, select Wing Pro 8 and remove it.

Linux/Unix

To remove an RPM installation on Linux, type rpm -e wingpro8.

To remove an Debian package installation on Linux, type dpkg -r wingpro8.

To remove a tar archive installation on Linux/Unix, invoke the wing-uninstall script in the install

directory listed in Wing's About box. This will automatically remove all files that appear not to have been

changed since installation. It will ask whether it should remove any files that appear to be changed.

macOS

To remove Wing from macOS, just drag its application folder to the trash.

User Settings

You may also want to remove the User Settings directory and cache directories if you don't plan to use

Wing again on your system.

Introduction

36

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/edit/file-sets
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/custom/qt-styles
https://wingware.com/doc/custom/perspectives
https://wingware.com/doc/oscommands/index
https://wingware.com/doc/custom/preferences
https://wingware.com/doc/scripting/index
https://wingware.com/doc/edit/snippets
https://wingware.com/doc/custom/syntax
https://wingware.com/doc/install/user-settings-dir

1.15. Command Line Usage
You can run Wing from the command line as follows:

On Windows, the executable is called wing.exe and is located in the bin directory in your Wing

installation. This is not on the PATH by default, but may be added with the Windows Control Panel.

On Linux, the executable is named wing8 and should be available on the PATH. The executable is

also available as wing in the installation directory, which is not on the PATH by default.

On macOS, the executable is called wing and is located in Contents/Resources within the .app

bundle directory. This is not on the PATH by default, but could be added either by adding that directory

to PATH in ~/.profile (for example,

PATH="/Applications/Wing Pro.app/Contents/Resources:${PATH}"; export PATH) or by placing a

symbolic link (for example, by typing sudo ln -s

/Applications/Wing Pro.app/Contents/Resources/wing wing8 in a directory that is already on the

PATH).

Opening Files and Projects

Once you have established a way to start Wing from the command line, you may specify a list of files to

open after the executable name. These can be arbitrary text files and a project file. For example, the

following will open project file myproject.wpr and also the three source files mysource.py, README,

and Makefile:

wing.exe mysource.py README Makefile myproject.wpr

Wing determines file type by extension, so position of the project file name (if any) on the command line

is not important.

A line number may be specified for the first file on the command line by appending :<line-number> to

the file name. For example, README:100 will position the cursor at the start of line 100 of the

README file.

Command Line Options

The following options may be specified anywhere on the command line:

--prefs-file=fullpath -- Add the given file to the list of preferences files that are opened by the IDE.

These files are opened after the system-wide and default user preferences files, so values in them

override those given in other preferences files.

--new -- By default Wing will reuse an existing running instance of Wing to open files specified on the

command line. This option turns off this behavior and forces creation of a new instance of Wing. Note

that a new instance is always created if no files are given on the command line.

Introduction

37

--reuse -- Force Wing to reuse an existing running instance of Wing IDE even if there are no file names

given on the command line. This just brings Wing to the front.

--settings=fullpath -- Use the given fullpath instead of the default location for the Settings Directory.

--cache=fullpath -- Use the given fullpath instead of the default location for the cache directory.

--verbose -- (Posix only) This option causes Wing to print verbose error reporting output to stderr. On

Windows, run console_wing.exe instead for the same result.

--disable-updates -- Load Wing without applying any updates made since the last installation from an

installer package. If you are having problems with an update, the update can be reverted from the

About box.

--get-login-env=yes|no -- (macOS only) This option specifies whether Wing will get the inherited

environment from a login shell. If this option is not specified, Wing will get the login environment when it

is started from the Finder or via open from the command line. The login environment is the environment

used when you run a shell or python in a Terminal window.

--use-winghome -- (For developers only) This option sets WINGHOME to be used during this run. It is

used internally and by developers contributing to Wing. The directory to use follows this argument.

--use-src -- (For developers only) This option is used to force Wing to run from Python source files even

if compiled files are present in the bin directory, as is the case after a distribution has been built.

--orig-python-path -- (For developers only) This option is used internally to indicate the original Python

path in use by the user before Wing was launched. The path follows this argument.

Introduction

38

https://wingware.com/doc/install/user-settings-dir

Customization
There are many ways to customize Wing in order to adapt it to your needs or preferences. This chapter

describes the options that are available to you.

2.1. High Level Configuration Options
Wing displays a menu icon in the top right of the window, as part of the toolbar. This provides easy

access to some of the most commonly used configuration options.

Display

Dark Mode toggles between light and dark display modes. The default light mode uses color palette

Classic Default with native UI, while the default dark mode uses color palette One Dark applied

throughout the UI. Wing will replace these defaults with the most recently used configuration made with

the Display Theme and Editor Theme preferences.

Presentation Mode enters a mode where Wing scales the entire user interface, for presentations,

meetings, or other situations where temporary scaling is useful. Entering and exiting this mode requires

restarting the IDE, but your current project will be reopened.

Show Menubar allows toggling the menu bar on Windows and Linux. When the menu bar is hidden, its

menus are included in this configuration menu.

Keyboard

Keyboard Personality selects the overall keyboard emulation mode. Wing can emulate VI/Vim,

Emacs, Visual Studio, Eclipse, and several other editors.

Configure Tab Key changes the action of the tab key. See The Tab Key for details.

Custom Key Bindings can be used to enter additional key bindings for any of Wing's documented

commands or commands added by extension scripts.

Editor

Configure Auto-Completion can be used to control details of how the editor's auto-completer works.

See the Auto-completion for details.

Configure Auto-Editing can be used to control Wing's high-level editing features. See Auto-Editing for

details.

Show Line Numbers shows and hides line numbers in the editor.

Show White Space shows and hides visible space, tab, and end-of-line characters in the editor.

Enable Folding controls whether structural folding is enabled in the editor. See Folding for details.

User Items

Customization

39

https://wingware.com/doc/edit/the-tab-key
https://wingware.com/doc/commands/index
https://wingware.com/doc/scripting/index
https://wingware.com/doc/edit/auto-completion
https://wingware.com/doc/edit/auto-editing
https://wingware.com/doc/edit/folding

Additional items can be added to this menu by writing extension scripts that use the

kContextCommonMenu display context as described in Adding Scripts to the GUI.

2.2. User Interface Options
Wing provides many options for customizing the user interface to your needs, by changing display style

and colors, the number and type of windows, layout of tools and editors, type of toolbar, and text font

and size.

2.2.1. Display Style and Colors

UI Color Configuration

The colors used for the user interface are selected with the User Interface > Display Theme

preference. The default is to match the native look for the OS as much as possible. Or, you can select a

color palette to apply to the UI. Both light and dark style palettes are available.

Editor Color Configuration

By default, the editor matches the display theme described above. This can be changed with the

User Interface > Editor Theme preference, by selecting one of the available light or dark mode colors

palettes. This affects editor background color and the color of markers on text such as the selection,

debug run marker, caret line highlight, bookmarks, diff/merge annotations, and other configurable

colors. Palettes also define 20 additional colors that appear in preferences menus that are used for

selecting colors.

Most of the defaults set by the color palette preference can be overridden on a value-by-value basis in

preferences. For example, the Editor > Selection/Caret > Selection Color preference is used to

change the text selection color to a value other than the one specified in the selected color palette. Each

such preference allows selection of a color from the current color palette, or an arbitrary color from a

color chooser dialog.

In Wing Pro and Wing Personal, the colors used for syntax highlighting code in the editor can be

configured separately, as described in Custom Syntax Coloring.

Add Color Palettes

Additional color palettes can be defined and stored in the palettes sub-directory of the Settings

Directory. This directory must be created if it does not already exist. Example palettes are included in

your Wing installation in resources/palettes. After adding a palette in this way, Wing must be restarted

to make it available for use.

2.2.2. Windowing Policies

Wing can run in a variety of windowing modes. This is controlled by the

User Interface > Layout > Windowing Policy preference, which provides the following options:

Customization

40

https://wingware.com/doc/scripting/index
https://wingware.com/doc/scripting/gui-contexts
https://wingware.com/doc/custom/syntax
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir

• Combined Toolbox and Editor Windows -- This is the recommended default, with a single

window that contains all the editors and two toolbox areas.

• Separate Toolbox Windows -- This mode moves all the tools out to a separate window.

The windowing policy is used to describe the initial configuration and behavior of windows in the IDE.

When it is changed, Wing will reconfigure your projects to match the windowing policy the first time they

are used with the new setting.

In Wing Pro and Wing Personal, it is possible to create additional windows, and editors and tools can be

moved to a new window or among existing windows without changing the windowing policy. This is

described below.

2.2.3. User Interface Layout

The layout and behavior of the toolboxes, toolbar, and editor area are configurable. This configuration is

stored in your project file and will be restored each time that project is opened. To share a user interface

layout between projects, use shared Perspectives.

Configuring Toolboxes

The contents of the toolbox areas can be configured by right-clicking or using the options drop down in

the toolbox tab area to add or remove instances of tools.

The number of tool box sections Wing shows by default depends on your monitor size. Each of the

toolboxes can be split or joined into any number of sections along the long axis of the toolbox. This is

done with Add Toolbox Split or Remove Toolbox Split in the options drop down menu accessed from

the top right of the toolbox or by right-clicking on the toolbox tabs. The tools will automatically be

reallocated among the new number of toolbox splits.

Toolbox splits can also be added or removed by dragging tools around by their tabs, within each

toolbox, to a different toolbox, or out to a new window. To create a new split, hover over one end of an

existing toolbox split until a red split indicator appears.

The size of splits is changed by dragging the divider between them.

The toolboxes as a whole, including all their tools, can be moved to the left or top of the IDE window

with Move to Left or Move to Top in the options dropdown or right click menu. Individual splits or the

whole toolbox can also be moved out to a new window from here.

Using the Toolboxes

All the available tools are enumerated in the Tools menu, which will display the most recently used tool

of that type or will add one to your window at its default location, if none is already present.

The Set Key Binding item in the options drop down menu can be used to assign a key binding to a

particular tool.

Customization

41

https://wingware.com/doc/custom/perspectives

Clicking on an already-active toolbox tab will cause Wing to minimize the entire toolbox so that only the

tabs remain visible. Clicking again will return the toolbox to its former size. The F1 and F2 keys also

toggle between these modes.

The command Maximize Editor Area in the Tools menu (Shift-F2) can be used to completely hide and

later reshow both tool areas and the toolbar.

Configuring the Toolbar

Wing's toolbar can be configured by right-clicking on it to change the icon size and style, to select which

toolbar groups are shown, to turn tooltips on and off, and to customize the icon colors or add custom

tools.

The toolbar can also be hidden completely with the User Interface > Toolbar > Show Toolbar

preference.

Configuring the Editor Area

Editors can be dragged by their tabs to move them to a new split or out to a new window. To create a

new split, drag onto the editor surface area and pause above the top, right, left, or bottom portion of the

editor until a red split indicator appears. The options drop down menu, accessed from the top right of

the editor area or by right-clicking on the editor header, can also be used to add or remove splits.

By default, when multiple splits are shown, all the open files within the window are available within each

split, allowing work on any combination of files or different parts of the same file. To open files in only

one split, uncheck Show All Files in All Splits in the options drop down and then close unwanted

duplicates.

In the same menu, Hide Notebook Tabs can be used to replace editor tabs with a popup menu that

selects among open files. This may be preferable, when many files are open.

Other options in the drop down menu control tab order and sorting of the symbol index menus, among

other things.

Creating Additional Windows

In addition to moving existing editors or tools to new windows, Wing Pro and Wing Personal can also

create new tool windows (initially with a single tool) and new document windows from the Window

menu.

2.2.4. Text Font and Size

Wing tries to find display fonts appropriate for each system on which it runs, but most users will want to

customize the font style and size used in the editor and other areas of the user interface. This can be

done with the User Interface > Fonts > Editor Font/Size and

User Interface > Fonts > Display Font/Size preferences.

For information on altering colors used for syntax highlighting in the editor, see Custom Syntax Coloring.

Customization

42

https://wingware.com/doc/custom/syntax

2.3. Keyboard Personalities
The default keyboard personality for Wing implements the most common keyboard equivalents found in

a many text editors.

Note

Before doing anything else, you may want to set Wing's keyboard personality to emulate another

editor, such as VI/Vim, Emacs, Visual Studio, Eclipse, XCode, MATLAB, or Brief. This is done

with the Edit > Keyboard Personality menu or with the User Interface

> Keyboard > Personality preference.

See the Key Binding Reference for a list of the key bindings supported for each keyboard

personality.

Under the VI/Vim and Emacs personalities, key strokes can be used to control most of the editor's

functionality, by interacting with a 'mini-buffer' at the bottom of the IDE window where the current line

number and status messages are displayed.

Other preferences that alter keyboard behavior include User Interface > Keyboard > Tab Key Action

and Editor > Auto-completion > Completion Keys.

In Wing Pro and Wing Personal it is also possible to add, alter, or remove individual key bindings in

each of these personalities. See the following sub-sections for details.

2.3.1. Key Bindings

The command a key binding invokes may be modified with the User Interface > Keyboard >

Custom Key Bindings preference. A custom key binding will override any binding found in the current

keyboard personality.

To add a binding, click the Insert button, press the key binding you wish to use in the Key field, and

then enter the name of the command to invoke in the Command field. To unbind a key that Wing

defines by default, leave the Command field blank.

To determine what command a key is currently bound to, select Command by Name from the Edit

menu, type describe-key-briefly and then press the key binding followed by Enter.

Key Bindings

Key bindings consist of one or more key presses, including any regular key and one or more modifier

keys (Shift, Ctrl, Alt, and/or Command). Multiple modifiers may be pressed at once; Ctrl-Shift-X is

distinct from Ctrl-X.

Customization

43

https://wingware.com/doc/keymaps/index

The Shift key is treated as a modifier only for keys where there is a lower case and upper case variant.

For example, Shift-M is a valid binding for capital M while Shift-9 will result in a different key binding

(Parenleft on a US keyboard). The dialog for adding key bindings from the Custom Key Bindings

preference takes care of this detail.

Key bindings may consist of multiple key strokes in a row, such as Ctrl-X Ctrl-U, Ctrl-X A, or

Esc X Y Z.

Commands

The command for a key binding may be any of Wing's internal commands, as documented in the

Command Reference, or (in Wing Pro and Wing Personal) any user-defined command provided by an

extension script.

To disable a key binding, leave the command field blank.

If multiple comma-separated commands are specified, the key binding will execute the first available

command in the list. For example, specifying debug-restart, debug-continue as the command will first

try to restart an existing debug session, and if no debug session exists it will start a new one.

Some commands take arguments, which can be specified in the binding, for example using

enclose(start="(", end=")") in the Command field will enclose the current selection with (). Any

unspecified arguments that do not have a default defined by the command will be collected from the

user, either in a dialog or in the data entry area at the bottom of the IDE window.

Key bindings defined by the keyboard personality or overridden by the Custom Key Bindings preference

will be shown in menu items that implement the same command. If a command is given more than one

key binding, only the last binding found will be displayed, although all the bindings will work from the

keyboard.

The Alt Key on macOS

On macOS, the User Interface > Keyboard > Alt Key preference allows selecting one or both of the

Option keys or the Command keys to act as the Alt key modifier for key bindings.

This preference should be set according to keyboard type, so that key bindings in Wing do not prevent

entering characters composed with the Option keys.

For example, on German keyboards, [,], and other common symbols are entered with using Option

key. In those cases, setting the preference to "Left Option key" frees up the right Option key for

entering characters and dedicates the left Option key to triggering key bindings.

When Command is used for Alt, the binding for Alt-<key> takes precedence over any binding for

Command-<key> for the same key.

Customization

44

https://wingware.com/doc/commands/index
https://wingware.com/doc/scripting/index

2.3.2. Key Maps

Wing ships with several keyboard maps, found at the top level of the installation directory as keymap.*.

These implement the keyboard personalities in the User Interface > Keyboard > Personality

preference.

In order to develop an entirely new key binding, it is possible to create and select a custom key map

with the User Interface > Advanced > Key Map File preference.

In a key map file, each key binding is built from the names listed in Key Names. These names are the

same as the bindings produced when adding a binding with the

User Interface > Keyboard > Custom Key Bindings preference, with some additional options. They

may include:

1. A single unmodified key, which is specified by its name alone. For example, 'Down' for the down

arrow key.

2. Modified keys, which are specified by hyphenating the key names, for example 'Shift-Down' if

pressing the down arrow while Shift is held down. Multiple modifiers may be specified, as in

'Ctrl-Shift-Down'. However, Shift should only be used for keys that have a lower case and upper

case variant. For example, 'Shift-5' is invalid and should be replaced with the key actually

produced (Percent on US keyboards).

3. Multi-part key bindings can be specified by several bindings separated by a space. For example, to

define a key binding that consists of first pressing and releasing Ctrl-X and then pushing the A key

by itself, use 'Ctrl-X A' as the key binding.

4. The special modifier Timeout may be used in multi-part key bindings with otherwise unmodified

keys, to indicate a provisional key that is emitted as a regular key if no matching key binding is

found within the timeout period. For example, Timeout-J K requires typing jk in rapid succession.

If only j is typed, it will be entered after the timeout elapses. If jp is typed and there is no binding for

Timeout-J P then both j and p will be entered as soon as p is pressed. Bindings using Timeout

only work while the focus is in the editor. Otherwise, they are ignored. The timeout used is

configured with the User Interface > Keyboard > Typing Group Timeout preference.

5. The Release modifier can be used with any single-part key binding to specify that a command

should be bound to the release of a key combination. For example, 'Release-Ctrl-X' invokes a

command only when releasing Ctrl-X.

6. Special modifiers are defined for VI/Vim mode: Visual, Browse, Insert, and Replace. These

correspond with the different editor modes, so that the binding will only work in that mode. These

modifiers only work if the User Interface > Keyboard > Keyboard Personality preference has

been set to VI/Vim.

The command portion of the key binding may be any of the commands listed in the Command

Reference. See Key Bindings and the examples below for details.

Customization

45

https://wingware.com/doc/custom/key-names
https://wingware.com/doc/commands/index
https://wingware.com/doc/commands/index
https://wingware.com/doc/custom/key-equivalents

Includes

Key maps can include other keymaps. For example, all the default keymaps include a basic map that

defines the action of the arrow keys, function keys, and other common functionality:

%include keymap.basic

The referenced file must be in the same directory as the keymap that contains the include, or a full path.

Examples

Here is an example that adds a key binding. If the command already has a default key binding, both

bindings will work:

'Ctrl-X P': 'debug-attach'

This example undefines a key binding from an earlier definition (usually, from an included key map file):

'Ctrl-C Ctrl-C': None

These can be combined to change the key binding for a command without retaining its default key

binding:

'Ctrl-C Ctrl-C': None
'Ctrl-G': 'debug-continue'

Wing always retains only the last key binding for a given key combination. This example binds Ctrl-X to

quit and no other command:

'Ctrl-X': 'debug-stop'
'Ctrl-X': 'quit'

If multiple commands are separated by commas, Wing executes the first command that is available. For

example, the following will restart the debug process whether or not one is already running:

'Ctrl-X': 'debug-restart, debug-continue'

Command arguments can be specified as part of the binding. Any unspecified arguments that do not

have a default will be collected from the user in a dialog or in the data entry area at the bottom of the

IDE window:

'Ctrl-X P': 'show-panel(panel_type="debug-console")'

Customization

46

If Keyboard Personality is set to VI/Vim, modifiers corresponding to the editor modes restrict availability

of the binding to only that mode:

'Visual-Ctrl-X': 'cut'

Here is an example that combines several of the above with the Release modifier:

'Shift-Space': 'debug-show-value-tips', 'send-keys(keys=" ")'
'Release-Shift-Space': 'debug-hide-value-tips'

2.3.3. Key Names

The best way to obtain the names of keys is to enter a new key binding in the

User Interface > Keyboard > Custom Key Bindings preference. Alternatively, refer to the following

enumeration of all keys.

Modifier keys supported for key bindings are:

• Ctrl -- Either Control key.

• Shift -- Either Shift key. This modifier is ignored with some key names, as indicated below.

• Alt -- Either Alt key. This is not recommended for general use because bindings using it tend to

conflict with menu accelerators and operating system or window manager operations. On macOS,

the User Interface > Keyboard > Alt Key preference is used to configure which keys invoke

Alt-key bindings.

• Command -- Mac OS Command key. This is intended for use only on macOS.

Unmodified keys such core western alphabet keys are specified as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Digits and most punctuation can be specified but the Shift modifier will be ignored to accomodate

different international keyboards:

0 1 2 3 4 5 6 7 8 9

` ~ ! @ # $ % ^ & * () - _ + = [] { } \ | ; : ' " / ? . > , <

Special keys can also be used with any modifier:

Escape, Space, BackSpace, Tab, Linefeed, Clear, Return, Pause, Scroll_Lock,

Sys_Req, Delete, Home, Left, Up, Right, Down, Prior, Page_Up, Next,

Page_Down, End, Begin, Select, Print, Execute, Insert, Undo, Redo, Menu,

Find, Cancel, Help, Break, Mode_switch, script_switch, Num_Lock,

F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, L1, F12, L2, F13, L3, F14, L4,

F15, L5, F16, L6, F17, L7, F18, L8, F19, L9, F20, L10, F21, R1, F22, R2,

Customization

47

F23, R3, F24, R4, F25, R5, F26, R6, F27, R7, F28, R8, F29, R9, F30, R10,

F31, R11, F32, R12, F33, R13, F34, R14, F35, R15,

Additional key names that also ignore the Shift modifier include:

AE, Aacute, Acircumflex, Adiaeresis, Agrave, Ampersand, Any, Apostrophe, Aring,

AsciiCircum, AsciiTilde, Asterisk, At, Atilde, Backslash, Bar, BraceLeft,

BraceRight, BracketLeft, BracketRight, Ccedilla, Colon, Comma, Dollar, ETH,

Eacute, Ecircumflex, Ediaeresis, Egrave, Equal, Exclam, Greater, Iacute,

Icircumflex, Idiaeresis, Igrave, Less, Minus, Ntilde, NumberSign, Oacute,

Ocircumflex, Odiaeresis, Ograve, Ooblique, Otilde, ParenLeft, ParenRight,

Percent, Period, Plus, Question, QuoteDbl, QuoteLeft, Semicolon, Slash, Space,

THORN, Uacute, Ucircumflex, Udiaeresis, Ugrave, Underscore, Yacute, acute,

brokenbar, cedilla, cent, copyright, currency, degree, diaeresis, division,

exclamdown, guillemotleft, guillemotright, hyphen, macron, masculine, mu,

multiply, nobreakspace, notsign, onehalf, onequarter, onesuperior, ordfeminine,

paragraph, periodcentered, plusminus, questiondown, registered, section,

ssharp, sterling, threequarters, threesuperior, twosuperior, ydiaeresis, yen

2.4. Preferences
Wing provides many preferences to control the behavior of the IDE. These are available from the

Preferences item in the Edit menu, or Wing Pro menu on macOS. Preferences are organized by

category. Documentation for each preference is displayed when the mouse is hovered over it.

All preferences are also documented in the Preferences Reference.

2.4.1. Preferences File Layers

Wing stores preferences in four layers, as follows:

1. For each preference, Wing defines a default internally.

2. A preferences file that defines defaults for all users may be placed inside the Install Directory

listed in Wing's About box.

3. Each individual user's preferences file is stored in their User Settings Directory.

4. Additional preferences files may be specified on the command line with one or more --prefs-file

options. For example:

wing8 --prefs-file=/path/to/myprefs

Values found in a lower layer override values found higher up.

Customization

48

https://wingware.com/doc/preferences/index
https://wingware.com/doc/install/user-settings-dir

When preferences are changed, Wing writes the changes to the lowest file present on the above list,

either the last file specified with --prefs-file or the preferences file in the Settings Directory. Wing will

never modify the installation-wide preferences file.

If a preference is set to the default value, as determined by the layers further up the list, then Wing

removes that value from the writeable preferences file. This means that the effective value of a

preference can change in later IDE sessions even if the last file on the list above is unchanged. This is

by design, to allow inheriting centrally managed default values.

2.4.2. Preferences File Format

While we recommend using the preferences dialog to alter preferences, some users may wish to edit

the underlying text files manually.

The preferences file format consists of a series of sections separated by bracketed headers such as

[user-preferences]. These headers are used internally to identify the file from which a value was read,

when there are multiple preferences files active.

The body of each section is a sequence of lines, each of which is a name=value pair. All of these are

read in from each preferences file, with later like-named settings overwriting earlier ones.

Each preference name is in domain.preference form, where domain is the IDE subsystem affected and

preference is the name of the specific preference (for example, edit.tab-size defines the source editor's

tab size).

Preference values can be any Python expression that will evaluate to a number, string, tuple, list, or

dictionary. The data type is defined by each preference and will be verified as the file is read into Wing.

Long lines may be continued by placing a backslash (\) at the end of a line and comments may be

placed anywhere on a line by starting them with #.

If you wish to write preferences files by hand, refer to the Preferences Reference for documentation of

all available preferences.

2.5. Custom Syntax Coloring
There are two ways to configure syntax highlighting in Wing: Minor adjustments can be made in

preferences, and comprehensive configuration can be achieved by creating a syntax color specification

file.

Minor Adjustments

For minor tweaks to syntax coloring in the editor, use the Editor > Syntax Coloring >

Syntax Formatting preference. For each supported file type, and each lexical state for the file type, it is

possible to set the foreground and background colors, to use bold or italic font, and to fill the end of line

character so it appears as a solid block of color.

Customization

49

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/preferences/index

Comprehensive Changes

For more comprehensive changes to syntax coloring, textual syntax coloring specifications can be

placed into a directory called syntax within the Settings Directory. This directory must be created if it is

not already present.

Your custom syntax coloring configuration files can be modeled on the system-wide defaults, which are

stored in resources/syntax within the Install Directory listed in Wing's About box. Copy only the files

you intend to edit. Any values missing from these files cause Wing to fall back to the system-wide

defaults.

Wing must be restarted to pick up changes made in these files. To make this easier to do while working

on syntax color configurations, bind a key to the command restart-wing or right-click on the toolbar to

add an icon for this command.

Overriding Preferences

Note that any non-default syntax coloring preferences will take precedence over syntax files found in

the settings directory or system-wide. So if you have previously set syntax colors in preferences, you

will need to undo those settings. One way to do this is to edit the preferences file in your Settings

Directory and remove the value for edit.syntax-formatting. You'll need to do this when Wing is not

running, or edit a copy of the file in Wing and move it into place while Wing is not running.

Color Palette-Specific Configuration

To override syntax colors only for one particular color paletted listed in the User

Interface > Editor Theme preference, place the syntax file in a sub-directory of the syntax directory

whose name matches the palette specification file name. For example, use

syntax/black-background/python.stx to specify colors to use in Python files only with the Black

Background color palette.

Print-Only Colors

To override syntax colors for printing only, place the syntax file in a print sub-directory of the syntax

directory. For example, use syntax/print/python.stx to specify colors to use in Python files when

printing.

Automatic Color Adjustment

If the color palette selected with the User Interface > Editor Theme preference uses a non-white

background for the editor, then Wing will automatically adjust all configured foreground colors when

necessary to ensure that the text remains visible. This avoids the need to create completely new color

configurations for different editor background colors.

Customization

50

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir

This feature applies both to colors set in preferences and colors in a *.stx file. However, automatic color

adjustment is disabled when using a palette-specific syntax configuration file, as describe above, since

in that case the colors are being designed for a specific background color.

Color Names for Python

The syntax color names shown in preferences and the *.stx files vary by file type. For Python they are

defined as follows:

• default -- any text that is not covered by the following

• commentline -- a comment starting with a single #

• number -- any integer, float, binary, octal, or hexadecimal number

• string -- a string with double quotes "like this"

• character -- a string with single quotes 'like this'

• word -- any Python keyword, like if, else, for, try, etc.

• triple -- a triple quoted string with single quotes '''like this'''

• tripledouble -- a triple quoted string with double quotes """like this"""

• classname -- the name of a class when just after the keyword class

• defname -- the name of a function or method when just after the keyword def

• operator -- any operator, like +, -, /, ==, and so forth

• identifier -- any variable including function or class names if not at point of definition

• commentblock -- a comment starting with ##

• stringeol -- indicates an unterminated string

• word2 -- any Python builtin like open, file, ord, int, isinstance, and so forth

• decorator -- a function, method, or class decorator starting with @

• fstring -- a double-quoted f-string f"like this"

• fcharacter -- a single-quoted f-string f'like this'

• ftriple -- a triple quoted f-string with single quotes f'''like this'''

• ftripledouble -- a triple quoted f-string with double quotes f"""like this"""

2.6. Perspectives
Wing Pro and Wing Personal allow you to create and switch between particular arrangements of the

IDE's tools. This allows adjusting the user interface for particular kinds of work, such as editing, testing,

debugging, working on documentation, and so forth.

These subsets, or perspectives, are named and then accessed from the Tools menu, which provides a

sub-menu for switching between them. The current perspective's name is shown in [] brackets in the

lower left of Wing's window.

Customization

51

Perspective Manager

Manage Perspectives in the Tools menu displays the Perspective Manager. This dialog shows the

name of each perspective, whether or not the perspective is shared by all projects, whether or not the

perspective is auto-saved, the perspective style, and the key binding (if any) that is assigned to it.

The name of a perspective can be changed by clicking on the name within the list and editing it in place.

When perspectives are shared, they are stored in the shared perspectives file, which is configured with

the User Interface > Perspectives > Shared Perspective File preference, instead of in the project file.

This makes the shared perspectives available to all projects, or potentially to multiple users. When

multiple instances of Wing share this file, Wing will watch for changes and auto-reload the set of

perspectives into each instance of Wing, as another instance makes changes. Note that when a shared

perspective is un-shared, it is moved into the project currently open in the instance of Wing that

un-shared it.

The perspective style can be used to control how much state is stored in the perspective: By default

Wing stores only the overall layout of the GUI and set of tools present. Setting this to "Tools and

Editors" will cause the perspective to control also which editors are open. Setting it to "All Visual State"

will store also the detailed state of the tools and editors, including scroll position, selection, search

strings, tree expansion states, and so forth.

When a key binding is defined, that key sequence will cause Wing to switch to the associated

perspective.

Perspective Manager Context Menu

The Perspective Manager provides the following functionality in its context (right-click) menu:

• New creates a new untitled perspective with the current state of the application.

• Duplicate makes a copy of the selected perspective, including its stored application state.

• Delete removes the selected perspective.

• Set Key Binding displays a dialog to set a key binding that will cause Wing to switch to that

perspective.

• Update with Current State replaces the stored state for the selected perspective with the current

application state.

• Restore Saved State loads the state stored in the selected perspective without making that

perspective current.

Preferences

The Perspective Manager's Configure button displays the preferences that control how perspectives

work. These include:

Customization

52

• User Interface > Perspectives > Auto-save Perspectives -- Selects when the current GUI state

should be auto-saved into a perspective before switching to another perspective. Always will

always auto-save all perspectives, Never disables auto-save entirely, Prompt causes Wing to

prompt each time when leaving a perspective, and Configured by Perspective allows the

behavior to be controlled for each perspective, in the Manage Perspectives dialog. The default is

Always so that the last application state is always restored when returning to the perspective.

Disabling auto-save can be useful for perspectives that should always start with a previously

stored fixed state.

• User Interface > Perspectives > Shared Perspective File -- This is used to specify where

shared perspectives are stored on disk. The default is a file perspectives in the Settings Directory.

Auto-Perspectives

Auto-perspectives can be used to automatically switch between the built-in perspectives edit and

debug when debugging is started and stopped. When this is enabled, Wing will show fewer tools when

editing and most of the debugging tools only while debugging. If the user alters which tools are shown

from the defaults, this will be remembered the next time debug is started or stopped.

Auto-perspectives are off by default and can be turned on with the Automatic Perspectives attribute

under the Debug tab in Project Properties.

Once this is enabled, Wing will save the unnamed pre-existing perspective as user and will display the

appropriate perspective edit or debug with its default tool set. Note that the perspectives edit and

debug are not created until the first time debugging is started. After that, they appear in the

Goto Perspective sub-menu in the Tools menu and in the perspective manager.

Restoring the Default Toolset

In Wing Pro, the Tools menu item Restore Default Toolset will restore the tools appropriate for the

current perspective. The state that is restored will differ for edit, debug, and other perspectives.

2.7. File Filters
The Files > File Types > File Filters preference allows you to define filters that constrain file selection

for the project and searching. When adding or editing a filter, the following information may be entered:

• Name -- The display name for the filter

• Includes -- A list of inclusion criteria, each of which contains a type and a specification. A file will

be included by the filter if any one of these include criteria matches the file.

• Excludes -- A list of exclusion criteria, any of which can match to cause a file to be excluded by

the filter even if one or more includes also matched.

The following types of include and exclude criteria are supported:

Customization

53

https://wingware.com/doc/install/user-settings-dir

• Wildcard on File Name -- The specification in this case is a wildcard that must match the file

name. The wildcards supported are * to match any string, ? to many any single character, [seq] to

match any character in a sequence, and [!seq] to match any character not in a sequence.

Sequences may be a list of characters or a range specifier such as a-z or 0-9. If the specification

contains no wildcard characters, it is treated as a file extension.

• Wildcard on Directory Name -- The specification in this case is a wildcard that must match the

directory name.

• Mime Type -- The specification in this case names a MIME type supported by Wing. If additional

file extensions need to be mapped to a MIME type, use the Files > File Types > Extra File Types

preference to define them.

Once defined, filters are presented by name in the Search in Files tool's Filter menu, and in the

Project tool's Directory Properties.

Any problems encountered in using the file filters are reported in the Messages tool.

Customization

54

Project Manager
Wing's Project manager provides quick access to the files in your software development project and

collects information needed by Wing's debugger, editor, search, version control, and other features.

3.1. Creating a Project
To create a new project, use New Project in the Project menu. This dialog prompts you to select or

create a source directory to use with your new project (either on the local host or a remote system), and

to select or create a Python environment. You will also be able to specify a revision control repository to

clone into a newly created directory, and any packages to install into a newly created Python

environment. The Python environment may be a base Python install, a virtualenv, a pipenv-managed

env, an Anaconda env, or an container environment managed by Docker, Docker Compose, Vagrant, or

LXC/LXD.

Select the Host

The first step is to select the host where your source directory will be located. The default is the local

host. Any remote host, VM, or container that is accessible by ssh may also be used with Wing's remote

development capability. If you wish to access a remote system for which you don't already have a

remote host configuration, you can add one with Create Configuration in the Host popup menu.

Note that if you are using containers you will want to select Local Host since the master copy of your

source directory is stored locally. You can configure and select the containerized Python environment

later in the project creation process.

Select the Source Directory

Next you will select whether you plan to use an existing source directory or create a new one. The

options are:

(1) Create Blank Project creates a new empty untitled project for subsequent manual configuration.

When this value is selected the dialog's Next button is replaced with Create Project and the project is

created immediately from there.

(2) Use Existing Directory allows you to select an existing source directory from the host selected

above. This directory will be added to your project and scanned to detect whether it implies the Python

environment that should be used by your project. If a virtualenv is found in top level of the directory, or if

the directory is managed by pipenv, then Wing changes the Next button in the dialog to Create Project

and creates the project immediately using the found Python environment.

(3) Create New Directory -- will create a new directory with selected name and parent directory. You

may optionally choose to clone a revision control repository into the new directory and select a test

framework to use with it.

Project Manager

55

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts

Whether using an existing directory or creating a new one, Project Type may be selected for certain

commonly used Python frameworks. This causes Wing to configure the project in ways specific to that

framework. For example, for Flask child process debugging is enabled so Flasks's reload feature may

be used with Wing's debugger, Django enables debugging of Django templates, and SciPy and others

enable special support for interactive plots.

Select the Python Environment

Unless you are creating a new blank project or using an existing directory that implies the Python

environment to use, you will be presented with options for selecting or creating a Python environment

after pressing the Next button in the New Project dialog. The options here are:

(1) Use Existing Python selects an existing Python installation, virtualenv or Anaconda environment,

or an existing container or cluster such as those provided by Docker, Docker Compose, and LXC/LXD.

Use Default selects the latest found Python version on your system.

Note

If you selected a remote host on the previous screen, Use Default is replaced with

Use Remote Host Config, which causes Wing to use the Python that you selected when you

set up your remote host configuration. In this case, no other option to select an existing Python is

present, but you can create a new environment as described under (2) below.

Command Line is used to select an existing base installation of Python. You will need to enter the full

path to the python, python2, python3, or python.exe executable. This is the value of sys.executable

after import sys in the Python you wish to use. Wing presents a menu of found Python installations in

the drop down to the right of the entry area.

Activated Env activates and uses a virtualenv or Anaconda environment. You will need to enter the full

path to the activate or activate.bat for a virtualenv, or the Anaconda environment's activate command.

Recently used and found environments are listed in the drop down menu to the right of the entry area.

Note that an activated env will not work if the full path to the activate command contains spaces. In that

case, use the Command Line option as described above.

Container uses an existing Python container managed by Docker or LXC/LXD. You will need to select

an existing container configuration or add a new one with the New button. Adding a new configuration

here tells Wing how to use your existing container but does not create a new container environment. To

create a new container environment, select Create New Environment as described below.

Cluster works in a similar way, but for clusters of Python containers managed by Docker Compose.

Project Manager

56

See Working with Containers and Clusters for more information on using containers and clusters in

Wing Pro.

(2) Create New Environment creates a new Python environment along with your project. You can

select the type of environment from the popup that appears when this option is chosen. Environments

may be managed by virtualenv, pipenv, Anaconda's conda, or Docker. Each of these choices displays a

different environment creation form, as described in the next section.

3.1.1. Creating Python Environments

Wing Pro can create a number of different kinds of Python environments along with your project:

virtualenvs, pipenvs, Anaconda envs, or Docker containers. These are selected from the drop down

menu next to Create New Environment on the second page of the New Project dialog. Wing presents

different configuration options for each type of environment, as detailed below.

Creating a Virtualenv

You will be prompted for the name and parent directory of the new virtualenv. The name defaults to the

name of the new or existing source directory chosen earlier in the New Project dialog, and the parent

directory defaults to a central location inside Wing's Settings Directory or the most recently used

directory.

You can use Packages to Install to select any packages you want to install while creating the new

environment. This may be done by entering the package specifications or selecting an existing

requirements.txt, Pipfile, or Anaconda environment.yml.

Note

Important! Please note that careless package selection may install malware on your computer.

Be sure to read and understand Package Security before installing any packages!

The Python Executable is used to select the base Python installation to use with the new virtualenv.

This determines the Python version that will be used.

Selecting Upgrade pip causes Wing to upgrade pip, the Python package manager, after setting up the

virtualenv. This is recommended since virtualenv usually installs an outdated version of pip.

Checking Inherit global site-packages can be used to allow the virtualenv access to packages that

have been installed into the selected base Python installation. This is not recommended because it may

defeat the primary purpose of virtualenvs, to provide a uniform replicable environment.

When a new virtualenv environment is created, Wing writes a requirements.txt file for package

management into the selected source directory. In Wing Pro, subsequent package installation, removal,

Project Manager

57

https://wingware.com/doc/proj/container-intro
https://wingware.com/doc/proj/user-settings-dir
https://www.python.org/dev/peps/pep-0440/#version-specifiers
https://wingware.com/doc/packages/security

upgrade, and inspection is possible through the Packages tool, which will maintain the

requirements.txt file on request.

Creating a pipenv Environment

pipenv is a tool that automates maintenance of a virtualenv and package management, with a focus on

the ease of replication of identical package environments for developers working on the same source

base. It can be used to create and manage a new virtualenv for either an existing or newly created

source directory. Since pipenv manages the virtualenv automatically in a hidden area outside of the

source directory, there is no option to select the location for the new virtualenv.

Any Packages to Install and Python Executable`` may be entered as described for virtualenv above.

When a pipenv creates a new environment, it will write Pipfile and Pipfile.lock into the selected source

directory. These files are used by pipenv to manage package installation, dependencies, and upgrades.

Creating an Anaconda Environment

Anaconda is a Python distribution that provides its own package manager.

Somewhat like pipenv, the conda package manager can store its environments in a hidden centrally

managed location, allowing reference to them by name. To store the environment elsewhere, set the

Parent Directory to Selected Directory and enter the full path of the parent directory for the new

environment.

Anaconda Installation is used to select the Anaconda base installation to use in creating the new

environment.

Packages to Install selects any packages to install in the new environment, as described for virtualenv

above.

Creating a Docker Environment

There are two options for creating a new Docker environment along with your new project: (1) You may

use an existing already-created Docker container as your Python environment, or (2) you may create a

new Docker container along with your project and configure Wing to use it. The former only creates a

container configuration that allows Wing to access the Docker container, while the latter also creates a

new Docker container.

These options are described in detail in Using Wing Pro with Docker.

3.1.2. About Project Configuration

Wing uses projects as a way to configure the environment needed by your code, and to distinguish

between source files that are part of your code base (those you are likely to want to open, edit, search,

etc.) and those that are just in libraries or packages that you use (and should be discovered by Wing's

code intelligence features).

Project Manager

58

https://wingware.com/doc/packages/intro
https://pipenv.pypa.io/
https://www.anaconda.com/
https://wingware.com/doc/howtos/docker

Once a project has been set up from the New Projects dialog, the project's configuration can be viewed

and modified from Project Properties in the Project menu. The configuration is described in more

detail in Project Properties.

To see or change which files are in your project, use the Project tool in the Tools menu, as described

below.

Python Environment

Whether you do it from the New Project dialog or later in Project Properties, it is important to set up

the Python environment that Wing should be using with your code. This affects the contents of the

auto-completer, the display of code warnings and errors, and many other features that need to

distinguish between syntactic and other differences across Python versions. It also allows Wing to find

and analyze all the third party packages that you may use in your code.

In addition to setting Python Executable, you may also need to set Python Path or Environment in

Project Properties so Wing can successfully find and inspect all the modules that your code uses.

Setting Python Path is usually only necessary if your code modifies sys.path at runtime. Setting

Environment is (relatively rarely) needed to allow Python modules to load and use DLLs.

Adding Files and Directories

Adding your source files to the project tells Wing which files you are working on, which is important for

searching, Open From Project, and other features. Usually only the source base you are working on

should be added to the project, while Python's standard libraries and other frameworks and libraries

used by your code can be left out of the project and instead found, as needed, through the

Python Path. Packages that are installed into Python will be found automatically.

If you did not add all your source code from the New Project dialog, you can do so with

Add Existing Directory in the Project menu. This allows you to control which files to include, and

whether or not sub-directories are included. The list of files shown in the project updates as files

matching the criteria are added and removed on disk.

Individual files can be added with Add Current File and Add Existing File.

Add New File can be used to create a new file and simultaneously add it to your project.

A subset of these options can be accessed from the context menu that appears when right-clicking on

the Project tool.

Removing or Omitting Files and Directories

To remove a specific file or directory, select it and use Remove Selected Entry in the Project menu or

Remove/Exclude From Project in the right-click context menu on the Project tool.

If the removed file or directory is part of another directory that has been added to the project, the

removal is remembered as an exclusion that can be cleared from Directory Properties, which are

accessed by right clicking on the parent directory in the Project tool.

Project Manager

59

https://wingware.com/doc/proj/project-properties

Saving a New Project

The New Project dialog automatically saves your new project if you are creating a new source directory

along with it. If you selected an existing source directory or created a new blank project, then your

project is created as an untitled unsaved file. In this case you will need to save it with Save Project in

the Project menu. Once a project file has been saved the first time, it will be re-saved automatically as

you work with Wing and there is no need to save it manually again unless you wish to move the project

file, as described in the next section.

3.2. Moving Projects
Wing's project files reference the files and directories that were added to the project by using relative

paths, which it interprets from the location of the project file.

If you need to move a project file to a new location relative to the location of the files and directories it

references, without also moving those files and directories, use Save Project As... in the Project menu.

This will update the relative paths so that the project will continue to work from its new location.

3.3. Display Options
The project can be set to show your files in one of several ways, using the Options menu in the top

right of the Project tool:

• View As Tree -- This displays the project files in tree form. The tree structure is based on the

relative path from the project file to the files and directories added to the project.

• View As Flattened Tree -- This view shows files organized according to their location on disk.

Each directory is shown at the top level with path names shown as relative paths based on the

location of the project file.

The Options menu also contains items that control the sorting of files within their directory:

• Sort by Name -- Show files in alphabetical order

• Sort by Mime Type -- Show files grouped by mime type

• Sort by Extension -- Show files grouped by their extension

The List Files Before Directories option controls whether files or directories are shown first in the tree

view.

3.4. Opening Files
Files can be opened from the Project tool by double clicking or middle clicking on the file name, or by

right-clicking and using the Open in Wing menu item.

Project Manager

60

Files can be shown within their directory in the native file explorer for the OS by right-clicking on the item

in the Project tool and selecting Show in Explorer (on Windows), Show in Finder (on macOS), or

Show Directory (on Linux).

Files may also be opened using an external viewer or editor by right-clicking on the file and using the

Open in External Viewer item. On Windows and macOS, this opens the file as if double clicked in the

OS file browser. On Linux, the preferences Files > External Display > File Display Commands and

Files > File Types > Extra File Types are used to configure how files are opened.

Navigation Options

The Options menu in the Project tool provide options that control how navigation of the directory tree

works:

Follow Selection can be checked to cause Wing to open any file selected in the Project tool,

regardless of how the selectioni is mode. To avoid clutter, files are visited in transient mode, except if

double clicked.

Follow Current Editor causes the current selection on the Project tree to track the current editor file.

Once it has the focus, the Project tool's tree is navigable with the keyboard, using the up/down arrow

keys, page up and page down, and home/end. Use the right arrow key on a parent to display its

children, or the left arrow key to hide them. Whenever a file is selected, pressing enter will open that

item into an editor in Wing.

3.5. File Operations
The Project tool's right-click context menu can be used to execute, debug, and search files, interact

with the active revision control system, and define named sets of files to edit and search. The set of

operations that will be shown in the context menu are configurable from the menu, with

Configure Menu.

Executing

You can execute Makefiles, Python source code, and any executable files by right-clicking on the

Project tool and selecting Execute Selected. This executes outside of the debugger with any

input/output occurring in the OS Commands tool, where the runtime environment for the execution can

be configured.

Debugging

Python files listed in the Project tool can be debugged by right-clicking and selecting Debug Selected.

A particular file can be marked as the main entry point by selecting Set as Main Entry Point. Once this

is done, the file will be debugged when starting debug from the Debug menu or toolbar. For more

information on debugging, see Debugger.

Searching

Project Manager

61

https://wingware.com/doc/edit/transient
https://wingware.com/doc/oscommands/index
https://wingware.com/doc/debug/index

The contents of files and directories may be searched from the Project tool by right-clicking on them

and selecting Search in Selected. This displays the Search in Files tool and sets the Look in search

scope to the selected item. Focus is placed on the Search field so the search string can be entered.

Version Control

In Wing Pro, the Project tool will show version control status superimposed on the file and directory

icons, and version control operations are available in the right-click context menu. See Integrated

Version Control for details.

File Sets

Arbitrary sets of files can be selected on the Project tool by clicking, shift-clicking, and ctrl-clicking (or

command-clicking on macOS). When this is done, the set of files can be named for later reference by

right-clicking on one of the selected items and choosing Name Selected File Set. The file set will then

appear in the File > File Sets menu. See File Sets for details.

3.6. Creating, Renaming, and Deleting Files
The Project tool supports creating, renaming, and deleting files and directories on disk. In Wing Pro,

changes are tracked also into any active version control system's repository.

Creating Files, Directories, and Packages

The right-click context menu in the Project tool contains items for creating new files, directories, and

Python packages:

• Create New File prompts for a new file's name and opens the file in the editor. The file is not

actually created on disk until it is saved from the editor. If a version control system is active, the file

will automatically be added to the repository.

• Create New Directory prompts for a new directory's name and creates the directory on disk. The

directory will automatically be added to the active version control repository, if that version control

system tracks empty directories.

• Create New Package prompts for a new directory's name, creates the directory on disk, creates a

file __init__.py inside that directory, and opens it in the editor. If a version control system is active,

the file and directory will automatically be added to the repository.

Renaming Files and Directories

Files and Directories can be renamed by clicking on an already-selected item in the Project tool and

editing the name in place. When Enter is pressed to complete the edit, the item will be renamed on disk.

In Wing Pro, if there is an active version control system then the rename will also be tracked in the

repository.

Items can also be renamed by right-clicking on them and selecting Rename.

Deleting Files and Directories

Project Manager

62

https://wingware.com/doc/edit/search-in-files
https://wingware.com/doc/versioncontrol/index
https://wingware.com/doc/versioncontrol/index
https://wingware.com/doc/edit/file-sets
https://wingware.com/doc/versioncontrol/index
https://wingware.com/doc/versioncontrol/index

Files and Directories can be deleted by right-clicking on an item in the Project tool and selecting

Move to Trash (or Delete on Windows). The item will be moved to the trash or recycling bin provided

by the operating system. In Wing Pro, if there is an active version control system then the removal will

also be tracked in the repository.

3.7. Project Properties
Each project has a set of properties that can be accessed and edited from the Project Properties item

in the Project menu. These are used to configure the Python environment that is used when debugging,

executing, testing, or inspecting Python code for source code analysis. Correct configuration of project

properties is important to auto completion, refactoring, error detection, and other features of the IDE.

Project properties are also used to set options for the project, and to enable and configure extensions

for Django and matplotlib.

Any string value for a property may contain environment and special variable references, as described

in Environment Variable Expansion.

Environment

The following properties control the Python environment:

Python Executable specifies the Python executable that should be used with code in this project. The

default is to use Python found on the PATH, or if none is found there then the latest version found

anywhere on the system. Use Command Line to enter any command that invokes Python with all

provided arguments. This is often set to the value of sys.executable (after import sys) in the selected

Python. A list of all found Python installations is given in the drop down to the right of the entry area.

To use an environment set up by virtualenv or Anaconda, choose Activated Env to enter the full path to

activate or activate.bat for the selected environment. The drop down menu to the right of this field lists

recently used and automatically found environments. If the path to the activate script contains spaces,

this option will not work. In that case, use Command Line as described above.

In Wing Pro, this property can tell Wing to run Python on a container or remote host. On a container,

some of the other properties listed below (as noted) are ignored if the container configuration does not

enable Inherit Project Environment. On a remote host, the default directory used for other fields in

Project Properties, and for adding files and directories to the project, will be the base directory defined

by the selected remote host.

When this property invokes Anaconda Python, Wing will automatically run Anaconda's activate base

before it starts Python. This is needed to avoid failure to import some modules as a result of missing

environment. See About Anaconda Environments in the Anaconda How-To for details.

Python Path sets the PYTHONPATH environment variable to use whenever Python is launched for

debugging, execution, unit testing, or running the Python Shell. When Use default is selected, the

Project Manager

63

https://wingware.com/doc/versioncontrol/index
https://wingware.com/doc/edit/source-code-analysis
https://wingware.com/doc/howtos/django
https://wingware.com/doc/howtos/matplotlib
https://wingware.com/doc/proj/variable-expansion
https://wingware.com/doc/proj/containers
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/anaconda

PYTHONPATH environment variable inherited by Wing at startup is used. Otherwise, when Custom is

selected, the specified PYTHONPATH is used instead.

Setting this property is usually only necessary if your code changes sys.path at runtime in a way that

Wing can't auto-detect or if it depends on PYTHONPATH being set from the outside. You should not

add Python standard library directories here. Python already knows those and Wing will be able to

obtain them by inspecting your selected Python Executable.

This property allows displaying the entered Python Path either as a list or as text using the path

separator appropriate for the OS. If you need to paste in a path, select View as Text first and then

right-click to Paste. The path is stored internally as a list, so the same configuration can work on

multiple OSes.

Both Python and Wing use the selected PYTHONPATH to locate modules that are imported with the

import statement. If necessary directories are missing from the configured path, Python will raise

ImportError for modules it cannot find, and Wing will fail to provide auto-completion, goto-definition,

and other code intelligence on imported modules.

When using a container as the Python Executable, this property is ignored unless the container

configuration enables Inherit Project Environment.

Environment is used to specify values that should be added, modified, or removed from the

environment used for debugging and executing code from Wing, including also when running unit tests

or version control commands. The values defined here are also used to expand environment variable

references used in other properties.

Each entry is in var=value form, without any quotes around the value, and must be specified one per

line. An entry in the form var= (without a value) will remove the given variable so it is undefined.

Note that you are operating on the environment inherited by the IDE when it started and not modifying

an empty environment. On macOS the environment inherited by Wing may differ according to whether

you launched Wing from the command line or with the Finder.

When Use inherited environment is selected, any entered values are ignored and the inherited

environment is used without changes.

When using a container as the Python Executable, this property is not used for debug processes, unit

tests, or OS Commands running on the container unless Inherit Project Environment is checked in

the container configuration.

Package Manager selects the package manager to use with this project. The default choice of

Auto-Detect looks for requirements.txt and Pyfile in the same directory as the Wing project file or in

the configured Project Home Directory (see below) and chooses either pip or pipenv, respectively.

Auto-Update Package Configuration File chooses whether Wing will automatically manage the

package configuration file when installing, removing, or upgrading packages. For pip, this is the

requirements.txt file. For pipenv, this option is ignored since pipenv always manages the Pyfile and

Project Manager

64

https://wingware.com/doc/proj/variable-expansion
https://wingware.com/doc/proj/variable-expansion

Pyfile.lock files automatically. Wing expects the package configuration files in the same directory as

the Wing project file or in the directory set with the Project Home Directory under the Options tab in

Project Properties.

Uninstall Removes Unused Packages controls whether Wing uninstalls unused dependencies after a

package is uninstalled. This includes only packages not mentioned in or used by any of the packages

listed in the package configuration file.

Debug/Execute

The following properties control environment for debugged and executed code:

Main Entry Point defines where execution starts when the debugger is launched from the IDE. The

default is to start debugging in the current editor file. Alternatively, use this property to select a file or

named entry point where debug should always start, regardless of which file is current in the editor.

For files, the debug environment defined in Project Properties may be overridden by clicking on the file

and selecting Properties.

Analyze main entry point for sys.path changes controls whether Wing tries to find changes to

sys.path in your main entry point. It does nothing if you have not set a main entry point from the

Debug/Execute tab in Project Properties.

Debug Child Processes controls whether or not Wing automatically starts debug in child processes

that are launched from a debug process. Choose Use Preferences Setting to use the policy set in

preferences, and Always Debug Child Processes or Never Debug Child Processes to enable or

disable child process debugging in all cases for this project, regardless of the preferences setting. See

Debugging Child Processes for details.

Initial Directory sets the initial working directory used for debugging and executing code. When

Use default is selected, this will be the directory where the debugged or executed file is located. When

Custom is selected, the specified directory is used instead. Use $(WING:PROJECT_DIR) for the

project's directory.

This property also sets the initial directory for the Python Shell, determines how Wing resolves partial

paths on the Python Path for source code analysis, and defines the default initial directory used in OS

Commands. For these, Wing will use the directory of the Main Entry Point in the project as the default

initial directory, or the directory of the project file if there is no defined main entry point.

Build Command specifies a command to execute before starting debug. This is useful to make sure

that extension modules, Cython modules, and other compiled build targets are rebuilt before each run.

The build is configured and run by the OS Commands tool.

Python Options specifies the command line options sent to the Python interpreter while debugging or

executing code. The default of -u sets Python into unbuffered I/O mode, which ensures that the debug

process output, including prompts shown for keyboard input, will appear in a timely fashion.

Project Manager

65

https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/debug/child-processes
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/edit/source-code-analysis
https://wingware.com/doc/oscommands/index
https://wingware.com/doc/oscommands/index
https://wingware.com/doc/oscommands/index

Note that these are not the command line arguments to send to your code, but instead options sent to

Python itself. To send arguments to your code, select Debug Environment from the Debug menu.

Alternatively, right-click on the Python file, select Properties, and then set Run Arguments under the

Debug/Execute tab.

Debug Server Port sets the TCP/IP port on which the debugger listens for externally initiated debug

processes. Using this allows multiple instances of Wing using different projects to concurrently listen for

and accept externally initiated debug connections. See Advanced Debugging Topics for details.

Automatic Perspectives can be enabled to cause Wing to create and automatically switch between

the Edit and Debug perspectives when debugging is stopped and started. See Perspectives for details.

Options

The following project options are provided:

Project Type (Wing Pro only) selects whether or not the project will be shared among several

developers. When shared, the project will be written to two files, *.wpu and *.wpr. The latter can be

checked into revision control and used by other developers or on other machines. See Project Types for

details.

Default File Encoding sets the text encoding to use for files whose encoding cannot be determined

from the contents of the file. This applies to all files edited when the project is open, whether or not they

are part of the project. By default, this falls back to the value set by the Files > Default Encoding

preference.

Project Home Directory sets the base directory for the project. This overrides the project file location

as the directory on which to base relative paths shown in the Project tool and elsewhere. It is also used

as the default directory in which the Python Shell subprocess is launched and for the starting directory

when the Files > Default Directory Policy preference is set to Use Project's Home Directory.

Preferred Line Ending and Line Ending Policy control whether or not the project prefers a particular

line ending style, and how to enforce that style, if at all. By default, projects do not enforce a line ending

style but rather insert new lines to match any existing line endings in the file, and for new files Wing

uses the Files > New File EOL preference.

Preferred Indent Style and Indent Style Policy control whether or not the project prefers a particular

type of indentation style for files, and how to enforce that style, if at all. By default, projects do not

enforce an indent style but rather insert new lines to match any existing indentation in the file, and for

new files Wing uses the Editor > Indentation > Default Indent Style preference.

Auto-reformat and Reformatter select when and how to auto-reformat Python code. See

Auto-Reformatting for details.

Project Manager

66

https://wingware.com/doc/debug/advanced
https://wingware.com/doc/custom/perspectives
https://wingware.com/doc/proj/project-types
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/edit/auto-reformatting

Strip Trailing Whitespace controls whether or not to automatically remove whitespace at the ends of

lines when saving a file to disk. By default, this falls back to the Editor > Strip Trailing White Space

preference.

Extensions

These properties are used to control and configure framework-specific extensions:

Enable Django Template Debugging enables Django-specific functionality that makes it possible for

Wing's debugger to stop at breakpoints and step through Django template files.

Matplotlib Event Loop Support enables Matplotlib-specific event loop support that updates plots

continuously when working interactively in the Python Shell.

Testing

In Wing Pro, these options control Wing's integrated unit testing support:

Default Test Framework defines the testing framework to use for test files that do not specify another

framework in their File Properties.

Test File Patterns specifies which files in the project should be shown as unit tests in the Testing tool.

Files may be selected by using any combination of wildcards and/or regular expressions that are

matched with the full path of all the files in the project.

Output Wrap Column specifies at which column to wrap output from tests, when shown in the Testing

tool.

Environment can be used to select environment for running unit tests that differs from the environment

configured in Project Properties. This also allows setting command line arguments to send to all unit

tests.

Use File Properties on an individual test to set different arguments for each test.

Process Model specifies whether Wing should start one test process for each test module, or one for

each test package. Different testing frameworks and test suites may require one or the other approach.

Number of Processes sets the number of test processes that Wing will run concurrently. Setting this to

a value greater than 1 will allow Wing to take advantage of multiple CPU cores, although it can also

cause problems if tests assume they are run in a series.

Run as Package Modules controls whether a test file in a package is run as part of a package or as a

stand-alone module. The default depends on the requirements of each unit test framework, and some

unit test frameworks ignore this setting.

Save in Project File chooses how much of the test results shown in the Testing tool are saved into the

project file for redisplay in future sessions. Wing can save all results and output, only results to avoid

storing large amounts of output, or no results or output.

Project Manager

67

https://wingware.com/doc/howtos/django
https://wingware.com/doc/howtos/matplotlib
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/testing/index
https://wingware.com/doc/proj/file-properties

VCS

In Wing Pro, this tab can be used to override the Version Control preferences:

Version Control selects whether to use preferences settings, override preferences and disable version

control entirely, or select another version control configuration. This is used most often when working

with a remote host that requires different version control settings than the local host.

3.7.1. Environment Variable Expansion

Any string value for a property may contain environment variable references using the $(name) or

$ {name} notation. These will be replaced with the value of the environment variable when used by the

IDE. If the environment variable is not set, the reference will be replaced by an empty string.

The system environment, as modified by Wing's Project Properties and File Properties, is used to

expand variable references.

Special Environment Variables

The following special variable names are defined by Wing:

• WING:FILENAME -- Full path of currently selected file, either in the editor, in the Project tool or in

other places where files can be selected.

• WING:FILENAME_DIR -- Full path of the directory containing the currently selected file. Note that

the full path does not include a trailing slash.

• WING:LINENO -- Current line number in the currently selected file.

• WING:SCOPE -- Dotted name of the current scope in the currently selected file (if Python)

• WING:PROJECT Full path of current project, including the *.wpr project file name.

• WING:PROJECT_DIR -- Full path of the directory containing the current project's *.wpr. Note that

the full path does not include a trailing slash.

• WING:PROJECT_HOME -- Full path of the Project Home directory, as set in Project Properties;

by default this is the same as WING:PROJECT_DIR. Note that the full path does not include a

trailing slash.

• WING:SELECTION -- The text selected on the current editor, if any.

• WING:HOSTNAME -- (Wing Pro only) The remote configuration's Hostname for the current

project, or the empty string if not a remote project.

• WING:PYTHON -- The Python interpreter being used in the current project.

• WING:INSTALL_DIR -- The installation directory of Wing (sometimes referred to as WINGHOME)

• WING:SETTINGS_DIR -- The user settings directory currently in use by Wing

These can be use the same way as other environment variables, for example ${WING:FILENAME}.

Values based on the currently selected file or selection will evaluate to an empty string when there is

none.

Project Manager

68

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/file-properties

3.8. File Properties
Properties can be set for individual files to define how Wing reads and inspects the file, how it is

displayed in the editor, and to override some of the properties in Project Properties when the file is

debugged, executed, or run as a test.

File properties are set by right-clicking on a file in the editor and selecting Properties, or by by

right-clicking on the Project tool and selecting File Properties.

Any string value for a property may contain environment and special variable references, as described

in Environment Variable Expansion.

File Attributes

Properties on this tab affect how Wing reads and inspects the file:

File Type specifies the file type for a given file, overriding the type determined automatically from its file

extension and/or content. This property should be used only when the

Files > Files Types > Extra File Types preference cannot be used to map the file extension to a mime

type.

Encoding specifies the text encoding for a file when it cannot be determined from the file's contents.

For Python code, it is better to use a PEP 263 coding comment, rather than setting this property, and in

almost all cases the encoding should be utf-8. Similarly, the standard encoding specifier should be used

in HTML, XML, and gettext PO files. This is because saving a file without specifying the encoding inside

the file may make it impossible for other editors or other Wing projects to read the file. Wing stores the

encoding selected by this property in the project, but no mark is written into the source file itself, except

in cases where the selected encoding naturally uses a Byte Order Mark (BOM), such as for utf_16_le,

utf_16_be, utf_32_le, or utf_32_be.

When this property is altered for an already-open file, Wing will ask whether it should reload the file

using the new encoding, save using the new encoding, or to cancel the change. Choose to reload if the

file was opened initially with the wrong encoding.

The encoding cannot be altered with this property if the file contains an encoding comment. In that case,

the file should edited to change the encoding comment and Wing will save the file using the new

encoding.

Line Ending Style specifies which type of line ending to use in the file. When altered, the file will be

opened in an editor and converted to the selected style. The change does not take effect until the file is

saved to disk.

Indent Style can be used in non-Python files to change the type of indent entered into the file for newly

added lines. For Python files, the only way to alter indentation in a file is with the Indentation Tool,

accessed from the Convert Indents button shown next to this property.

Project Manager

69

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/variable-expansion
https://www.python.org/dev/peps/pep-0263/
https://wingware.com/doc/edit/indentation-manager

Read-only on Disk changes the file's permissions on disk. Permissions are changed only for the owner

of the file. On Linux and macOS, group and world permissions are never altered.

Editor

These properties define how the file is displayed in the editor:

Show Whitespace overrides the Editor > Show White Space preference on a per-file basis. When

enabled, Wing shows spaces and tabs as visible characters in the editor.

Show EOL overrides the Editor > Show EOL preference on a per-file basis. When enabled, Wing

shows end-of-line (EOL) characters as visible characters in the editor.

Show Indent Guides overrides the Editor > Indentation > Show Indent Guides preference on a

per-file basis. When enabled, Wing shows vertical indent guides in the editor.

Ignore Indent Errors overrides the Editor > Indentation > Show Python Indent Warning Dialog

preference on a per-file basis. When checked, Wing will never report indent errors for the current file.

Ignore EOL Errors is used when the project's Line Ending Policy is set to Warn About Conflicts, in

order to disable warnings for this file.

Ensure Ending EOL overrides the Editor > Ensure File Ends With EOL When Saving preference on

a per-file basis. When enabled, Wing makes sure there is an end-of-line (EOL) at the end of any file it

saves to disk.

Debug/Execute

This tab is used to control debug and execution environment for the file:

Environment specifies the environment to use when debugging or executing the file and sets run

arguments for it. By default, the environment defined in Project Properties will be used with the specified

run arguments. Alternatively, the file may be launched as a named module using python -m with the

specified run arguments or launched with a different environment defined by a launch configuration.

Show this dialog before each run controls whether this tab is shown in the Debug Environment

dialog each time this file is debugged. If run arguments often need to be changed, it may be easier to

use Named Entry Points to set up different arguments for the same file.

Testing

In Wing Pro, the testing tab contains a subset of the fields described for the Project Properties Testing

tab.

Test Framework selects which test framework should be used with a test file.

Environment specifies the environment and command line arguments to use when running this file as a

test file.

Project Manager

70

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/proj/project-properties

3.9. Sharing Projects
By default Wing Pro stores each project in two similarly named files:

1. The *.wpr file contains the sharable data for the project, which can be checked into revision

control, used on other machines, and shared with other users.

2. The *.wpu file contains user and machine-specific data.

Project Type, under the Options tab of Project Properties can be set to Single User (One File) in

order to store both branches of the project into a single *.wpr file. This is rarely necessary, except when

moving a project to or from Wing Personal, which can only read single-user projects.

Making Project Files More Sharable

In most cases sharing the *.wpr file will just work. File paths are stored in a platform-independent way,

and relative to the project's location on disk, so they will work on different hosts and OSes.

If revision control conflicts arise among different users of a .wpr file, environment variables can be used

in any conflicting Project Properties to make the shared project file uniform for all users and on all

machines. Environment can be inherited from outside of Wing or set using Environment in

Project Properties. The values for the Environment property are stored in the .wpu file and thus may

vary by user.

Changing Which Properties are Shared

Another way to make a project more sharable is to alter which properties are stored in the shared *.wpr

file. This is done by editing the .wpr file with a text editor and setting the proj.shared-attribute-names

property. This is a list of properties to add or remove from the default set of shared properties. Each

item in the list is an property name preceded by - to move a shared property to the non-shared *.wpu

file, or + to move a non-shared property to the shared *.wpr file. This specification is applied to the

default set of shared properties in order to determine which properties to share in this project.

The following example would move the commands defined in the OS Commands tool into the

user-specific *.wpu file and would share the Python Executable and Python Path defined in

Project Properties in the *.wpr file:

proj.shared-attribute-names = [
 '-console.toolbox',
 '+proj.pyexec',
 '+proj.pypath',
]

Note that sharing the Python Executable and Python Path works only if the values are valid and

uniform on all the machines where the project is used. This can be easier to achieve if the values use

environment variable references such as ${WING:PROJECT_DIR}/a/b/c for a path entry.

Project Manager

71

https://wingware.com/doc/proj/variable-expansion
https://wingware.com/doc/proj/variable-expansion

The default set of shared properties is:

proj.shared-attribute-names
proj.directory-list
proj.file-list
proj.file-type
proj.main-file
proj.home-dir
testing.test-file-list
testing.auto-test-file-specs
testing.test-framework
proj.debug-sub-processes
debug.named-entry-points
proj.launch-config
debug.launch-configs
console.toolbox

The names of other potentially sharable properties can be found in the .wpu file.

File Format

The .wpr and .wpu project files use the same textual file format that is used Wing's preferences file.

See Preferences File Format for details.

Note that only non-empty and non-default values are stored in the project file. For example, proj.file-list

will be missing if no files are individually added to the project.

3.10. Launch Configurations
Launch configurations define environment in a way similar to Project Properties but in a form that can

be applied to an individual file through File Properties, in the creation of named entry points, and for

running the Python Shell.

They are managed from Launch Configurations in the Project menu. Use the icons or right click to

create, edit, duplicate, or delete items.

Launch configurations contain the following properties. For all of these, environment variable references

may be used, as described in Environment Variable Expansion:

Python Tab

Python Executable selects the Python that should be used when running code with this launch

configuration. This can be set to Use project setting to use the setting in Project Properties.

Use default uses Python found on the PATH, or if none is found there then the latest version found

anywhere on the system. Use Command Line to enter any command that invokes Python with all

provided arguments. This is the value of sys.executable (after import sys) in the selected Python. A

list of all found Python installations is given in the drop down to the right of the entry area.

Project Manager

72

https://wingware.com/doc/custom/preferences-file-format
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/proj/variable-expansion

To use an environment set up by virtualenv or Anaconda, choose Activated Env to enter the full path to

activate or activate.bat for the selected environment. The drop down menu to the right of this field lists

recently used and automatically found environments. This will not work if the full path to the activate

script contains spaces. In that case, use the Command Line option as described above.

In Wing Pro, this property can tell Wing to run Python on a container or remote host. On a container,

some of the other properties listed below (as noted) are ignored since the container defines the runtime

environment. On a remote host, the default directory used for other fields in Project Properties, and for

adding files and directories to the project, will be the base directory defined for the selected remote host.

When this property invokes Anaconda Python, Wing will automatically run conda activate base before

it starts Python. This is needed to avoid failure to import some modules as a result of missing

environment. See About Anaconda Environments in the Anaconda How-To for details.

Python Path sets the PYTHONPATH that is used by Python to locate modules that are imported with

the import statement. By default this uses the path set in Project Properties. When Use default is

selected, the PYTHONPATH environment variable inherited by Wing at startup is used instead.

Otherwise, when Custom is selected, the specified PYTHONPATH is used.

Setting this property is usually only necessary if your code changes sys.path at runtime in a way that

Wing can't auto-detect or if it depends on PYTHONPATH being set from the outside. You should not

add the Python standard library's PYTHONPATH entries here, since Wing will be able to obtain those

by inspecting your selected Python Executable.

This property allows displaying the entered Python Path either as a list or as text using the path

separator appropriate for the OS. If you need to paste in a path, select View as Text first and then

right-click to Paste.

When using a container as the Python Executable, this property is disabled because Wing instead

obtains the Python path from the container.

Python Options sets the command line options sent to the Python interpreter while debugging or

executing code with this launch configuration. The default uses the setting in Project Properties. Using

-u sets Python into unbuffered I/O mode, which ensures that the debug process output, including

prompts shown for keyboard input, will appear in a timely fashion.

Note that these are not the command line arguments to send to your code, but instead options sent to

Python itself. To send arguments to your code, set Run Arguments under the Environment tab.

Environment Tab

Run Arguments sets the command line arguments to send to code debugged or executed with this

launch configuration. Wing does not interpret backslashes ('') on the command line and passes them

unchanged to the sub-process. The only exceptions to this rule are ' and " (backslash followed by single

or double quote), which allow inclusion of quotes inside quoted multi-word arguments.

Project Manager

73

https://wingware.com/doc/proj/containers
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/anaconda

Initial Directory selects the initial working directory to use for processes started with this launch

configuration. By default this uses the Initial Directory specified in Project Properties. When

Use default is selected, the directory of the launched file is used instead. When Custom is selected,

the specified directory is used instead. Use ${WING:PROJECT_DIR} for the project's directory.

When using a container as the Python Executable, this property is disabled because Wing instead

obtains the initial directory from the container.

Environment specifies environment variables that should be added, modified, or removed from the

environment when using this launch configuration. The drop down menu selects the environment to

modify: Add to inherited environment modifies the environment inherited when Wing was started, and

Add to project values modifies the environment from Project Properties. When Use project values

or Use inherited environment is chosen, any entered values are ignored and the selected

environment is used without changes.

Each entry is in var=value form, without any quotes around the value, and must be specified one per

line. An entry in the form var= (without a value) will remove the given variable so it is undefined.

Note that you are operating on the environment inherited by the IDE when it started (optionally, as

modified in Project Properties) and not modifying an empty environment. On macOS the environment

inherited by Wing may differ according to whether you launched Wing from the command line or with

the Finder.

When using a container as the Python Executable, this property is disabled because Wing instead

obtains the environment from the container.

Build Command sets a command that will be executed before starting debug with this launch

configuration. This is useful to make sure that extension modules, Cython modules, and other compiled

build targets are rebuilt before each run. The build is configured and run by the OS Commands tool.

Shared Launch Configurations

By default each launch configuration is stored in the project file. The Shared checkbox in the launch

configuration dialog causes Wing to store that launch configuration in the Settings Directory instead, in

a file named launch. Shared launch configurations are accessible from all projects.

Working on Different Machines or OSes

When the Shared checkbox is selected for a launch configuration, or when shared projects are used,

launch configurations must be configured so that they will work across projects, machines, and

operating systems.

For example, specifying a full path in the Python Path may not work on a different OS. The key to

making this work is to use environment variable references in the form ${VARNAME} as described in

Environment Variable Expansion. The referenced environment variables can be special environment

variables defined by Wing, as in ${WING:PROJECT_DIR}, or user-defined values that are set either

Project Manager

74

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/oscommands/index
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/proj/project-types
https://wingware.com/doc/proj/variable-expansion

system-wide, or in Project Properties. Values set in Environment in Project Properties are by default

not stored in the shared project file, so those may vary on each development machine.

A common example in configuring Python Path is to replace a full path like

/Users/myname/src/project/src with ${WING:PROJECT_DIR}/src (this assumes you store the project

in /Users/myname/src/project). In general, working off the project's location is a good approach to

maintaining some independence from the configuration and disk layout on different development

machines and OSes.

To make file paths work across OSes, use forward slashes instead of back slashes. The character

sequence .. can be used to move up a directory on all OSes, as for example in

{WING:PROJECT_DIR}/../libs/src.

Project Manager

75

https://wingware.com/doc/proj/project-properties

Package Manager
Wing Pro's Packages tool, available in the Tools menu, provides integrated Python package

management with pip, pipenv, or conda.

Configuration
Wing expects any requirements.txt package configuration file (or Pipfile and Pipfile.lock when using

pipenv) to be in the same directory as the Wing project file or the directory configured with

Project Home Directory under the Options tab in Project Properties. Using a requirements.txt with

pip and conda is optional, but when present Wing can keep the file updated to reflect the packages that

have been installed, removed, or updated.

To set up package management, you need to first create a Wing project, configure the

Python Executable either from the New Project dialog or the Environment tab in Project Properties,

and then save the project to disk.

Regardless of which package manager you plan to use, Wing assumes that pip is already present in

your selected Python installation. In the rare cases that it is not, you must install it manually, using

getpip.py or other solution.

Once you save your project, Wing tries to auto-detect the package manager. It will select pipenv if

Pipfile is present, conda if the selected Python Executable is found to belong to a found Anaconda

environment, and pip in other cases.

Setting up pipenv
If you plan to use pipenv but it is not already set up, you can do so from the Options menu in the

Packages tool, by first selecting Use pipenv and then Initialize for pipenv. This installs pipenv into

the Python you selected with Python Executable in Wing and then initializes the package manager

directory to use pipenv, which sets up a virtualenv and the initial pipenv configuration.

Since this creates Pyfile and Pyfile.lock, you will want to make sure that you first save your Wing

project in the directory you want to use as your pipenv project directory, or set Project Home Directory

under the Options tab in Project Properties.

Setting up conda
Wing can only use conda if your Anaconda base installation can be found. See Package Management

with conda for details.

Packages List
Once the package manager is configured, the Packages tool shows the current status and list of

installed packages.

Package Manager

76

https://github.com/pypa/get-pip
https://wingware.com/doc/packages/conda
https://wingware.com/doc/packages/conda

The status area at the top of the tool indicates the type of Python installation (whether local or remote,

and regular install or virtualenv), the package manager that is in use, and the package configuration file

that is being managed.

The packages tree below this is populated with the packages that are currently installed. This list

indicates which packages are in use, either by the requirements.txt or Pipfile or by another installed

and in-use package. The version of the package currently installed and the users of each package are

listed at the end of each line.

Package management operations are available in the right-click context menu on the packages list, and

in the Options menu in the top right of the Packages tool. These are described in detail in the next

section.

Working with Containers and Clusters
When working with containers or clusters, the Packages tool displays the packages installed on your

container and cluster but it does not offer any operations for installing, removing, or updating packages.

In this case, the container or cluster configuration must be edited manually and then rebuilt from the

Containers tool.

4.1. Package Management Operations
Wing supports installing, removing, updating or downgrading packages, and also several operations

aimed at keeping the package configuration files up to date or making sure that the packages specified

in the configuration are installed.

Note

When working with containers or clusters, the Packages tool displays the packages installed on

your container and cluster but it does not offer any operations for installing, removing, or

updating packages. In this case, the container or cluster configuration must be edited manually

and then rebuilt from the Containers tool.

Installing Packages

There are couple of ways to install packages with Wing's Packages tool:

Install New Packages in the Options menu can be used to find packages by typing a name fragment,

selecting those packages, and then installing them.

Package Manager

77

Install Missing Packages in the Options menu can be used to install all the packages specified in the

requirements.txt or Pipfile. This is useful when first setting up a project on a new machine or after

editing those files manually to add packages.

Note

Important! Please note that careless package selection may install malware on your computer;

be sure to read and understand Package Security before installing any packages with any

package manager!

Upgrading/Downgrading Packages

The version of packages that are installed can be changed in the following ways:

Update Selected Packages in the Options menu and package list's right-click context menu updates

packages to the latest available version.

Set Package Version in the Options menu and packages list's right-click context menu may be used to

specify a particular version to use for a package.

Install Missing Packages in the Options menu may also be used to change the versions of installed

packages after manually editing requirements.txt or Pipfile.

Removing Packages

Packages may be removed as follows:

Remove Selected Packages in the Options menu and package list's right-click context menu

uninstalls packages.

Remove Unused Packages in the Options menu removes all unused packages, including only those

that are not listed in the package configuration file and not used by any package that is in use.

Note that you cannot remove pip itself or the packages that it depends on, in order to avoid entirely

breaking package management. If this is needed, it should be done outside of Wing. The Packages tool

will cease to function and may be removed from the UI by right-clicking on its tab.

pipenv may be removed, if installed, after which only pip can be used for package management from

Wing. However, if pipenv is again selected as the package manager, for example explicitly from the

Packages tool's Options menu or by auto-detecting a Pipfile in a project, then Wing will auto-install

pipenv again. See Pipenv Auto-Install in Package Management with pipenv for details.

Package Manager

78

https://wingware.com/doc/packages/security
https://wingware.com/doc/packages/pipenv

Other Operations

Initialize requirements.txt and Initialize for pipenv are shown in the Options menu when Wing

detects that the package manager has not been configured. When using pip this creates a

requirements.txt with pip freeze. When using pipenv, this installs pipenv and initializes the project

directory as a pipenv project directory, as described in more detail in Package Manager.

Show Selected in PyPI in the Options menu and package list's right-click context menu displays the

Python Package Index (PyPI) page for the selected packages.

Freeze to requirements.txt, Update Pipfile.lock, and Export to environment.yml (for pip, pipenv,

and conda, respectively) can be used to produce a complete specification of the currently installed

package set, including the version for every package. This replaces any existing contents in these

package configuration files. When using pip, it retains package order from the existing

requirements.txt but adds in any missing packages and fills in versions for all packages.

Refresh in the package list's right-click context menu updates the installed packages list based on the

current state. This should only be needed if package operations are invoked outside of Wing.

Managing Configuration Files

When using pipenv, all these operations update Pipfile and Pipfile.lock as if using pipenv from the

command line. Additionally, Wing may edit the Pipfile to make it possible to upgrade packages to the

latest version, by removing an older version specifier.

When using pip or conda, Wing manages any existing requirements.txt file by adding, removing, or

updating packages in it. This can be disabled by unchecking Auto-update requirements.txt in the

Options menu in Wing's Packages tool.

4.2. Package Manager Options
The lower part of the Options menu in the Packages tool provides the following options for package

management:

Auto-Detect Package Manager, Use pip, Use pipenv, and Use conda may be used to control which

package manager Wing uses with your project. When using conda, Wing must be able to find the

Anaconda base installation as described in Package Management with conda.

Set Configuration Directory displays Wing's Project Properties and highlights the

Project Home Directory property under the Options tab. This can be used to control where Wing

expects to find the requirements.txt or Pyfile.

Auto-Update requirements.txt controls whether Wing will edit requirements.txt to reflect package

installation, update, or removal when using pip or conda.

Uninstall Removes Unused Dependencies controls whether Wing will automatically remove all

unused dependencies after packages are removed.

Package Manager

79

https://wingware.com/doc/packages/intro
https://pypi.org/
https://wingware.com/doc/packages/conda

Confirm Operations controls whether Wing shows a confirmation dialog before installing, updating, or

removing packages.

Show Console displays a console that contains a log of all the package management operations that

Wing has invoked, using pip and/or pipenv, and their output.

Show Package Management Document displays this documentation.

4.3. Package Management with pipenv
When pipenv is used for package management, Wing runs pipenv command lines to implement the

package operations.

Configuring Python Executable

When using pipenv, the Python Executable in Wing's Propect Properties should be set to the

virtualenv created by pipenv. Wing checks the configuration and asks to correct the Python Executable

if necessary. If this is not done, Wing will debug and execute your code in the wrong Python

environment.

You may elect to correct Python Executable automatically without prompting. This is done from the

checkbox in the confirmation dialog or from the Options menu in the Packages tool.

Manual Configuration

If you need to find pipenv's virtualenv manually, this can be done by executing the following command

line in the directory where your Pipfile is located:

pipenv --venv

Then set Python Executable to Activated Env and enter the full path to the virtualenv's activation

script. On Windows this is in Scripts\activate.bat within the directory printed by the above command.

On macOS and Linux, this is bin/activate instead. Note that if the path to your activate script contains

spaces then you will need to set Python Executable to Command Line instead and enter the full path

to the environment's Python executable. This is the value of sys.executable (after import sys) in

Python, after the pipenv has been activated.

Pipenv Auto-Install

If pipenv is the active package manager for a project, then Wing will ensure that pipenv is installed into

the base Python installation associated with the virtualenv that pipenv creates.

There are several reasons that the pipenv package may be missing from the active Python base install:

1. The user has elected to use pipenv in Project Properties or the Packages tool's Options menu

but pipenv was never installed.

Package Manager

80

https://pipenv.pypa.io/en/latest/

2. The user has opened a project that caused Wing to auto-detect use of pipenv because its home

directory contains Pipfile but pipenv was never installed.

3. The python_version specifier in Pipfile is set to a value that does not match the version of Python

that runs pipenv initially, or the --python command line option was given when originally creating

the pipenv virtualenv with pipenv install. This may selecte a base Python installation that does not

already have pipenv. Wing installs it to avoid the confusing complexity of tracking multiple Python

installations.

In all cases, once pipenv has been initialized, the base install for the pipenv virtualenv is used to invoke

the pipenv commands that implement package operations initiated from the Packages tool.

Removing the pipenv Virtualenv

If pipenv --rm is executed to remove the virtualenv, Wing will not be able to debug or execute code until

pipenv's virtualenv is recreated, either with pipenv install or from Wing's Packages tool.

Note

Important: If you are working on a remote host, container, or cluster and run pipenv --rm, Wing

will lose contact with the remote system because it uses the configured Python Executable to

run its remote agent. In this case, you will need to manually recreate pipenv's virtualenv by

running pipenv install on the remote system, in the directory that contains your Pipfile.

Selecting Python Version

The Python version to use for pipenv's virtualenv does not have to be the same Python version used to

run pipenv. This can be set in the Pipfile as follows:

[requires]
python_version = "3.8"

This section should be present already in the automatically generated Pipfile created by pipenv, or can

be added if missing.

You will need to run pipfile --rm and pipfile install outside of Wing to actually change to the newly

selected Python version.

4.4. Package Management with conda
When conda is used for package management, Wing runs conda command lines to implement the

package operations.

Package Manager

81

https://docs.conda.io/en/latest/

Because of the way that Anaconda is designed, running conda only works using the Anaconda base

installation that is associated with your Anaconda environment. As a result, Wing must be able to find

the Anaconda base installation before package management with conda will work.

Unfortunately, there is no way for Wing to always automatically detect the location of the Anaconda

base installation from the environment configured with Python Executable in Wing's

Project Properties. As a result, one of the following conditions must be met in order to use conda with

Wing:

(1) If Anaconda is installed in a default location, Wing will find it and run conda env list to list the

environments known to it. If the active environment is in the list, then that Anaconda base installation is

used. The locations searched for this case are anaconda2 and anaconda3 located in the user's home

directory, and on Linux and macOS also inside ~/opt and /opt.

(2) If Anaconda is not installed in a default location, Wing tries to find the base installation from the

location of the environment's python or python.exe. This assumes that the environment is in the

default location for Anaconda environments, which is envs inside the base Anaconda installation.

If neither of these works then Wing will be unable to run conda and the Packages tool will remain

empty.

4.5. Package Management Security
When you install Python packages from Wing, or with any other package manager, you are

downloading and installing software that (like all downloads) could potentially contain malware. It is very

important to verify that you are not misspelling a package name, and that you are installing packages

only from reputable sources.

Although the Python Package Index (which is used by pip and pipenv) is monitored, "typo-squatting"

style malware attacks are sometimes detected, and it is quite possible that malware might exist in other

legitimate packages. This might occur as a result of direct action of the package author, or in some

cases could occur through incorporation of "upstream" code or dependencies that are not properly

scrutinized by the package maintainer.

Other supported methods for creating Python environments, including Docker, Anaconda environments,

Vagrant, and LXC/LXD, all use their own package repositories that may be subject to similar attacks.

As noted in Wing's End User License Agreement, it is your responsibility to assess the risks of package

management and to inspect any packages you install using Wing or any other package manager. These

packages do not come from Wingware, we have no control over their content, and we are not liable for

any malware you may introduce by using our package manager integration.

Package Manager

82

https://pypi.org
https://wingware.com/doc/legal/software-license

Source Code Editor
Wing's source code editor implements a powerful suite of code editing and navigation features for

Python, based on both static and dynamic (runtime) source code analysis.

5.1. Opening, Creating, and Closing Files
Opening Files

Files can be opened into the editor from the File menu, the toolbar, or by selecting them from the

Project tool.

Open From Keyboard in the File menu provides a keyboard-driven way to navigate the disk in order to

open files. The command works in a temporary input area at the bottom of the window. Typing shows a

completer with possible directory and file names. Tab selects a completion and Enter opens the file.

See also File Sets, which makes it easy to name and open sets of files as a group.

Creating Files

Files can be created from the File menu, the toolbar, or from the Project tool as described in Creating,

Renaming, and Deleting Files.

Switching Between Files

The Window menu and the tabs at the top of the editor can be used to switch between open files. If

Hide Editor Tabs is selected in the options drop down at the top right of the editor, then the tabs are

replaced with a menu at the top left of the editor, to navigate among the currently open files.

Open From Project in the File menu quickly switches to any project file, whether already open or not,

using a fragment of the file name.

Closing Files

Open files can be closed from the File menu or with the close icon in the top right of the editor area.

In Wing Personal and Wing Pro, the Open Files tool in the Tools menu makes it easy to close a

selected set of files. Right-click on the Open Files tool to Close Selected or Close Others.

5.2. File Status and Read-Only Files
Wing adds status indicators to the titles shown for files in editor tabs, menus, and the status area in the

lower left of the window:

* indicates that the file has been edited and has unsaved changes.

(r/o) indicates that the file is read-only.

(r/p) (in Wing Pro) indicates that reading the file from a remote host is in progress.

Source Code Editor

83

https://wingware.com/doc/edit/source-code-analysis
https://wingware.com/doc/edit/file-sets
https://wingware.com/doc/proj/file-management
https://wingware.com/doc/proj/file-management

Files that are read-only on disk are opened in a read-only editor. The file can be made writable by

right-clicking to select Properties and then toggling Read-Only on Disk under the File Attributes tab.

Permissions are changed only for the owner of the file. On Linux and macOS, group and world

permissions are never altered.

5.3. Transient, Sticky, and Locked Editors
In order to prevent accumulation of many briefly-visited open files, Wing can open files in several modes

that control how and when they are closed. The mode being used is shown with an icon in the top right

of each editor split:

 Transient Mode -- Wing opens some files in a non-sticky transient mode that will automatically close

the file again when unused and unedited. This is done for files opened when searching, debugging,

navigating to a symbol's point of definition or points of use, and when using the Project or

Source Browser tools with the Follow Selection checkbox enabled.

The maximum number of non-visible transient files to keep open at any given time can be set with the

Editor > Advanced > Maximum Non-Sticky Editors preference. By default, Wing keeps five transient

editors open at a time, and closes the least recently used ones as new transient files are opened.

 Sticky Mode -- Files opened from the File menu (including Open from Project and

Open from Keyboard), by File Set or by double clicking on items in the Project or Source Browser

tools will be opened in sticky mode, and are kept open until they are explicitly closed, even if they are

not edited.

 Locked Mode -- In Wing Pro and Wing Personal, when multiple splits are visible, a third mode is

available, where the file is locked into the editor split. In this case, the split is not reused to display any

newly opened or visited files, except when no other unlocked splits are present.

A file can be switched between these modes by clicking on the stick pin icon in the upper right of the

editor area. Transient files that are edited are immediately converted to sticky mode and cannot be set

back to transient mode until the changes are saved.

Right-click on the stick pin icon for a menu of files that were recently visited in the associated editor or

editor split. Each item in the menu indicates whether it was last visited in transient or sticky mode.

5.4. Editor Context Menu
Right-clicking on the surface of the editor (and in most other places in the IDE's user interface) will

display a menu of commonly used context-sensitive commands.

In the editor, this menu is divided into different functional groups for copy/paste, code navigation,

evaluating selections, debugging, commenting regions, indentation, accessing File Properties and in

Wing Pro also revision control, refactoring, and bookmarking. These can be shown or hidden from the

Configure Menu item at the bottom of the menu.

Source Code Editor

84

https://wingware.com/doc/edit/file-sets
https://wingware.com/doc/proj/file-properties

In Wing Pro and Wing Personal, user-defined scripts may add items to this menu, as described in

GUI Contexts in Script Syntax.

5.5. Navigating Source
The editor provides a number of features designed to make it easier to navigate Python code.

Source Index Menus

The menus at the top of the editor provide an index of the classes, methods, and functions in the current

file. These can be used to navigate within the top-level scope and within any sub-scopes present at the

current position. The menus update as you move the editor caret to other scopes or files.

For an index of all code in the Project, see the Source Browser tool.

Goto Definition

You can visit the point of definition of any Python symbol by right-clicking on it and selecting

Goto Definition from the editor's context menu.

Alternatively, place the cursor or selection on a symbol and use Goto Selected Symbol Defn in the

Source menu, or its keyboard equivalent.

Control-click (or Command-click on macOS) also jumps to the point of definition.

Find Points of Use

In Wing Pro, to view all points of use of a symbol, right click on it and select Find Points of Use or use

the item of the same name in the Source menu. The points of use are shown in the Uses tool, from

which you can visit each point of use.

Alt-click (or Option-click on macOS) on a symbol in the editor also displays points of use.

For more information, see Find Uses.

Visit History

The history buttons in the top left of the editor area move forward and backward through recently visited

places and editors in a manner similar to the forward and back buttons in a web browser. This is a good

way to return from a point of definition or after visiting points of use.

Finding Symbols by Name

Find Symbol in the Source menu provides a way to find a symbol defined in the current Python scope,

by typing a fragment of its name.

Find Symbol in Project in Wing Pro works the same way but searches all files in the project for any

symbol matching a fragment.

When a symbol is visited in the editor, Wing highlights it briefly with a callout, as configured from the

Editor > Callouts preferences group.

Source Code Editor

85

https://wingware.com/doc/scripting/syntax
https://wingware.com/doc/browser/index
https://wingware.com/doc/edit/points-of-use

5.6. Source Assistant
The Source Assistant tool in Wing Personal and Wing Pro displays detailed information about source

symbols in the editor, auto-completer, and tools such as the Project, Search in Files, Python Shell,

Debug Console, and Source Browser.

The display includes links to the point of definition of the selected symbol, the symbol's probable type or

types, and a link to each type's point of definition. Depending on context and symbol type, the

Source Assistant will also display docstrings, call signature, return type, super-classes, overridden

methods, and links into Python standard library documentation.

When invoking a function, method, or other callable object, the Source Assistant highlights the current

argument in the call signature and displays information both for the invoked callable and the current

argument or auto-completer selection.

The information displayed in the Source Assistant is based on a combination of static and runtime

source code analysis. In some code, where static analysis is not successful, running the debugger to a

breakpoint allows Wing access to complete and correct code analysis. See Helping Wing Analyze Code

for more hints on helping Wing understand your source code.

Docstring Type and Validity

The Source Assistant can inspect and display documentation found in docstrings in various ways,

either (1) focusing on displaying as much information as possible, even if the docstring cannot be

parsed as structured text, or (2) focusing instead on providing parse error information so that docstring

formatting can be improved. The display is configured with the Source Assistant Options described

below.

By default the Source Assistant displays a type and validity indicator, showing whether the docstring

was successfully parsed or reformatted, and focuses on displaying as much information as cleanly as

possible, even if docstrings have formatting problems.

The following indicator messages may appear with each docstring:

✔ PEP287 indicates the docstring parsed successfully using PEP 287 reStructuredText Docstring

Format and is being rendered accordingly.

✖ PEP287 indicates that the docstring does not parse successfully as reStructuredText and is showing

inline parse errors.

Rewrapped indicates that the docstring is being shown as plain text but Wing has heuristically

rewrapped paragraphs.

Plain Text indicates the docstring is being shown as plain text, exactly as it appears in the source code.

PEP 287 style docstrings may fall back to plain text if they cannot be parsed.

Source Code Editor

86

https://wingware.com/doc/edit/source-code-analysis
https://wingware.com/doc/edit/helping-wing-analyze-code
http://legacy.python.org/dev/peps/pep-0287/
http://legacy.python.org/dev/peps/pep-0287/

Source Assistant Options

There are several options available to select how Wing renders docstrings, and whether or not the

display should focus on flagging docstring parse errors. These are accessed by right clicking on the

Source Assistant:

Use PEP 287 docstrings causes Wing to attempt to render docstrings by treating them as PEP 287

reStructuredText Docstring Format. When disabled, docstrings are always shown as plain text instead.

Show PEP 287 parse errors is disabled by default to focus on showing as much information as

possible and not on diagnosing docstring formatting errors. Wing will try to display docstrings as

rendered reStructuredText even if they contain parse errors. Wing uses a set of heuristics to gloss over

common errors so the docstring can be rendered, or in more severe cases, falls back to showing the

docstring as plain text. When this option is enabled, Wing will shift its focus to reporting PEP 287 parse

errors that equal or exceed the PEP 287 parse error threshold in severity. Errors are shown in the

context of its reStructuredText rendering of the docstring.

PEP 287 parse error threshold sets the error level at or above which Wing will determine that parsing

the PEP 287 docstring has failed. When below this level, a best effort will be made to render the

docstring without showing any errors. When above this level, Wing either shows the parse errors in the

rendered docstring, if Show PEP 287 parse errors is enabled and the docstring can be parsed, or falls

back to showing the docstring in plain text. The default is to treat warnings, errors, and severe errors as

parse errors.

Rewrap plain text docstrings causes Wing to employ a heuristic to rewrap paragraphs in docstrings

not being rendered as reStructuredText, in order to make better use of space. This option can be

disabled to show the docstring exactly as it appears in the source code.

Show docstring type and validity enables or disables the docstring type and validity indicator in the

top right of the docstring area.

Always show docstrings causes Wing to show all docstrings for all symbols in the Source Assistant,

even if it is displaying information both for an invocation and current argument type. This is disabled by

default, to save space by showing only the docstring for the last symbol.

The Source Assistant right-click context menu can also be used to copy text or HTML to the clipboard,

change the display font size, and access this documentation.

Goto Definition from Documentation

PEP 287 docstrings may include references that link to the point of definition of a named symbol in

Python code. This is done using an interpreted text role in the following form:

:py:`symbol`

Source Code Editor

87

http://legacy.python.org/dev/peps/pep-0287/

The symbol may be a simple name like MyClass or a dotted name like modulename.MyClass or

modulename.MyClass.SomeMethod.

When docstrings containing symbol references are rendered in the Source Assistant, they will

generate a link to the symbol's point of definition. Clicking the link will resolve the point of definition by

looking first for the symbol in the same scope as the class, method, or function that the docstring

describes, and if that is unsuccessful then by attempting to look up the name on the project's effective

Python Path.

To return from the point of definition, use the back arrow in the top left of the editor area.

For example, specifying :py:`path` looks for path in the scope of the described symbol and then looks

for a module named path on the Python Path. If :py:`sys.path.abspath` is used instead then the

process looks for sys.path.abspath in the scope of the described symbol, then looks for a module

named sys with an attribute path.abspath, and finally looks for a module named sys.path with an

attribute abspath. This works even if the referenced module is not imported in the scope of the

described object.

In addition to the :py: role, Wing follows Sphinx to support the py:mod, py:func, py:data, py:const,

py:class, py:meth, py:attr, py:exc, and py:obj interpreted text roles. However, there is no difference

in how the point of definition is found for each of these.

Python Standard Library Documentation Links

For symbols in the Python standard library, Wing will attempt to compute a documentation URL

whenever possible. Since there is no formal mapping from standard library code to documentation,

these URLs are generated heuristically. They are often, but not always correct.

Standard library documentation URLs point to https://docs.python.org/ but can be redirected to another

server with the Source Analysis > Advanced > Python Docs URL Prefix preference. To access

locally stored documentation, a local http server must be used because # bookmark references do not

work with file: URLs.

5.7. Folding
Wing's editor supports structural folding for Python, C, C++, Java, Javascript, HTML, JSON, Eiffel, Lisp,

Ruby, and a number of other file types. This allows you to visually collapse logical hierarchical sections

of code while you are working in other parts of the file.

Editor Fold Margin

When folding is enabled, a fold margin appears to the left of editors that contain a file type that can be

folded. Left-clicking on marks in this margin collapses or expands that fold point.

You can also hold down the following key modifiers while left-clicking, to modify the folding behavior:

Source Code Editor

88

https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html
https://docs.python.org/

Shift while clicking on a fold point expands that point and all its children recursively, so that the

maximum level of expansion is increased by one.

Ctrl while clicking on a fold point collapses that point and all its children recursively so that the

maximum level of expansion is decreased by one.

Ctrl-Shift while clicking on an expanded fold point collapses all child fold points recursively. When the

clicked fold point is later re-expanded, its children will appear collapsed. Ctrl-Shift-click on a collapsed

fold point forces re-expansion of all children recursively to maximum depth.

Folding Menus

Right-clicking anywhere on the fold margin displays a context menu with folding operations:

Toggle Fold collapses or expands the fold point.

Collapse More collapses the current fold point one more level.

Expand More expands the current fold point one more level.

Collapse Completely collapses all children recursively.

Expand Completely expands all children recursively to maximum depth.

Collapse All collapses the entire file recursively.

Expand All expands the entire file recursively.

Fold Python Methods collapses all methods in all classes in the file.

Fold Python Classes collapses all classes in the file.

Fold Python Classes and Defs collapses all classes and top-level function definitions in the file.

These are also available in the Folding section of the Source menu, where each menu item indicates

the key equivalents assigned to the operation in your current Keyboard Personality. Items in this menu

operate on the first fold point found in the current editor selection or on the current line.

Folding Preferences

You can turn folding on and off and adjust the style and color of fold marks with the Editor > Folding

preferences.

5.8. Bookmarks
Wing Pro can set bookmarks, in order to navigate code and keep track of notes for unfinished tasks.

Bookmarks are defined in a way that allows them to move with the bookmarked line, even if a file is

edited outside of Wing.

Setting Bookmarks

Source Code Editor

89

https://wingware.com/doc/custom/keyboard-personalities

Toggle Bookmark in the Source menu sets or removes a bookmark at the current line, or clicked line if

using the editor's right-click context menu. A default name is used for the bookmark, based on where it

is located.

Set Named Bookmark in the Source menu displays a dialog to enter a name, category, and notes for

the bookmark.

In the VI/Vim keyboard personality, the m and ` keys are supported, in addition to the operations in the

Source menu, which allow creating bookmarks with names longer than one character. Emacs, Brief,

and other keyboard personalities also support bookmarks with their native key bindings.

Bookmarks are shown on the editor with background color change or underline. The style and color of

bookmark indicators can be changed with the Editor > Bookmarks > Bookmark Style and

Editor > Bookmarks > Bookmark Color preferences.

Hovering the mouse over a bookmark in the editor shows a tooltip with the bookmark name, notes, and

category.

Bookmark Categories

Bookmark categories provide a way to organize and filter which bookmarks are visible in the display.

Categories can be added, renamed, and removed with Edit Categories in the Bookmarks tool,

bookmarks toolbar group, and bookmarks popup at the top right of any editor with bookmarks.

Categories marked as Shared in the Edit Categories dialog are also stored in preferences, so that they

will appear in all projects. Categories can also be exported and imported from this dialog.

Traversing Bookmarks

Traverse Bookmarks in the Source menu, and the key bindings shown there, can also be used to

traverse all bookmarks. To traverse bookmarks in a single file, use the bookmark popup at the top right

of the editor.

To visit a bookmark by name, use Goto Bookmark in the Source menu. This shows a dialog, or in

some keyboard personalities an entry area at the bottom of the window, into which a bookmark name

can be typed. A list of possible completions will be displayed as you type, and pressing Tab will select

the current completion.

Filtering Bookmarks

The bookmarks that are visible on the display can be filtered by selecting a current category in the

Bookmarks tool, the bookmarks toolbar group, or the bookmark popup in top right of the editor.

When Match Fragment is chosen, a fragment to match any of the bookmark properties can be entered

into the Bookmarks tool, which will be displayed if not already visible.

Source Code Editor

90

When bookmarks are filtered by category or fragment, the marks shown on the editor, in the bookmarks

menus, and in the Bookmarks tool will be limited to those that match the filter. This also limits traversal

to only matching bookmarks.

Bookmarks Tool

A list of all defined bookmarks is available in the Bookmarks tool, from the Tools menu. The contents

of this tool can be sorted by clicking on the column headers. A bookmark name or category in the list

can be edited by clicking on it. Hovering the mouse over a bookmark will display any notes entered for

that bookmark.

Right-click for a menu of operations, or select a bookmark and use the toolbar in the top right of the tool.

Multi-selection is possible by holding down shift or other modifier keys. Double-clicking or

middle-clicking will navigate to the selected bookmark.

When the Bookmarks tool has focus, keyboard navigation is possible with the arrow keys. Pressing

Enter will navigate to the selected bookmark.

The selected bookmarks or all bookmarks visible in the currently selected category or filter can be

exported and imported from the Bookmarks tool's Options menu and toolbar icons.

Bookmarks Toolbar

Bookmarks can be set, removed, filtered, and traversed from the bookmarks toolbar group, if it is

shown. To display the bookmarks toolbar group, right-click on the toolbar and check Bookmarks in

Groups Shown.

Tracking Bookmarks Across External Edits

Bookmarks are stored in the project and refer to a particular position within a selected file. Wing tries to

store enough information about the bookmark so it can be moved to the correct location even if a file is

edited outside of Wing.

• For Python files Wing makes use of the enclosing scope (method, class, or function), as well the

contents of the bookmarked line to track the bookmark

• For all other types of files bookmarks are defined by file name, line number, and contents of the

bookmarked line.

In either case, a bookmark's position may appear to slip if a file changes enough so that Wing cannot

find the bookmarked line.

5.9. Syntax Coloring
To make code easier to read, Wing's editor colors a file's syntax according to its MIME type, which is

determined by the file's extension or content. For example, any file ending in .py will be colored as

Python code. Any file whose MIME type cannot be determined will display entirely in black regular text.

Source Code Editor

91

If you have a file that is not being recognized automatically, use the Files > File Types >

Extra File Types preference to add a mapping for the file's extension.

When this is not possible, the file type can be set under the File Attributes tab in File Properties.

The colors and text styles used for syntax coloring can be configured as described in Custom Syntax

Coloring.

5.10. Selecting Text
Wing can select text by characters, whole lines, or in rectangular blocks, and provides a number of

commands for quickly making selections based on the structure of code. This makes it very easy to

select code to delete, comment out, or move around.

Multiple selections are also supported, as a way to select and edit multiple parts of code simultaneously.

Selection Mode

When Wing is in selection mode, the current selection is automatically extended as the caret is moved

around the editor. The Selection Mode sub-menu of the Edit menu specifies the type of selection to

make as the caret moves:

Characters selects individual characters.

Line selects whole lines.

Block selects a rectangular block.

Cancel exits selecton mode so that moving the caret will not extend the selection. This also

unselects the current selection.

The current selection mode is shown in the status area in the lower left of the editor window with one of

[Char Select], [Line Select], and [Block Select]. When selection mode is canceled, no selection

status is displayed.

Selection modes are also supported through the native key bindings emulated by keyboard

personalities such as Emacs and VI/Vim.

If your selected User Interface > Keyboard > Personality preference does not support them, then you

will need to define key bindings for them using the User Interface >

Keyboard > Custom Key Bindings preference. The command names are select-x, next-x, and

previous-x where x is either statement, block, or scope.

Quick Selections

The Select sub-menu of the Edit menu contains the following commands for quickly selecting sections

of code:

Source Code Editor

92

https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/custom/syntax
https://wingware.com/doc/custom/syntax
https://wingware.com/doc/edit/multiple-selections
https://wingware.com/doc/custom/keyboard-personalities
https://wingware.com/doc/custom/keyboard-personalities

Select All selects all of the current file.

Select More adds to the current selection incrementally in logical units. For example, if there is no

selection then a word is selected, and if a word is selected then a dotted name or expression will be

selected. Eventually, a whole statement is selected, then a whole block, a whole scope, enclosing

scopes, and finally the whole file.

Select Less removes from the current selection incrementally in logical units, in opposite order of

Select More.

Select Statement selects the whole statement at the current position. This may be one line or

several lines of code.

Select Next Statement selects the statement after the current one.

Select Previous Statement selects the statement before the current one.

Select Block selects all of the current indented block of code. A block of code is a contiguous

range lines delimited by blank lines.

Select Next Block selects the block after the current one.

Select Previous Block selects the block before the current one.

Select Scope selects all of the current indented scope. A scope is a whole def, class or module.

Select Next Scope selects the scope after the current one.

Select Previous Scope selects the scope before the current one.

5.10.1. Multiple Selections

Wing Pro and Wing Personal support making multiple selections in the editor, which is a powerful way

to simultaneously edit two or more parts of your code. For example, all occurrences of a word such as

one may be selected and then the o replaced with O to change all of the occurrences to One in a single

operation.

Selecting Matching Text

The selection-add-next-occurrence command (Ctrl-D, Command-D on the Mac, and Ctrl-> with the

emacs personality) is a convenient way to add selections with matching text. If something is already

selected, this command selects the next occurrence of the selected text. If nothing is selected, it will will

select the current word.

Source Code Editor

93

Whether this search wraps, is case sensitive, or matches only whole words is controlled from the

multi-selection toolbar icon or Edit > Multiple Selections menu.

To add the next occurrence while dropping the current one, press Control-Shift-D, Command-Shift-D

on the Mac , or Ctrl-Alt-> with the emacs personality.

Multiple matching selections can also be made quickly within a block, indented level, function, method,

class, or file by clicking on the multi-selection toolbar icon or using the Edit > Multiple Selections

menu.

Once multiple selections have been made, any typing, cursor movement, and clipboard commands will

act on all selections simultaneously.

Selecting Arbitrary Text

It is also possible to make an arbitrary set of selections, where the selections do not necessarily contain

the same text. This is done by holding the Ctrl and Alt keys down together (or the Command and

Option keys on the Mac) while selecting text with the mouse.

Canceling Multiple Selection

When there are multiple selections, the Escape key (or Control-G with the emacs personality) will drop

all of the extra selections.

Multiple Selections Window

While there are multiple selections in an editor, a floating selections window is shown to list all of the

selections, even those that are not visible on screen. An individual selection may be dropped by clicking

the X that appears when the the mouse is moved over its entry in the list. Closing the selections window

will drop all of the extra selections.

By default, the selections window always appears when there are multiple selections. Use the

Editor > Selection/Caret > Display Selections Popup preference to set the window to always visible

or never visible.

The selections window may also be shown and hidden on a case-by-case basis from the multi-selection

toolbar icon or Edit > Multiple Selections menu.

5.11. Copy/Paste
There are several ways to cut, copy, and paste text in the editor:

• Use the Edit menu items or their key bindings. This stores the copy/cut text in the system

clipboard and can be pasted into or copied from other applications.

• Right-click on the editor surface and use the items in the context menu.

• Select a range of text and drag and drop it.

• On Linux, select text anywhere on the display and then click with the middle mouse button to insert

it at the point of click.

Source Code Editor

94

• On Windows and macOS, click with the middle mouse button to paste. This behavior may be

disabled via the Editor > Clipboard > Middle Mouse Paste preference

• Use emulated key bindings for the current keyboard personality, such as Ctrl-K for Emacs and

named text registers for VI/Vim. Note that some of these copy text to a private clipboard and not

the system clipboard.

Smart Copy

Wing can be configured to copy or cut the whole current line when there is no selection on the editor.

This is done with the Editor > Clipboard > On Empty Selection preference. The default is to use the

whole line on copy but not cut.

Indent on Paste

Wing can adjust intentation style, size, and position when pasting lines of text into the editor. See

Auto-Indent for details.

5.12. Auto-completion
Wing provides context-appropriate code completion in the editor, Python Shell and Debug Console.

Using the auto-completer decreases the amount of typing needed to write code, and reduces the

incidence of typos in symbol names.

When enabled with the Editor > Auto-completion > Auto-show Completer preference, the

auto-completer appears and disappears automatically as you type. Items can be selected by typing until

the correct symbol is highlighted, or by using the up and down arrow keys.

To cancel out of the auto-completer, press Esc or Ctrl-G. The auto-completer also disappears when

you exit the source symbol by typing or clicking elsewhere, or if you press key bindings to invoke other

commands.

Completion Keys

By default, Tab enters the completion it into the editor. Other completion keys can be added with the

Editor > Auto-completion > Completion Keys preference. For printable keys such as '.', '(', '[', and ':'

the completion character will be added to the editor after the completed symbol, and any appropriate

auto-editing operations will be applied. If '.' is used as a completion key, the auto-completer will

reappear immediately with the attributes of the completed symbol.

In Wing Pro, it is also possible to configure the auto-completer in Python code to treat any non-symbol

key as a completion key. See Turbo Completion Mode for Python for details.

Configuration

In Wing Pro and Wing Personal, the completer can be reconfigured to display only after a specified

number of characters, or after a time delay. Completion matching may be case sensitive or insensitive.

The completer may also be resized, and can be auto-hidden after a specified timeout.

Source Code Editor

95

https://wingware.com/doc/edit/auto-indent
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/edit/auto-editing
https://wingware.com/doc/edit/turbo-completion

These and other configuration options are available in the Auto-completion preferences.

Code Snippets

In Wing Pro, the auto-completer also contains the names of snippets defined in the Snippets tool.

Completing a snippet enters it into the editor and collect any snippet arguments inline in the editor, in

fields that can be traversed with the Tab key. For details, see Snippets.

To prevent Wing from including snippets in the auto-completer, turn off the

Editor > Auto-completion > Include Snippets in Completer preference.

5.12.1. Turbo Completion Mode for Python

In Wing Pro, when the Editor > Auto-completion > Python Turbo Mode preference is enabled, Wing

uses a different completion mode for Python files, and in the Python Shell and Debug Console. This

mode treats any key that could not be part of a symbol name as a completion key, in a

context-appropriate way.

This allows typing until the correct symbol is selected in the completer and then immediately moving on

to typing the code that should follow that symbol. For example, typing + will place the completion, enter

+ into the editor, apply any relevant auto-editing operations (such as auto-spacing), and show the

completer again if appropriate.

In contexts where a new symbol is being defined, Wing disables Turbo mode depending on the

character being pressed. For example, pressing = after a name at the start of a line, entering an

argument name in a def, and entering a symbol after for all define a new symbol in most cases. In these

contexts, Tab must be pressed to cause completion to occur.

Although this mode offers a much more efficient way to type Python code, it takes some getting used to

before unwanted completions can be avoided. Specifically:

1. If you are trying to type a symbol name before it has been defined, Wing may choose a similarly

named symbol from the completer if you do not first cancel out of the completer. As a result, it's

usually easier to define symbols first, before writing other code that uses them.

2. Similarly, Wing may fail to recognize some contexts as defining a new symbol. To avoid

completing a similarly named symbol, you must first cancel out of the completer.

To make canceling from the completer easier in these cases, Ctrl, Alt, and Command pressed alone

are also treated as cancel keys, in addition to Esc.

For the same reason, snippets do not participate in Turbo mode completion. To enter snippets found in

the auto-completer, press Tab.

5.12.2. Auto-completion Icons

The auto-completer contains two columns of icons that indicate the origin and type of the symbol.

Source Code Editor

96

https://wingware.com/doc/edit/snippets
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/edit/auto-editing

Symbol Origin

 A Python keyword

 A Python builtin

 A snippet defined in the Snippets tool

 An argument for the current function or method scope

 A symbol found by introspecting the live runtime state

Symbol Type

 A Python module

 A class

 A Python package

 A method

 A function

 A dictionary

 A tuple

 A list

 A string

 An integer

 A float

 An exception

 A Python stack frame

 An object instance of some other type

Symbol Type Annotation

Symbol type icons may be annotated, as in the following examples:

 An upward pointing arrow indicates that the symbol was inherited from a superclass

 A leftward pointing arrow indicates that the symbol was imported with from x import <symbol>

style import statement

Source Code Editor

97

5.12.3. How Auto-completion Works

The information shown in Wing's auto-completer comes from several sources: (1) static analysis of

Python code, (2) runtime introspection of extension modules, (3) inspection of keywords and builtins in

the active Python version, (4) introspection of the live runtime state, when the debugger is active or

when working in the Python Shell or Debug Console, (5) enumeration of relevant code snippets, and

(6) any user-provided interface description files.

See Source Code Analysis for more information on how analysis works and how you can help Wing

determine the types of values.

In non-Python files, the auto-completer is limited to words found within similar contexts in the file, syntax

highlighting keywords defined for that file type, and any snippets relevant to the editing context.

5.13. Auto-Editing
Wing Pro's auto-editing operations help to reduce the amount of typing needed to write code by

auto-entering text or making corrections as you type. The following operations are available and may be

enabled or disabled in the Auto-editing preferences group:

Auto-Close Characters enters matching closing quotes, parentheses, brackets, braces, and comment

characters. When this is enabled Wing also (1) skips over existing closing characters if they are typed

anyway, and (2) auto-enters opening parentheses, brackets, and braces when an unmatched closing

character is typed in Python code.

This operation is disabled selectively when working within strings, comments, and in other contexts

where the auto-edit is more likely to interfere than assist. For example, quotes are only auto-closed at

the end of a line or clause, most auto-closing is disabled within single-quoted strings, auto-closing is

disabled if there is a matching unclosed character, auto-closing parentheses is disabled before a

symbol, and some operations are omitted while auto-entering invocation arguments.

Auto-Enter Invocation Args enters the default arguments for a function or method invocation. Tab or

Comma can be used to move among the arguments. Argument entry ends when moving past the last

argument, or pressing ')' at the last argument. Unaltered default arguments are automatically removed

when argument entry ends. When this is enabled, the following options are available:

Auto-wrap Arguments automatically re-wraps all the arguments to the configured

Reformatting Wrap Column after auto-invocation ends.

Invoke After Completion starts auto-invocation automatically after completion of a callable name.

If invocation is not wanted, such as when passing a function or method as an argument, you will

need to press Delete twice.

Apply Quotes to Selection surrounds a non-empty selection with quotes when the quote character is

typed. Pressing quote repeatedly produces a triple-quoted string.

Source Code Editor

98

https://wingware.com/doc/edit/source-code-analysis

Mutate Adjacent Quotes changes the style of quotes around a string in Python code when a quote

character is pressed while the editor caret is adjacent to an existing quote character (either single or

double quote) or a whole string is selected. This converts all the quotes in triple-quoted string delimiters.

Apply Comment Key to Selection will comment or uncomment the currently selected lines, using the

style configured in the Editor > Block Comment Style preference. This operation only works with

single-key comment characters such as '#'. Otherwise, use Toggle Block Comment in the Source

menu.

Apply (), [], and {} to Selection surrounds the currently selected text when an open parenthesis,

bracket, or brace is typed.

Apply Colon to Selection creates a new block out of a range of selected lines and places the caret for

entry of the block type (if, try, for, with, etc). When try is entered, Wing auto-enters the matching

except block. In this case, except is selected so it can be changed into finally. Pressing the Tab key

moves into the except or finally block.

Auto-Enter Spaces adds spaces in Python code when typing operators or punctuation and refuses to

enter redundant spaces in contexts where spacing is being enforced. For some cases, for example

when typing ==, spacing will be adjusted differently after the first and second keys are pressed. Some

associated characters may also be entered, such as ',' after a dict item when ':' is pressed. The

following options are available:

Auto-Space After Keywords auto-enters spaces after Python keyword names. No space is added

when the keyword name matches a snippet in the auto-completer, so that the auto-completer is not

hidden and snippets can still be used.

Enforce PEP 8 Style Spacing prevents use of auto-spacing that does not adhere to PEP 8 style

spacing. See PEP 8 Auto-formatting for other PEP 8 formatting options.

Spaces Around = in Argument Lists overrides PEP 8 conventions and places spaces around

equals signs in argument lists.

Spaces Elsewhere in Argument Lists enables auto-spacing also in all other places in argument

lists.

Spaces After : in Type Annotations auto-enters spaces after ':' when it is used in PEP 484 and

PEP 526 style type hints.

Manage Blocks on Repeated Colon Key Presses creates new blocks automatically when the colon

key is pressed. When the start of a new Python block is typed and ':' is pressed, this auto-indents the

current line, adds EOL (end-of-line), and auto-indents the newly created line.

Pressing ':' a second time will remove the new line and instead indent the following existing line of code

under the new block.

Source Code Editor

99

https://www.python.org/dev/peps/pep-0008/
https://wingware.com/doc/edit/pep8
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0526/

Pressing ':' a third time will instead indent the next contiguous block of lines under the new block, up to

any blank line or line that belongs to an enclosing block.

In order to allow for adjustment of indentation before continuing, no EOL will be inserted after else, elif,

except, and finally if the indentation position for that statement is ambigious due to the presence of

multiple matching starting blocks. In that case, pressing ':' repeatedly will toggle the indentation

between the possible positions.

The following option is available to control how block management works:

Prefer Block Management In Assignments causes Wing to immediately manage blocks when ':'

is pressed even in contexts where a var:type type hint (Python 3.6+)or := (Python 3.8+) could be

used. When this is disabled, pressing ':' a second time, after an existing colon, triggers block

management.

Continue Comment or String on New Line auto-enters comment or string delimiters when Enter is

pressed within the text of an existing comment or a string. This operation does not apply to triple-quoted

strings.

Correct Out-of-Order Typing corrects common typos. For example, x(.) is replaced with x()., x(:) is

replaced with x():, and Wing will add '.' when it is missing in x().d.

5.14. Auto-Reformatting
Wing can automatically reformat Python code to be compliant with the PEP 8 Style Guide for Python

Code or using the Black or YAPF code formatting tools.

Installing Reformatters

Wing uses its own copy of autopep8 for PEP 8 style formatting. If you plan to use Black or YAPF

formatting then you must first install the formatter into the Python you are using with your code, with pip

or other package manager. For example:

pip install black
pip install yapf

Manual Reformatting

The Source > Reformatting menu contains items for reformatting the current file or selection for PEP

8, or with Black or YAPF. A single Undo will undo the reformatting operation.

Note that reformatting large files may take several minutes, and Wing will lock the file so it cannot be

edited during that time. The amount of time spent in reformatting a file is limited to the number of

seconds specified with the Editor > Auto-formatting > Reformatting Timeout preference. After the

timeout is reached, Wing will abort the reformat process and leave the file unchanged. The default

timeout is 5 seconds, to avoid leaving an editor locked for a long period of time.

Source Code Editor

100

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/psf/black
https://github.com/google/yapf

Reformatting PEP8 selections in locally stored files is not time-limited, so very large selections may lock

up the IDE until the reformatting operation completes.

Automatic Reformatting

Wing can auto-format edited lines after the caret leaves the line, or whole files as they are saved to disk.

This is enabled with the Auto-Reformat property under the Options tab in Project Properties, or with

the Editor > Auto-formatting > Auto-Reformat preference.

The choices are:

• Disabled turns off all automatic reformatting. This is the default.

• Lines After Edit reformats individual logical lines (which may span multiple physical lines) after

the caret leaves the edited line.

• Whole Files Before Save reformats whole files when they are saved to disk. This option is

recommended only for users with small files, since reformatting larger files may take substantial

amounts of time. The process is aborted and the file is saved without reformatting if the time

required to reformat it exceeds the Editor > Auto-Formatting > Reformatting Timeout

preference.

The formatter to use in auto-formatting can be selected with the Reformatter property under the

Options tab in Project Properties, or with the Editor > Auto-formatting > Reformatter preference.

The available reformatters are PEP 8 with autopep8, Black, and YAPF.

Encodings

All the reformatters used by Wing assume utf-8 encoding if not otherwise specified in a source file with

a PEP 263 Python encoding comment. Whole-file reformatting may fail even if Wing correctly guesses

the file's encoding, since the coding comment is the only way to communicate a non-default encoding to

the reformatters.

5.14.1. PEP 8 Reformatting Options

For PEP 8 reformatting, Wing uses an integrated copy of autopep8. There is no need to install anything

to use this style of reformatting.

Several options for PEP 8 formatting are provided in the Editor > Auto-formatting preferences group:

• Enforce Line Length applies PEP 8 style line wrapping during reformatting, using the wrap

column configured with the Editor > Line Wrapping > Reformatting Wrap Column preference.

This is disabled by default, allowing any line length.

• Reindent All Lines in Files causes all lines to be reindented with 4-space indentation when PEP

8 reformatting an entire file. When this is disabled, reformatting may still alter indentation within

logical lines of code. When reformatting selections, this preference is ignored and only indentation

Source Code Editor

101

https://www.python.org/dev/peps/pep-0263/

within logical lines may be changed. To convert indentation to other styles or sizes, use the

Indentation Manager.

• Spaces Around = in Argument Lists overrides PEP 8 by inserting spaces around = in argument

lists. This is disabled by default.

• Spaces After # can be disabled to override PEP 8 insertion of spaces after comment characters.

This is enabled by default.

• Move Imports to Top can be enabled to enforce PEP 8 requirements to move all imports

to the top of the file. This is disabled by default.

5.14.2. Black Formatting Options

Wing invokes Black with python -m black using the Python you have selected in your project

configuration. As a result, Black must be installed into your Python with pip install black,

conda install black or other package manager.

Several options for formatting are provided in the Editor > Auto-formatting preferences group:

• Enforce Line Length during reformatting ensures that lines are wrapped during reformatting,

using the wrap column configured with the Editor > Line Wrapping > Reformatting

Wrap Column preference. This is disabled by default, allowing any line length.

• Skip String Normalization disables Black's conversion of string delimiters. This is enabled by

default, to prevent Black from corrupting code where the choice of string delimiters is part of the

coding standard.

5.14.3. YAPF Formatting Options

Wing invokes YAPF with python -m yapf using the Python you have selected in your project

configuration. As a result, YAPF must be installed into your Python with pip install yapf,

conda install yapf or other package manager.

None of the options in Wing's auto-formatting preferences are used with YAPF, which should instead be

configured using YAPF's configuration system.

5.14.4. Other Reformatters

Reformatters other than autopep8, Black, and YAPF can be integrated with Wing Pro using the OS

Commands tool to set up a command line that converts files in place. The command line can use %s for

the current file name. After conversion on disk, Wing will automatically reload the file into the editor.

OS Commands may be given a key binding, to make them easier to invoke for the current file.

Source Code Editor

102

https://wingware.com/doc/edit/indentation-manager
https://wingware.com/doc/oscommands/index
https://wingware.com/doc/oscommands/index

5.15. Code Snippets
Wing Pro's Snippets tool makes it easy to write code that contains commonly reused fragments

required by coding standards or commenting and documentation conventions.

Snippets may contain arguments to collect when they are placed into the editor and they may be

defined for specific file types or even specific contexts within a file, for example within a class definition

or inside a string.

Snippets are invoked by name from the editor's auto-completer or from the key bindings assigned in the

Snippets tool. If a snippet contains arguments, they are collected inline in the editor, in a data entry

mode.

Although Wing comes with example snippets, in most cases you will want to define your own, to match

your coding conventions and preferences.

Snippets Tool

The Snippets tool in the Tools menu is used to create, edit, delete, and manage snippets.

The option drop down in the top right of the Snippets tool (also accessible by right-clicking on the tab

area) provides items for adding, removing, and renaming file types into which to organize snippets. The

name of the file type is the file extension that Wing should use by default when creating a new file based

on a snippet, for example py for Python. The file extension is converted to a mime type internally so that

its snippets can also be used in files that use a different valid file extension for the same mime type. The

* file type, which is always present, allows defining snippets that can be applied to all file types.

To add, edit, rename, copy, and remove snippets, use the items in the context menu that appears when

you right-click on the Snippets tool.

When a snippet is created, it is added to the currently selected file type, and the snippet definition file

will be opened into the editor. See Snippet Syntax for details on how to write snippets.

Contexts

Variants of snippets may be defined for different contexts. For example, def may omit or include self

depending on whether it is defining a function or a method in a class. The default set of snippets that

ship with Wing illustrate this feature with the def and class snippet variants for Python.

The set of valid contexts depends on file type. For Python files the valid context names are module,

class, method, function, comment, and string. For HTML and XML, files are divided into content,

code (within < and >), comment, and string. Other files only distinguish code, comment, and string.

The context all is used for all file types to indicate any context.

The context for a snippet is changed by right-clicking on the item or clicking on the Context column to

select a different value.

Source Code Editor

103

https://wingware.com/doc/edit/auto-completion
https://wingware.com/doc/edit/snippet-syntax

Key Bindings

The right-click context menu menu on the Snippets tool also allows assigning key bindings to snippets.

To enter a key binding, just press the desired binding while focus is in the Key binding field. Bindings

can consist of multiple parts, such as Ctrl-H B. Pressing multiple keys will create a key binding

sequence, unless too much time elapses between the key presses. To reset the value to blank (no key

binding), select all text and press Backspace or Delete.

Key bindings are assigned to the snippet by name and not to a particular snippet file. If multiple

like-named snippets exists for different file types or contexts, the snippet that matches the current editor

context is chosen.

Execution and Data Entry

The easiest way to invoke snippets is from the auto-completer. Alternatively, they can be invoked by

their assigned key bindings (if any), by double clicking on the Snippets tool, or from the right-click

context menu in the Snippets tool.

When snippets are invoked, Wing chooses the snippet by name and places the correct variant

according to the file type and the context within the current editor. If no context is matched, the snippet

for context all is used. The caret position on the editor is used to determine the context, so altering the

position of the caret within leading indentation may alter which snippet variant Wing selects.

When placing a snippet into the editor, Wing will insert any default arguments, convert indentation and

line endings to match the target file, and place the editor into inline data entry mode to collect additional

arguments for the snippet.

In data entry mode, Wing moves between the fields in the snippet when Tab or BackTab are pressed.

The position within the snippet's fields will be displayed in the status area at the bottom of the editor

window.

While in data entry mode, the Indent and Outdent commands in the Indentation sub-group of Wing's

Source menu (and their key equivalents) can be used to increase or decrease the indentation of the

whole snippet within the editor. However, the same snippet variant that was used initially will be used

regardless of whether changes in indentation also change the context in the editor, for example from

method to function.

To exit data entry mode, press Esc (or Ctrl-G in Emacs mode) or move the caret outside of the pasted

snippet. To undo the snippet insertion, use Undo in the Edit menu or its key binding.

Scripting Snippets

Wing's extension API exposes the editor's data entry mode and snippet processing capabilities. This

can be used to write Python scripts that generate snippets and paste them into the editor for user data

entry. This approach allows for more complex logic than Snippet Syntax supports.

Source Code Editor

104

https://wingware.com/doc/edit/snippet-syntax

For details, see the PasteSnippet and StartDataEntry methods in wingapi.py and refer to Scripting

and Extending Wing.

5.15.1. Snippet Syntax

Snippets are text files that contain the snippet text along with markup that indicates where

user-provided values should be inserted. These markers are similar to Python's %(varname)s string

substitution syntax but instead of containing only a variable name, the body of the marker contains

richer argument collection information in the following format:

%(varname|type|default)s

Both type and default are optional but the vertical bars must be present if omitting type but including

default. To write a snippet that includes Python style string formats, escape each % by writing %%

instead.

Each part is defined as follows:

varname is the name of the variable.

Since arguments are collected inline, this name is used internally only. If a variable name is used

multiple times in a snippet, the value is collected where it first occurs and then inserted multiple

times.

@ prepended to the variable name indicates that the value should be wrapped to the column

specified with the Editor > Line Wrapping > Reformat Wrap Column preference.

! prepended to the variable name indicates that the value should act as a tab stop even if its value

is inserted from an earlier field with the same varname. This has no effect if the field name is

unique.

type is the type of data to collect. This is one of:

string(length) expects a string with given maximum length (or 80 if length is omitted)

date is the date in the current locale's preferred format or in the time.strftime() format given in the

environment variable __DATE_FORMAT__

datetime is the date and time in the current locale's preferred format or in the time.strftime()

format given in the environment variable __DATETIME_FORMAT__

If the type field is omitted or empty, string is assumed.

default is the default value to use.

Source Code Editor

105

https://wingware.com/doc/scripting/index
https://wingware.com/doc/scripting/index

This may be the actual value, or may contain environment variable references in the form

$(envname) or ${envname}.

Environment variables can be specified in the environment that Wing inherits when it is launched, in

the Debug tab of Wing's Project Properties, or may be selected from the set of special variables

listed in Environment Variable Expansion. Environment variables that are not found expand to the

empty string.

When the default field is omitted, the field will start blank.

Indentation and Line Endings

Snippets should always use one tab for each level of indentation. Tabs will be replaced with the

appropriate indentation type and size when the snippet is used in a new or existing file. The indentation

style and size will be determined according to content of the target file or for blank files by using the

preferences Editor > Indentation > Default Indent Style and

Editor > Indentation > Default Indent Size .

Similarly, line endings in snippets will be replaced with the appropriate type to match the file into which

the snippet placed.

If the snippet starts with |x| then x is a specification of how all the indents in the snippet should be

converted. It can be one of:

The character 'm' to re-indent as a block, so the first line is at the expected indent level for its

context in the source.

An integer to re-indent as a block, so the first line is at the given number of indent levels.

The character 'm' followed by '+' or '-' and an integer to re-indent as for 'm' and then shift left or

right by the given number of indents.

Any |x| at the start of a snippet file will be removed before the snippet is inserted into an editor.

Cursor Placement

Snippets can contain |!| to indicate the final resting position of the caret after all other fields have been

filled. When this is present, inline data entry mode is terminated automatically when this position is

reached, after all other fields have been entered. The mark will be removed before snippets are inserted

into an editor.

Source Code Editor

106

https://wingware.com/doc/proj/variable-expansion

5.15.2. Snippets Directory Layout

Snippets are stored in the directory snippets inside the Settings Directory. If this directory does not

exist the first time the Snippets tool is used, it is created and populated by making a copy of the default

set of snippets that ship with Wing. Changes and additions made subsequently in the Snippets will be

stored here, and the directory can be copied to other machines in order to share its snippets with other

installations of Wing Pro.

Snippets stored at the top level of this directory can be used with any file in the editor and are shown in

the * tab of the Snippets tool.

Snippets designed for a particular file type are stored in directories named with the most common

extension for the file type, for example py for Python.

Each of the file type directories may contain snippets that apply to any context in files of that type and

sub-directories named <context>.ctx for snippets designed for a particular context. <context> is

replaced with the desired context name.

Snippet file names are simply the name of the snippet with no extension. See Snippet Syntax for details

on the snippet file format.

Wing also stores a file named .config in the snippets directory, which should not be altered or

removed, as this may cause the loss of your snippet files.

Snippets Search Path

Additional directories for finding snippets can be specified with the Editor > Snippets > Snippets Path

preference. Later directories on the path override earlier directories for the same snippet name. New

snippets will be created in the last directory on the path.

When one or more directories have been added to the Snippets Path, the Editor > Snippets

> Include Default Snippets preference can be used to disable displaying the default set of snippets in

the Snippets tool.

5.16. Indentation
Since indentation is syntactically significant in Python, Wing provides a number of features for

inspecting and managing indentation in source code.

5.16.1. How Indent Style is Determined

Wing can work with files with different indentation styles, including tab-only, space-only, and tab+space

indentation.

When an existing file is opened, it is scanned to determine what type of indentation is used in that file.

Wing then matches new indentation added during editing to the form already found in the file. If mixed

forms of indentation are found, the most common form is used. If no indentation is found, Wing uses the

Source Code Editor

107

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/edit/snippet-syntax

Preferred Indent Style set in Project Properties, or the Editor > Indentation > Default Indent Style

and Editor > Indentation > Default Indent Size preferences.

Changing Indent Style

To change the indentation style in an existing file, use Indentation in the Tools menu.

You can use a different indentation style for non-Python files without first converting existing indent

styles by changing the Indent Style property in File Properties, which is accessed by right-clicking on

the editor. Wing will warn that you are entering inconsistent styles of indentation, but the warning can be

disabled from the warning dialog or from the Editor > Indentation > Show Override Warning Dialog

preference.

For Python files, where indentation has syntactic significance, the Indent Style cannot be altered

without converting the whole file using the Indentation tool, which is accessed from the button next to

the Indent Style property in File Properties or from the Tools menu.

Tab Size

The size of the tab character is controlled with the Editor > Indentation > Default Tab Size preference.

This defines the position of tab stops, counting in multiples of tab size from the start of the line.

This preference is ignored in Python files with mixed tab and space indents, where the file is always

shown in the way that the Python interpreter would see it.

Disabling Indent Analysis

Although not recommented, it is possible to disable any attempt to use file contents to determine the

style of indentation to use while editing. This is done with the

Editor > Indentation > Use Indent Analysis preference. When this is disabled, Wing always uses the

Preferred Indent Style set in Project Properties, or the Editor > Indentation > Default Indent Style

and Editor > Indentation > Default Indent Size preferences.

5.16.2. Indent Guides, Policies, and Warnings

In Wing Personal and Wing Pro, the editor can display light vertical lines that make indented code more

readable. These are enabled with the Editor > Indentation > Show Indent Guides preference, or they

can be added to individual files with Show Indent Guides under the Editor tab of File Properties.

Indent Policies

A preferred indentation style and enforcement policy can be specified with Preferred Indent Style and

Indent Style Policy under the Options tab in Project Properties.

Indent Warnings

When a file is opened, Wing will indicate a potentially problematic mix of indentation styles found in the

file, allowing you to attempt to repair the file. Files can be inspected more closely or repaired with

Indentation in the Tools menu.

Source Code Editor

108

https://wingware.com/doc/editor/indentation-manager
https://wingware.com/doc/edit/indentation-manager
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/edit/indentation-manager

To turn off indentation warnings in Python files, use the Editor > Indentation >

Show Python Indent Warning Dialog preference.

Wing also indicates suspiciously mismatched indentation in source code by underlining the indent area

of the relevant lines in red or yellow. An error or warning message is displayed when the mouse is

hovered over the marked area of code.

5.16.3. Auto-Indent

Wing auto-indents code as you create new lines with Return, by adding leading white space

appropriate for the context. Enough white space is inserted to match the indentation level of the

previous line, possibly adding or removing a level of indentation if a block has been started (with if, for,

and others) or ended (with return).

Some of the auto-editing operations also result in auto-indentation.

Disabling Auto-Indent

Auto-indent can be disabled with the Editor > Indentation > Auto-indent preference. When disabled,

the Tab key may be used to insert indentation, depending on its configuration.

Auto-Indent After Paste

Wing also auto-indents code when pasting multiple lines of Python. If the auto-indent is incorrect, a

single Undo will return the pasted text to its original indentation level, or the text can be selected and

adjusted with the indentation toolbar, or the Source > Indentation menu items. Auto-indent during

Paste can be disabled with the Edit > Clipboard > Adjust Indent After Paste preference.

Wing also converts indentation style during Paste to match the target file. This can be disabled with the

Edit > Clipboard > Convert Indent Style On Paste preference.

5.16.4. The Tab Key

The action of the tab key depends on the Editor > Keyboard > Personality preference, the file type

being edited, and the position within the file.

To insert a real tab character, press Ctrl-T.

Tab Key Action

The behavior of the tab key can be altered with the User Interface > Keyboard > Tab Key Action

preference, which provides the following options:

Default for Personality selects from the other tab key actions below, according to the current keyboard

personality and file type. In all non-Python files, the default is Move to Next Tab Stop. In Python files,

the defaults are as follows:

Normal: Smart Tab

Source Code Editor

109

https://wingware.com/doc/edit/auto-editing
https://wingware.com/doc/edit/the-tab-key
https://wingware.com/doc/custom/keyboard-personalities
https://wingware.com/doc/custom/keyboard-personalities

VI/VIM: Move to Next Tab Stop

Emacs: Indent to Match

Brief: Smart Tab

Visual Studio: Move to Next Tab Stop

macOS: Smart Tab

Eclipse: Emulates Eclipse

XCode: Smart Tab

MATLAB: Insert Tab Character

Indent to Match indents the current line or selected lines to position them at the computed indent level

for their context in the file.

Move to Next Tab Stop enters indentation so that the caret reaches the next tab stop.

Indent Region increases the indentation of the current line or selected lines by one level.

Insert Tab Character inserts a Tab character chr(9) into the file.

Smart Tab is equivalent to Move to Next Tab Stop in non-Python files, and implements the following

behavior in Python files:

(1) When the caret is within a line or there is a non-empty selection, this performs Indent to Match.

When the line or lines are already at the matching position, indentation is toggled between other

valid positions.

(2) When the caret is at the end of a non-empty line and there is no selection, one indent level is

inserted. The User Interface > Keyboard > Smart Tab End of Line Indents preference alters the

type of indentation used in this case, or disables this aspect of the Smart Tab feature.

5.16.5. Adjusting Indentation

For cases where the Tab key cannot be used to adjust indentation of a line or selected lines, the

following commands are available in the Indentation portion of the Source menu:

Indent and Outdent increase or decrease the level of indentation of selected blocks of text. All

lines that are included in the current text selection are moved, even if the entire line isn't selected.

Indent Lines to Match adjusts the indentation of the current line or selected lines so that the first

line is positioned correctly under preceding code.

Source Code Editor

110

5.16.6. Indentation Tool

The Indentation tool, accessible from the Tools menu, can be used to inspect and change indentation

style and size in the current source file.

Indentation Statistics

The top of this tool shows indentation statistics for the current file. This includes the following

information:

Status indicates what indentation type is being used for the file.

Counts shows the number of indentations found in the file and how many of those are tab-only,

space-only, or tab+space. For example, in a file with 233 space-only indentations and 3 tab-only

indentations this would display 236 (3t/233s/0t+s). If the file contains indentation errors or

warnings, these can be traversed with the right/left arrow buttons shown to the right of the counts.

Pressing these buttons jumps to the problem in the editor and hovering the mouse over the

indicated code will show details of the error or warning.

Tab Size shows the effective size of the tab character for this file and the origin of this value, which

may be preferences or the contents of the file, depending on indentation preferences, file type, and

file contents,

Indent Size shows the indent size being used for this file, along with the origin of this value.

Converting Indentation

To convert the indentation type and/or size in the current file, select the type of indentation to use in the

Conversions section at the bottom of the tool. When converting to Spaces Only or

Mixed Tabs & Spaces the Indent Size shown in the Statistics area can be changed to select the

desired indent size.

The action that will be performed is explained in the area below the conversion type tabs. Press

Convert to complete the operation in the editor.

Once conversion is complete, the Indentation tool updates to display the new status of the file. In Wing

Pro, the conversion can be reviewed with Compare Buffer with Disk from the Difference/Merge

toolbar icon.

Save the editor to make the conversion permanent, or use use Undo from the Edit menu while the

editor has focus to discard the conversion.

Source Code Editor

111

5.17. Keyboard Macros
Start Macro Record in the Edit menu starts the definition of a new keyboard macro. Once macro

recording is started, any keystroke or editor command is recorded as part of that macro, until macro

recording is stopped with Stop Macro Record in the Edit menu. Most commands may be included in

macros, as well as all character insertions and deletions.

Using the operations under Mini-search in the Edit menu combined with cursor movements and edits

allows for the creation of macros that can be applied repeatedly to code with Execute Macro in the Edit

menu.

Keyboard macros are also supported by the native bindings emulated by keyboard personalities like

Emacs, VI/Vim, Visual Studio, and Brief.

5.18. Auto-Reloading Changed Files
Wing's editor detects when files have been changed outside of the IDE and can reload files into its

editor. This is useful when working with an external editor, or when using code generation tools that

rewrite files.

The default behavior is to automatically reload externally changed files that have not yet been changed

within Wing's source editor, and to prompt to reload files that have also been changed in the IDE.

You can change these behaviors with the the Files > Reloading > Reload when Unchanged and

Files > Reloading > Reload when Changed preferences

By default, reloading will close files that disappeared on disk. This is the recommended behavior when a

revision control system is in use, because updates or branch switches that occur while Wing is running

may remove open files. However, this behavior can be overridden with the

Files > Reloading > Reloading Deleted Disk Files preference. Using Prompt for Action instead

reduces the chances of entirely losing a file if the file is accidentally deleted on disk.

On Windows, Wing uses a signal from the OS to detect changes so notification or reload is usually

instant. On Linux and Unix, Wing polls the disk by default every 5 seconds. This frequency can be

changed with the Files > Reloading > External Check Freq preference.

Before reloading a file with changed modification time, Wing checks the contents of the file and avoids

reloading it into the editor when its contents remains unchanged. This check is skipped for files larger

than 5MB and it may be disabled entirely with the Files > Reloading > Check Hash Before Reloading

preference. This may be needed when working with a slow network disk, where the process of checking

the contents of files slows down Wing more than reloading unchanged files.

5.19. Auto-Save
Wing auto-saves files to disk every few seconds so they can be restored if the IDE is killed from the

outside or crashes. The auto-save files are placed in a subdirectory of your Cache Directory.

Source Code Editor

112

https://wingware.com/doc/custom/keyboard-personalities
https://wingware.com/doc/install/user-settings-dir

Wing checks this directory at startup and will offer to restore any unsaved changes. The files you select

to restore will be opened into Wing as edited files.

In Wing Pro you can compare the restored files to disk using Compare Buffer with Disk item in the

Difference/Merge toolbar item or Source > Difference/Merge menu area.

To keep the restored unsaved changes, save the file to disk.

To discard the unsaved changes, use Revert to Disk in the File menu.

5.20. File Sets
File sets are named groups of files that can be opened together or searched from the Search in Files

tool in the Tools menu. File sets are created in several ways:

• Open the desired files and use Name Set of Open Files in the Files > File Sets menu.

• Select the desired files in the Project or Open Files tools in the Tools menu. Then right-click on

the tool and select Name Selected File Set, or use Name Set of Selected Files in the

Files > File Sets menu.

• Search in the Search in Files tool in the Tools menu and when the search is complete use

Name Result File Set in the tool's Options menu.

Once defined, file sets can be opened from the Files > File Sets menu and they are included by name

in the Search in Files tool's Look in menu.

Managing File Sets

To view or edit the defined file sets, use Manage File Sets in the File > File Sets menu. Right-click to

access all the available operations in this dialog. To rename a file set, click on its name and edit the

name in place.

Binding File Sets to Keys

File sets can be bound to a key binding that will open all the files in the file set into the editor. This is

done in the Manage File Sets dialog from the Files > File Sets menu, by selecting the file set, right

clicking, and choosing Set Key Binding.

To enter a key binding, just press the desired binding while focus is in the Key binding field. Bindings

can consist of multiple parts, such as Ctrl-H B. Pressing multiple keys will create a key binding

sequence, unless too much time elapses between the key presses. To reset the value to blank (no key

binding), select all text and press Backspace or Delete.

Shared File Sets

File sets can be stored either in the project file (the default) or in a shared file that is used by all projects.

To share a file set, open the Manage File Sets dialog from the File > File Sets menu and check the

Shared checkbox.

Source Code Editor

113

5.21. Other Editor Features
Show Line Numbers

To show and hide line numbers on the editor, use the Show Line Numbers and Hide Line Numbers

items in the Edit menu.

Block Commenting

Use Toggle Block Comment in the Source menu to comment out the selected lines of code in the

current editor. Selecting the command a second time will return the lines to their former uncommented

state.

For Python files, the type of commenting used with this feature is configured with the

Editor > Block Comment Style preference. Indented block commenting styles tend to work better

when editing code around commented out lines.

Line Editing

The Line Editing sub-menu of the Source menu provides some commands for quickly operating on

lines of code:

New Line Above creates a new blank line above the current line, auto-indents, and places the

caret at the start of the new line.

New Line Below works the same way but places the new line below the current line.

Duplicate Lines Above duplicates the current lines or lines above the current selection. The caret

or selection is left unchanged.

Duplicate Lines Below works the same way but the lines are placed below the current selection.

Move Lines Up moves the current line or lines upward one line.

Move Lines Down moves the current line or lines downward one line.

Delete Lines deletes all of the current line or lines, even if the selection does not span whole lines.

Swap Lines swaps the current line, or the line at the start of the selection, and the next line.

Enclose

The Enclose sub-menu of the Source menu provides commands to enclose the current selection with

(), [], {}, '', "", or <>. If there is no selection, the operation is applied to the text between the caret and

the end of the line.

Changing Case

Source Code Editor

114

The Change Case sub-menu of the Source menu provides commands to convert the case of the

current selection to UPPER CASE, lower case, or Title Case.

Toggle Symbol Case in the same menu converts the current symbol between my_symbol_name,

mySymbolName, and MySymbolName form. To convert all occurrences of a symbol, use the items in

the Refactor menu instead.

Zooming In and Out

The editor font size can be increased and decreased temporarily from the Zoom sub-menu of the Edit

menu.

If the Editor > Enable Font Size Zooming preference is enabled, zooming the editor can also be

accomplished by holding down the Ctrl key (or Command on macOS) while operating the mouse wheel

or track pad.

Reset Zoom in the Edit > Zoom menu returns the font size to the original.

Brace Matching

Wing highlights matching braces in green when the cursor is adjacent to a brace. Mismatched braces

are highlighted in red.

You can cause Wing to select the entire contents of the innermost brace pair from the current cursor

position with Match Braces in the Source menu.

Parenthesis, square brackets, and curly braces are matched in all files. Angle brackets (< and >) are

matched only in HTML and XML files.

Zip and Egg Support

Source files that are stored in .zip or .egg files may be loaded into the editor as read-only files, during

stepping in the debugger, for goto-definition, and as otherwise needed. However Wing is unable to write

to a file within a .zip or .egg file.

To open a file through the open file dialog, specify the name of the .zip or .egg file and add a / followed

by the name of the file to open.

Source Code Editor

115

Search and Replace
Wing provides a number of tools for search and replace in your source code, for quick one-off searches

from the toolbar, keyboard-driven search and replace, and single and multi-file search and replace.

6.1. Toolbar Quick Search
The search area of the toolbar can be used for simple searching in the current file. This scrolls as you

type to display the next match found after the current caret position or selection. Press Enter to search

for each subsequent match. The search wraps when it reaches the end of the file.

Text matching for toolbar search is case-insensitive unless you enter a capital letter as part of your

search string.

When a match is visited in the editor, Wing highlights it briefly with a callout, as configured from the

Editor > Callouts preferences group.

6.2. Keyboard-Driven Search and Replace
Keyboard-driven search and replace are available in the Mini-search sub-menu of the Edit menu.

These are normally initiated with the key bindings shown in the menu and can be controlled entirely

from the keyboard. All interaction with the mini-search manager occurs in the status area at the bottom

of the IDE window.

For keyboard personalities like Emacs and VI/Vim, Wing will emulate the appropriate bindings for that

editor.

Forward and Backward display an initially blank search area at the bottom of the IDE window to search

in the current source editor, starting from the current position. The search takes place as you type and

can be aborted with Esc or Ctrl-G, which restore the original selection and scroll position.

Searching is case-insensitive unless you enter a capital letter as part of your search string.

To move through matches in the editor, press the key binding for the command repeatedly. The search

direction can be changed by using the key binding for the other search direction.

When search is first initiated, pressing the key binding a second time enters the most recent search

string. When the top or bottom of the file is reached, press the key binding again to cause the search to

wrap.

While the mini-search area is visible, Ctrl-W adds the current word in the editor to the search string.

Pressing Ctrl-W repeatedly adds subsequent words.

Selection Forward and Selection Backward start mini-search with the current selection in the editor.

Regex Forward and Regex Backward start mini-search using the search string as a regular

expression.

Search and Replace

116

https://wingware.com/doc/custom/keyboard-personalities

Query/Replace and Query/Replace Regex prompt for Search and Replace strings in the status area

at the bottom of the IDE window. Tab moves between the fields and Enter starts the search from the

current caret position in the editor. For each match, press y to replace or n to move on to the next match

without replacing. The interaction can be canceled with Esc or Ctrl-G.

Matching is case insensitive unless a capital letter is entered as part of the search string.

Searching is always forward and stops at the end of the file, without wrapping.

Replace String and Replace Regex work like Query/Replace but immediately replace all matches

without prompting.

When a match is visited in the editor, Wing highlights it briefly with a callout, as configured from the

Editor > Callouts preferences group.

6.3. Search Tool
The Search tool in the Tools menu can be used to search and replace within the current editor.

Searches may be initiated from the Search and Replace sub-menu of the Edit menu, using Search,

Replace, Search for Selection Forward, and Search for Selection Backward. The Replace field will

be hidden unless a replace operation was started. It can also be shown from the Options menu at the

top right of the tool.

The popups to the right of the Search and Replace fields, contain a history of previously used strings.

Right-click on the fields to insert special characters.

To search only part of a file, select the desired range in the editor and check In Selection.

When a match is visited in the editor, Wing highlights it briefly with a callout, as configured from the

Editor > Callouts preferences group.

Search Type

The type of search is selected from the Options menu:

Text Search chooses plain text search, without wildcard or regex matching.

Wildcard Search uses wildcard style searching. See Wildcard Search Syntax for details.

Regex Search uses regular expression style searching. See Python's Regular Expression Syntax

documentation for details. When Regex Search is selected, a popup menu Regex Flags appears to

the left of the Options menu. These are the same flags passed to Python's re.compile(). For regex

searching, the replace string can reference regex match groups with \1, \2, etc, as in the Python

re.sub() call.

For each of these, the checkboxes in the tool provide some additional options:

Case Sensitive shows only exact matches of upper and lower case letters in the search string.

Search and Replace

117

https://wingware.com/doc/edit/search-wildcard
https://docs.python.org/library/re.html#regular-expression-syntax

Whole Words requires that matches are surrounded by white space (spaces, tabs, or line ends) or

punctuation other than _ (underscores).

Search Options

The following additional options are available from the Options menu:

Show Replace controls whether the Replace field is visible in the tool.

Wrap Search allows wrapping when the search reaches the top or bottom of a file.

Incremental immediately starts or restarts searching as you type or alter search options. When

unchecked, use the Previous and Next search buttons to initiate searching.

Find After Replace automatically finds the next search match after each replace operation.

Special Characters

The right-click context menu on the Search and Replace fields provide some options for search and

replace strings to include special characters:

Insert Newline inserts new line (\r\n on Windows and \n on other OSes)

Insert Line Feed inserts a line feed character (\n)

Insert Carriage Return inserts a carriage return character (\r)

Insert Tab inserts a tab character (\t)

Interpret Backslash Characters toggles whether special characters like \n, \r, \t and others are

interpreted as a backslash followed by a letter or as the character that they represent (line feed,

carriage return, tab, etc). The supported characters are all those that Python supports in its

representation of strings.

6.4. Search in Files Tool
The Search in Files tool in the Tools menu searches within sets of files and displays a list of all

matches found.

The files to search are selected with Look in and Filter. Look in specifies the set of files to search,

which may be the current editor, a single selected file, all open files, all project files, a named File Set, a

selected directory on disk, or all of Wing's documentation. Filter can be used to select a subset of the

files specified by Look in, using a File Filter or by typing a wild card expression containing * and/or ?.

For example, Look in set to Project Files and Filter set to Python Files will restrict searching to only

Python files that appear in the Project tool. Look in set to *.mako would search only file sending in

.mako. If the Filter is neither a valid File Filter name nor a valid wild card expression then all the files

selected by Look in are searched.

Search and Replace

118

https://wingware.com/doc/edit/file-sets
https://wingware.com/doc/custom/file-filters

Searches may be initiated using Search in Files in the Search and Replace sub-menu of the Edit

menu. The Replace field will be hidden unless Replace in Files was used. It can also be shown from

the Options menu at the top right of the tool.

The popups to the right of the Search and Replace fields contain a history of previously used strings.

Right-click on the fields to insert special characters.

Once a search is started, matches can be selected from the result list and shown in the editor or

documentation viewer, even before the entire search completes. The result list is updated automatically

as files are edited, added, or removed, in order to include any new matches or remove any old ones.

When a match is visited in the editor, Wing highlights it briefly with a callout, as configured from the

Editor > Callouts preferences group.

Search Type

The type of search is selected from the Options menu in the top right of the tool:

Text Search chooses plain text search, without wildcard or regex matching.

Wildcard Search uses wildcard style searching. See Wildcard Search Syntax for details.

Regex Search uses regular expression style searching. See Python's Regular Expression Syntax

documentation for details. When Regex Search is selected, a popup menu Regex Flags appears to

the left of the Options menu. These are the same flags passed to Python's re.compile(). For regex

searching, the replace string can reference regex match groups with \1, \2, etc, as in the Python

re.sub() call.

Case Sensitive shows only exact matches of upper and lower case letters in the search string.

Whole Words requires that matches are surrounded by white space (spaces, tabs, or line ends) or

punctuation other than _ (underscores).

Options

The following additional options are available from the Options menu:

Show Replace controls whether the Replace field is visible in the tool.

Show Search Type in Tool moves the selection of search type out of the Options menu and to the

surface of the tool.

Find After Replace automatically finds the next search match after each replace operation.

Replace Operates On Disk replaces text in un-opened files directly on disk rather than in an editor.

This should be used with caution since changes cannot be undone except by reverting using a version

control system or restoring from a backup.

Recursive Directory Search also searches all sub-directories when searching a directory on disk.

Search and Replace

119

https://wingware.com/doc/edit/search-wildcard
https://docs.python.org/library/re.html#regular-expression-syntax
https://wingware.com/doc/versioncontrol/index
https://wingware.com/doc/versioncontrol/index

Omit Binary Files omits any file that appears to contain binary data.

Auto-restart Searches restarts searching immediately if it is interrupted because a search option or the

set of files being searched has changed.

Open First Match automatically opens the first batch search match found when searching starts.

Show Line Numbers includes line numbers in the result area.

Result File Name selects the format of the file names shown in the batch result area.

Copy Result to Clipboard places a copy of all the search results on the clipboard.

Name Result File Set creates a File Set containing all the files listed in the current result list.

Special Characters

The right-click context menu on the Search and Replace fields provide some options for search and

replace strings to include special characters:

Insert Newline inserts new line (\r\n on Windows and \n on other OSes)

Insert Line Feed inserts a line feed character (\n)

Insert Carriage Return inserts a carriage return character (\r)

Insert Tab inserts a tab character (\t)

Interpret Backslash Characters toggles whether special characters like \n, \r, \t and others are

interpreted as a backslash followed by a letter or as the character that they represent (line feed,

carriage return, tab, etc). The supported characters are all those that Python supports in its

representation of strings.

6.5. Find Points of Use
Wing Pro can find all points of use of a symbol in the current project's Python files. To start a search,

select or place the cursor in a symbol and then use Find Points of Use in the Source menu or the

editor's right-click context menu, or Alt-click on a symbol.

Find Points of Use searches all files in your project. To limit your search to only the current file, use

Find Points of Use in Current File instead.

The results are shown in the Uses tool. Clicking on a match will show it in the editor, highlighting it

briefly with a callout, as configured from the Editor > Callouts preferences group.

Completed searches are stored in the Uses tool. They can be selected from the drop down menu at the

top of the tool and deleted by clicking on the close icon. Searches do not automatically refresh as code

is modified, but may be updated manually with Refresh in the Options menu.

Result Display

Search and Replace

120

https://wingware.com/doc/edit/file-sets

Wing tries to show only symbols that are actually the same symbol, and not also other like-named

symbols. However, since Python is a dynamic language, it is sometimes impossible to determine for

certain whether a match is the same symbol. Matches are assigned a likelihood of being correct, as

follows:

Likely: The original symbol and found symbol resolve to the same definition so that using

Goto Definition on each will end up in the same place.

Possible: Either the original symbol or the found symbol don't resolve to any definition.

Unlikely: The original symbol resolves to a different definition than the found symbol.

Possible matches are listed with a question mark ? preceding the filename and unlikely matches are

listed with double question mark ?? preceding the filename. Only likely and possible matches are

displayed by default. The display of possible and unlikely matches may be toggled from the Options

menu on a per-search basis.

Finding Imported Symbols

When finding a symbol from an import statement, Wing defaults to finding where the imported module,

class, function, or attribute is used with the same name in all files searched. To only find the symbol

created by the import statement used to start the search, uncheck Find Imported Items Everywhere

on the Options menu.

Improving Quality of Results

If Wing is failing to see matches as resolving to the same point of definition, it may help to add to the

Python Path in Project Properties or place type hints so that the source analysis engine can

determine the type of more symbols. See Helping Wing Analyze Code for details.

6.6. Wildcard Search Syntax
The following syntax is used for wild card searches in Wing's search tools:

* matches any sequence of characters except for line endings. For example, the search string my*value

would match anything within a single line of text starting with my and ending with value. Note that * is

"greedy" in that myinstancevalue = myothervalue would match as a whole rather than as two

matches. To avoid this, use Regex Search instead with .*? instead of *.

? matches any single character except for line endings. For example, my???value would match any

string starting with my followed by three characters, and ending with value.

[and] indicate sets of characters to match. For example [abcd] matches any one of a, b, c, or d. Also,

[a-zA-Z] matches any letter in the range from a to z, either lower case or uppercase. Case

specifications in character ranges will be ignored unless the Case Sensitive option is turned on.

Search and Replace

121

https://wingware.com/doc/edit/helping-wing-analyze-code

Code Warnings and Quality Inspection
Wing Pro warns about possible problems with Python code, by underlining them in the editor and listing

them in the Code Warnings tool. A warning indicates something might be wrong in the code, for

example a syntax error, indentation problem, use of an undefined variable, an import that cannot be

resolved, or a variable that is set but never used.

New code is checked as you work, although Wing will wait until you have finished typing so that it

doesn't warn about code that is still being entered.

Wing's builtin warnings may be supplemented with warnings found with external code quality checkers

like flake8, mypy, pep8, and pylint.

Since all code checkers have only a limited understanding of what happens when code is actually run,

they may show incorrect warnings. Wing allows you to disable specific warnings either for a single case,

for an entire file, or for all files from the Code Warnings tool or the editor.

Warnings generated by Wing may be disabled with PEP 484 # type: ignore comment on the line with

the warning. A # type: ignore comment on a line by itself at the start of the file (before any

non-comment line) will also disable all warnings in the entire file.

7.1. Code Warnings Tool
The Code Warnings tool in the Tools menu lists all the warnings found on the current editor. Clicking

on warnings or pressing the Enter key in the list navigates to that warning in the editor, highlighting it

briefly with a callout, as configured from the Editor > Callouts preferences group.

Disabling Warnings

The Code Warnings tool is also used to selectively disable warnings.

Individual warnings may be disabled by clicking on the red X that appears while moving the mouse

cursor over warnings in the Code Warnings tool, or by selecting an item and pressing the Delete key.

When this is done, Wing disables most individual warnings only for the scope it appears in. However,

undefined attribute warnings are always disabled in all files.

The right-click context menu on the Code Warnings tool may be used to specify how widely to disable

a warning, either only one specific case, all warnings of that type in the file, or all warnings of that type in

all files.

For external checkers, warnings disabled by clicking the red X or pressing Delete are hidden globally by

type. Note, however, that Wing does this without altering the external checker's regular configuration

file. Editing the configuration for the external checker directly, as documented by the external checker, is

another way to ignore some of its errors and warnings.

Configuration: Disabled Warnings

Code Warnings and Quality Inspection

122

https://wingware.com/doc/warnings/external-checkers

When a warning is disabled, Wing adds a rule to the Configuration: Disabled Warnings page in the

drop-down menu at the top of the Code Warnings tool.

Rules are organized into those defined for the current file and those defined for any file. Configuration

rules may be dragged between these two groups. Rules may be deleted by clicking on the red X that

appears while moving the mouse cursor over the items, or by selecting them and pressing the Delete

key.

Rules may be edited from the right-click context menu, in order to disable a broader or narrower set of

warnings. For example, a rule to disable a specific undefined attribute warning can be changed to

disable all undefined attribute warnings for the class by changing the Attribute Name field from

.attribute to .*.

Configuration: Defaults

The types of code warnings that Wing shows can be configured from the Configuration: Defaults page

in the drop-down menu at the top of the Code Warnings tool. The warnings types Wing supports are

documented in Warning Types and some of the warning types offer configuration options to control

which variants of that type of warning will be shown.

Sharing Configurations

The current code warnings configuration may be exported to the user settings area, or to a selected file

from the Options menu in the Code Warnings tool. Projects may then share the configuration through

the Use Configuration From item in the Code Warnings tool's Options menu.

When the code warnings configuration is stored in user settings, it is written to a file named

code-warnings.conf in the User Settings Directory.

When the code warnings configuration is stored to another file, it may be checked into revision control

along with the .wpr file. The choice of which external configuration file is used is stored in the .wpr file

so all users of that project will use the same code warnings configuration. Wing will be able to find the

shared configuration as long as the relative path between the project and the configuration file remains

the same.

Clearing the Configuration

The code warnings configuration may be reset to blank with the Clear Configuration item in the

Code Warnings tool's Options menu.

7.2. Warnings on the Editor
The code warnings icon appears in the top right of any editor that has some code warnings. This can

be used to jump to each warning, force immediate update of the warnings in the file, disable all

warnings in the file, or bring up the Code Warnings tool.

Code Warnings and Quality Inspection

123

https://wingware.com/doc/warnings/warning-types
https://wingware.com/doc/install/user-settings-dir

When code warnings are displayed on the editor, hovering the mouse cursor over the indicator will

display details for that warning in a tooltip. The tooltip includes a red X icon that can be pressed to

disable that warning in the same way as disabling it from the Code Warnings tool.

The way in which code warnings appear on the editor may be changed with Indicator Style,

Error Color, and Warning Color in the Editor > Code Warnings preferences group.

7.3. Warnings Types
Wing's internal code checker supports following types of code warnings. Each of these may be

configured from the Configuration: Defaults page from the drop-down menu at the top of the

Code Warnings tool.

General

Import Not Found is shown when a module or package cannot be found on the configured Python

Path. This may indicate that you may need to modify the Python Path in Project Properties, so that

Wing can find your modules. In cases where this is not feasible, or if code is overriding the import,

warnings of this type may be disabled instead.

Indent warnings are shown when an indent is not consistent in size or content (tabs vs. spaces) with

indents found elsewhere in the file, or when an indent does not match the logical structure of the code.

For example, the line after if and for must be indented, while the line after return or raise should be

outdented. Code with inconsistent indent size or content may still be correct, and sometimes warnings

of this type should be disabled.

Undefined Symbols

Undefined Name warnings are shown when a variable is used without the variable ever being set, or

when a function is used without defining the function. This warning usually indicates broken code that

should be fixed, and warnings of this type should be disabled only in rare cases.

Undefined Attribute warnings are shown when a class or instance attribute name appears to be

undefined. This occurs when the attribute is not in the list of attributes that Wing has found for the type

of symbol before the dot. This list is the same as the one that used for autocompletion on the object.

Warnings of this type should be disabled in cases where Wing doesn't identify the object correctly or the

list of attributes is incomplete. When disabled, an undefined attribute warning for the same attribute

name and object type are ignored across all files.

Unused Symbols

Import Not Used warnings are shown when a name that is imported is not used anywhere in the file

that it has been imported into. Warnings of this type should be disabled in cases where the name is

used in another file, as an attribute of the module.

Code Warnings and Quality Inspection

124

Variable Not Used warnings are shown when a variable is set but never used in any other code. When

warnings of this type are enabled, additional configuration is possible with the Configure button, to

control some of the common cases where this warning is unwanted. These cases include:

(1) By default, Wing does not warn about top level global variables in a file because they may be used

as module attributes in another file. However, Wing still warns if __all__ is set in the file and the unused

global is not included in it.

(2) By default, Wing does not warn about unused variables if they are defined by unpacking a tuple,

such as in a, b = (1, 2). However, Wing still does warn about unpacked variables if all of the variables

unpacked together are unused.

(3) By default, Wing does not warn about unused variables with names starting with unused or dummy

since these are usually intentionally unused values. Additional regular expressions for identifying

intentionally unused variables may be set in the configuration dialog.

Other unused variables are always ignored by Wing, including: (a) variables or methods set in a class

scope, because they may be used as either class or instance attributes, and (b) loop variables such idx

in for idx in range(5).

Argument Not Used warnings are shown when a function or method argument is defined in the def

statement but never used. This warning type is disabled by default because arguments often need to be

included to match a desired standard signature. It may be enabled for code bases where this is not a

frequent issue.

7.4. Advanced Configuration
The Advanced Configuration button at the bottom of the Configuration: Defaults page in the

drop-down menu at the top of the Code Warnings tool may be used to control several other options for

Wing's code warnings facility:

Show Warnings in the Standard Library controls whether Wing shows any warnings in files found in

Python's standard library. This is disabled by default since most users are not in a position to make

changes to this code.

Show Warnings in site-packages controls whether Wing shows any warnings in files that are in the

site-packages directory in the Python installation. This is the location that third party modules are

installed into Python by pip and other package managers. This is also disabled by default.

Allow Comments to Disable Warnings controls whether Wing will look for comments in code to

indicate that all warnings of a particular type should be disabled in the scope in which the comment is

found. This is enabled by default and uses a set of comment regular expressions that match the

informal pylint disable standard developed by Pylint and a similar wing disable standard for Wing's

internal code checker. The set of regular expressions may be edited and extended through the

configuration dialog. Each expression may disable on class of code warnings, including all instances of

that type of warning.

Code Warnings and Quality Inspection

125

7.5. External Code Quality Checkers
Errors and warnings found by external checkers like flake8, mypy``, pep8 and pylint may be

interleaved with those found by Wing. Wing will filter the warnings through its list of rules to disable

warnings. This can be used to quickly disable unwanted warnings, for example those that are stylistic in

nature and not real problems in code.

To enable any external checker, check the Enable External Checkers option at the bottom of the

Configuration: Defaults page in the Code Warnings tool. Then press the Configure button to select

which checkers to enable and when to run them. External checkers may be run when a file is opened,

after it is saved to disk, or both. Checkers will also be re-run if warnings are updated manually from the

code warnings menu in the editor or the Options menu in the Code Warnings tool.

The command line used to run the checker is configured under its tab in the Configure dialog. By

default, Wing runs the Python Executable configured in Project Properties with the -m argument to

load the checker. This means that the checker must be installed into the selected Python, usually with

pip or conda if using Anaconda Python.

Note that some checkers take a long time to run on even moderately sized source files and may

consume significant amounts of CPU time. To prevent checks from consuming too many resources,

Wing will skip checks on any file above the threshold set in the Maximum File Size option in the

external checker's configuration. When a file is skipped, a message will appear briefly in the status area

at the bottom of the IDE window and in the Code Warnings tool.

Once external checkers have been configured, Wing runs them, parses the output, and merges its

warnings into the Code Warnings tool and the editor's code warnings indicators. To view the raw

output of the checkers that Wing is running, select External Checker Console from the Options menu

in the Code Warnings tool.

Flake8 Configuration

The configuration page for flake8 includes two additional options:

1. Use Detected Indent Size causes Wing to pass the indentation size it has detected for the file

being checked to flake8 using its --indent-size command line option. For files that do not yet

contain any indentation, the Editor > Indentation > Default Indent Size preference is used

instead. When this is disabled, flake8's default of 4 is used instead. Default=disabled.

2. Use Configured Line Length tells Wing to pass the line length configured with the

Editor > Line Wrapping > Reformatting Wrap Column to flake8 using its --max-line-length

command line option. When this is disabled, flake8's default line length is used instead.

Default=enabled.

Pylint Configuration

Code Warnings and Quality Inspection

126

The configuration page for pylint includes three additional options for enabling or disabling warnings

based on the priority assigned by Pylint (errors, warnings, and informational messages) to make it easy

to enable or disable all warnings of a particular priority. These options work if the default pylint output

format is used or if {msg_id} is somewhere in the output format specified with --output-format; if

{msg_id} is not in the output format, all warnings will be classified as informational.

Code Warnings and Quality Inspection

127

Refactoring
Wing Pro supports refactoring, which is the process of modifying code to improve its structure and

organization without changing its behavior. These very high-level editing operations are informed by

Wing's understanding of Python source code. For example, refactoring can be used to rename a symbol

wherever it is referenced, or to move a block of code into a function, replacing it with an invocation of

the new function.

8.1. Rename Symbol
The Rename Symbol operation renames a variable, function, class, or module and updates the

locations where it is used. To start a rename operation, click on the symbol in the editor and then select

Rename Symbol from the Refactor menu or from the Refactor sub-menu of the editor's right-click

context menu. Wing will begin searching for all of the locations where the symbol is used and list them

in the Refactoring tool. To complete the operation, enter the new symbol name and press Enter or

click on the Rename Checked button.

Each match found for the symbol is displayed with a check box that can be deselected to omit that

match from the rename operation. Please refer to Find Points of Use for more information on how Wing

finds symbols for refactoring operations.

After it completes, the rename operation can be undone with the Revert button in the Refactoring tool.

8.2. Move Symbol
The Move Symbol operation moves a variable, function, or class, and updates locations where it is

used to reference the symbol at its new location. To start a move operation, click on the symbol to be

moved and then select Move Symbol from the Refactor menu or from the Refactor sub-menu of the

editor's right-click context menu. Wing will search for all of the locations where the symbol is used and

list them in the Refactoring tool. To complete the operation, enter the destination filename and / or

scope name and press Enter or click on the Move and Update Checked button.

Each match found for the symbol is displayed with a check box that can be deselected to omit that

match from the move symbol operation. Please refer to Find Points of Use for more information on how

Wing finds symbols for refactoring operations.

After it completes, the move symbol operation can be undone with the Revert button in the Refactoring

tool.

8.3. Extract Function / Method
The Extract Function / Method operation creates a new function or method from the currently selected

lines. It replaces the lines with a call to the new function or method, passing in needed arguments and

returning any values needed in the calling block of code.

Refactoring

128

https://wingware.com/doc/edit/points-of-use
https://wingware.com/doc/edit/points-of-use

To start an extract operation, select the lines to be extracted in the editor and then select

Extract Function/Method from the Refactor menu or from the Refactor sub-menu of the editor's

right-click context menu. Wing will then display the Refactoring tool. To complete the operation, enter

the name for the new function or method, select the scope in which to define it, and press Enter or click

on the Extract button.

After it completes, the extract operation can be undone with the Revert button in the Refactoring tool.

Note that the extract operation currently cannot extract lines that contain return statements before the

final line.

8.4. Delete Symbol
The Delete Symbol operation deletes a variable, attribute, argument, function, method or class after

checking if it is used anywhere in your project. To start a delete operation, click on the symbol to be

deleted where it is defined, typically to the left of = in an assignment statement or in a class or def

statement.

After the symbol is chosen, select Delete symbol-type (symbol-type can be Variable, Attribute, Class,

Function, etc) from the Refactor menu or from the Refactor sub-menu of the editor's right-click context

menu. Wing will search for all of the locations where the symbol is used and list them in the Refactoring

tool. After the search completes, the Delete Unused Symbol button can be used if the only use is on

the line that defines the symbol or the Ignore Points of Use and Delete Symbol button can be used to

delete even though other uses where found.

After it completes, the delete symbol operation can be undone with the Revert button in the

Refactoring tool.

8.5. Introduce Variable
The Introduce Variable operation adds a variable that is initialized to the value of an existing

expression and then replaces all occurrences of that expression with the new variable. To start an

introduce variable operation, select an expression in the editor and choose Introduce Variable from the

Refactor menu or from the Refactor sub-menu of the editor's right-click context menu. Wing will find all

places the expression is used in the current scope and list them in the Refactoring tool. To complete

the operation, enter the name for the new variable and press Enter or click on the Introduce Variable

button.

The introduced variable name may include a dot. For example, a name starting with self. may be used

to introduce an instance attribute in a method.

Note that each found match for the expression is displayed with a check box that can be deselected to

omit that match from the introduce variable operation.

After it completes, the introduce variable operation can be undone with the Revert button in the

Refactoring tool.

Refactoring

129

8.6. Rename Current Module
The Rename Current Module operation renames the module open in the current editor and updates

locations where it is imported to reference the module's new location. To start a rename current module

operation, open the module to be renamed and then select Rename Current Module from the

Refactor menu or from the Refactor sub-menu of the editor's right-click context menu. Wing will search

for all of the locations where the symbol is used and list them in the Refactoring tool. To complete the

operation, enter the destination filename and press Enter or click on the

Rename and Update Checked button.

Each match found for the symbol is displayed with a check box that can be deselected to omit that

match from the move symbol operation. Please refer to Find Points of Use for more information on how

Wing finds symbols for refactoring operations.

After it completes, the rename current module operation can be undone with the Revert button in the

Refactoring tool.

8.7. Symbol to *
Several Symbol To * refactoring operations are given to easily convert the name of a symbol between

UpperCamelCase, lowerCamelCase, under_scored_name, and

ALL_CAPS_UNDER_SCORED_NAME naming styles. These work the same way as Rename Symbol

but prefill the new symbol name field with the selected style of name.

Refactoring

130

https://wingware.com/doc/edit/points-of-use

Difference and Merge
Wing Pro provides single and multi-file difference and merge capabilities that can be used to compare

files or directories on disk and to manage differences to an Integrated Version Control system.

To initiate a session, click on the Diff/Merge toolbar item or use the Difference and Merge sub-menu

of the Source menu. You will be prompted for any file or directory names in a dialog or, for some

keyboard personalities, in the status area at the bottom of the IDE window. Additional sessions can be

started concurrently but only one session is current at a given time. The same menus can be used to

switch among active Diff/Merge sessions, when there are two or more.

Once a session is started, the selected files will be displayed side by side, one annotated with A: and

the other annotated with B:. Use the newly revealed toolbar items to move to the next or previous

difference pair, to merge differences from one file into the other, or to terminate the session. Navigation

and merging is also possible with the key bindings listed in the Difference and Merge sub-menu of the

Source menu.

In addition, a summary listing all changes is available from the Diff/Merge icon displayed at the top right

of editors in the active session. This includes line number, change summary, and Python scope name

when applicable. Selecting a change from this menu will jump to it.

Session Types
The following types of Diff/Merge sessions are available:

Compare Files compares two selected files on disk.

Compare Directories compares two selected directories on disk. The Diff/Merge tool, which will be

shown while the session is active, will display a list of files and estimated degree of difference in each

file pair. Clicking on the list will display the first difference in the selected file pair. The selection on the

list will also update as you move through the difference list.

Compare Visible Files compares the two visible editors. This is only available when two or more editor

splits are shown and two different files are open in them. If three or more splits are shown, the files in

the last two splits are compared.

Compare Buffer with Disk compares the current unsaved editor and its disk file. This is only available

when the current file has unsaved edits.

Compare Recent provides a sub-menu for quick access to recently performed comparisons.

Compare to Repository can be used to compare the working copy of a file with the corresponding

repository revision. This is only available if the file is checked into one of the version control systems

that Wing Pro supports.

Difference and Merge

131

https://wingware.com/doc/versioncontrol/index
https://wingware.com/doc/custom/keyboard-personalities
https://wingware.com/doc/versioncontrol/index

Options
The Difference and Merge sub-menu of the Source menu contains two items that control the behavior

of Diff/Merge sessions:

Lock Scrolling keeps the scrolling position of the two files in the Diff/Merge session synchronized.

Ignore Whitespace ignores changes that consist solely of white space (space, tab, line feed, or

carriage return characters).

These are also available in preferences, along with the following:

The Editor > Diff/Merge > Empty Session Warning preference chooses whether a warning should be

shown if some changes were ignored because of the Ignore Whitespace setting.

The Editor > Diff/Merge > Orientation preference selects between side by side or top/bottom

orientation of the two files shown during a Diff/Merge session.

The Editor > Diff/Merge > Diff Color and Editor > Diff/Merge > Merged Diff Color preference selects

the color used in the Diff/Merge highlights on the editor.

Difference and Merge

132

Source Code Browser
The Source Browser in Wing Pro and Wing Personal provides an index into your source code, from

either a module-oriented or class-oriented viewpoint.

10.1. Display Choices
The Source Browser provides three ways in which to browse your source code. These are selected

from the menu at the top left of the tool:

Browse Project Modules displays the structure of all directories, packages, and modules in your

Project, and their contents.

Browse Project Classes shows a list of all classes found in the project. Methods and attributes are

shown within each class, along with any derived classes. Right-click on a class to navigate to super

classes.

Browse Current Module restricts the display to only those symbols defined in the current module. This

view shows all types of symbols at the top level and allows expansion to visit symbols defined in nested

scopes. In this mode, the browser acts as an index into the current editor file.

10.2. Symbol Types
The following types of items may be displayed in the Source Browser, each with its own icon:

 Packages, which are directories that contain a file named __init__.py. See the Python

documentation for additional information on packages.

 Directories that do not contain an __init__.py file.

 Modules defined by Python files.

 Classes found anywhere in Python source

 Methods defined within classes

 Attributes defined in a class or instance

 Functions defined at the top-level of a module or within another function or method

 Variables defined at the top-level of a module or within a function, class, or method

Symbols may be annotated to indicate their origin:

 Symbols that were imported from another module are annotated with a leftward pointing arrow.

 Symbols inherited from a superclass are annotated with an upward pointing arrow.

Source Code Browser

133

https://wingware.com/doc/proj/index
https://docs.python.org/reference/import.html#packages

The Source Browser does not include function or method arguments, but these may be displayed in

the Source Assistant, along with other information for the currently selected item in the

Source Browser.

10.3. Display Filters
The display can be filtered from the Options menu according to Symbol Type and Origin, and also

according to the symbol's intended scope of use, which is defined as follows:

Public symbols are accessible to any user of a module or instance. These are names that have no

leading underscores, such as Print or kMaxListLength.

Semi-Private symbols are intended for use only within related modules or from sub-classes or closely

related classes. These are names that have one leading underscore, such as _NotifyError or

_gMaxCount. Python doesn't enforce usage of these symbols, except to omit them in

from mod import *. However, they are helpful in writing clean, well-structured code and are

recommended in PEP 8.

Private symbols are intended to be private to a module or class. These are names that have two

leading underscores, such as __ConstructNameList or __id_seed. Python omits these in

from mod import *. When used in classes, they cannot be accessed from outside of the methods of the

class where they are defined. See PEP 8 for details.

10.4. Sorting the Display
The symbols within a module or class can be sorted from the Options menu:

Sort Alphabetically displays all items in alphabetic order, regardless of type.

Sort by Type sorts first by symbol type, and then alphabetically.

Sort in File Order sorts the contents of each scope in the same order that the symbols are defined in

the source file.

10.5. Navigating the Views
Double-clicking on an item in the Source Browser navigates to that symbol in the editor.

Files visited from the Source Browser are opened in transient mode and may automatically close, if not

edited. See Transient, Sticky, and Locked Editors for details.

The option Follow Selection in the Options menu causes the browser to open files whenever the

currently selected item changes.

Right-clicking on classes shows a popup menu that includes items for navigating to super classes.

Keyboard Navigation

Source Code Browser

134

https://wingware.com/doc/browser/symbol-types
https://www.python.org/dev/peps/pep-0008/#designing-for-inheritance
https://www.python.org/dev/peps/pep-0008/#designing-for-inheritance
https://wingware.com/doc/edit/transient

Once it has the focus, the Source Browser is navigable from the keyboard, using the arrow keys, page

up and page down, and home/end. Press the right arrow key on a parent to expand it, and the left arrow

key to collapse it. Pressing Enter or Return will open the current item into the editor.

Callouts

When a symbol is visited in the editor, Wing highlights it briefly with a callout, as configured from the

Editor > Callouts preferences group.

Source Code Browser

135

Integrated Python Shell
The integrated Python Shell is used to execute or debug commands and expressions interactively, in a

way that is tightly integrated with Wing's editor, code inspection, and debugger features.

The Python Shell's auto-completer uses introspection of the runtime environment as a powerful way to

find and inspect functionality and craft new code interactively. The Source Assistant in Wing Pro and

Wing Personal displays documentation, call signature, and other information about symbols as you

work in the Python Shell

Goto-definition will also work in the Python Shell, using a combination of runtime and static analysis to

find the definition of the symbol or its type.

Evaluating Code from the Editor

There are several ways to evaluate code from an editor within the Python Shell:

Copy and Paste and Drag and Drop adjust leading indentation and execute the code.

Evaluate File in Python Shell in the Source menu restarts the Python Shell and then evaluates

the top level of the current file. Restarting can be disabled by unchecking

Auto-restart When Evaluate File in the Options menu at the top right of the tool. This operation

sets the value of sys.argv to match the value that would be used if the file were debugged. If a

launch configuration has been selected in the Python Shell's Options menu then its run arguments

are used instead.

Evaluate Selection in Python Shell in the Source menu evaluates the current selection in the

shell. This is also available in the editor's right-click context menu.

Set an Active Range from the editor into the Python Shell so it can be executed or debugged

repeatedly during editing. See Active Ranges in the Python Shell for details.

The Options menu in the Python Shell tool also contains items for evaluating the current file or

selection

To clear the shell's state at any time, use Restart Shell in the Options menu.

Debugging

Code entered into the Python Shell may be executed with or without debug. When debugging is

enabled, execution will reach breakpoints, allow stepping through code, and support inspection of

runtime state. See Debugging Code in the Python Shell for details.

In Wing Pro, the Debug Console can be used to interact in a similar way with the current frame of a

debug process.

Command History

Integrated Python Shell

136

https://wingware.com/doc/edit/source-assistant
https://wingware.com/doc/debug/shell-active-range
https://wingware.com/doc/debug/shell-debugging
https://wingware.com/doc/debug/debug-console

The Up and Down arrow keys traverse the history of the code you have entered and the Return key

executes the code if it is complete, or prompts for another line if it is not. If

Filter History by Entered Prefix in the Options``menu

is checked then any text typed before pressing ``Up will be used to filter the history items that are

traversed.

Code recalled from history can be edited within the Python Shell. Use Ctrl-Up and Ctrl-Down to move

the caret up and down and Ctrl-Return to insert a new line at the caret position.

To save the contents of the shell, use Save a Copy in the Options menu or the tool's right-click context

menu. The context menu also provides items for copying text from the shell, with or without prompts.

11.1. Python Shell Environment
Code typed, pasted, dropped, or otherwise entered into the Python Shell executes in a separate

Python process that is independent of the IDE and functions without regard to the state of any running

debug process.

The version of Python used in the Python Shell, and the environment it runs with, including initial

working directory, is configured in Project Properties from the Project menu, or by selecting a particular

Launch Configuration from Use Environemnt in the Options menu.

To preload some code into the Python Shell when it is started, you can set the PYTHONSTARTUP

environment variable to the full path of a Python file. Or, set PYTHONSTARTUP_CODE to execute a

line of Python code, optionally with multiple statements separated by ;

11.2. Active Ranges in the Python Shell
Code in an editor can be marked as the active range for the Python Shell, in order to make it easier to

reevaluate after it is edited. This is done by selecting a range of lines in the editor and pressing the

Set Active Range icon at the top right of the Python Shell.

Once a range is set, additional icons appear to execute or debug the active range, jump to the active

range in the editor, or clear the active range.

The active range is marked in the editor and will adjust its position and extent as code is added or

deleted.

11.3. Debugging Code in the Python Shell
Code executed in the Python Shell can be run with or without debug. This is controlled by clicking on

the bug icon in the upper right of the tool, or using Enable Debugging in the Options menu.

When debugging is enabled, a breakpoint margin appears at the left of the Python Shell tool, and

breakpoints can be set, as in editors. This works for code previously typed, dragged, or pasted into the

shell. Breakpoints set in editors are also reached, if that code is executed. Wing copies breakpoints

from a source file and stops in the Python Shell itself when Evaluate Selection is used on a short

Integrated Python Shell

137

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/launch-configs

enough range of code. However, when using active ranges, or when evaluating a long selection or a

whole file, Wing instead stops at breakpoints set within the code editor, since in those cases the code is

not visible in the shell.

Note that the debugger only appears active when code is actually running, and not when waiting at the

Python Shell prompt.

Whenever code is being debugged from a shell prompt, Stop Debugging and Start/Continue in the

Debug menu, and their keyboard and toolbar equivalents, will return to the prompt in the shell. Both will

continue executing code to complete the invocation from the prompt but Stop Debugging will do so

with debug temporarily disabled. The fact that code is not preemptively interrupted is a limitation

stemming from the way Python is implemented. In cases where this is a problem, the Python Shell can

be restarted instead.

Recursive Debugging

In Wing Pro, to interact recursively with code debugged from the Python Shell, use the

Debug Console or turn on Enable Recursive Prompt in the Options menu. The latter presents a new

prompt in the Python Shell whenever the debugger is paused or at a breakpoint, even if that shell is

already in the process of executing code.

Debugging Threaded Code

Threads are treated differently in the Python Shell and Wing Pro's Debug Console depending on

whether or not debug is enabled and/or whether the shell is at the prompt, as follows:

In the Python Shell, when debugging is disabled, threads are run continuously in the background

without debug and whether or not the shell is at a prompt. When debugging is enabled in the

Python Shell it will also debug threads. However, it will allow threads to run only while code is being

executed from the shell and the Python Shell is not at the prompt. This matches the behavior of the

debugger when it is running stand-alone files, where it halts all threads if any thread is halted. When the

Python Shell is debugged, Wing treats execution of code from the shell prompt as continuing the

debugger until the prompt is reached again. Thus it also allows other threads to run during this time.

In the Debug Console, when debugging is disabled in its Options menu, threads are debugged but are

halted whenever the main thread is halted in the debugger. Threads are not run even while executing

code from the prompt in the Debug Console so that data in all threads can be inspected without any

unexpected change in runtime state caused by running of a thread. Threads will only continue running

when the main debug program is continued. This is true whether or not the debug program was started

from a file, or from within the Python Shell. As in the Python Shell, when debugging is enabled in the

Debug Console child threads will also be allowed to run whenever code is being executed recursively

and the Debug Console is not at the prompt. Threads are still halted whenever the Debug Console is

at the prompt

Integrated Python Shell

138

https://wingware.com/doc/debug/shell-active-range

These subtle but necessary differences in threading behavior may affect how threaded code performs

within the Python Shell and Wing Pro's Debug Console. Currently there are no options for selecting

other behaviors, such as always letting threads run even when at the prompt, or never letting threads

run even when executing code from the prompt. If you run into a situation where one of these options is

needed, please send details of your use case to support@wingware.com.

11.4. Python Shell Options
The Options menu in the Python Shell contains some settings that control how the shell works:

Enable Debugging controls whether code run in the Python Shell will be debugged.

Enable Recursive Prompt in Wing Pro can be used to cause the Python Shell to present a new

prompt when debugging, even if the previous prompt invocation has not completed because the

debugger is paused or at a breakpoint or exception. Execution returns to the previous prompt when the

debug process is continued.

Enable Auto-completion controls whether Wing will show the auto-completer in the Python Shell.

Wrap Lines causes the shell to wrap long output lines in the display.

Pretty Print causes Wing to use Python's pprint module to format output.

Filter History by Entered Prefix causes up/down arrow key traversal of history to match only items

that start with the string between the prompt and the caret. If no string was typed before pressing the up

arrow then all history items are traversed.

Evaluate Only Whole Lines causes Wing to round up the selection to the nearest line when evaluating

selections, making it easier to select the desired range.

Auto-restart when Evaluate File causes Wing to automatically restart the shell before evaluating a file,

so that each evaluation is made within a clean new environment.

Auto-restart when Switch Projects causes Wing to automatically restart the shell after switching

projects, so that the shell environment will match the project's configuration.

Prompt to Confirm Restart controls whether Wing will prompt before restarting the Python Shell.

Use Environment in Wing Pro and Wing Personal selects the runtime environment, including initial

working directory, for the Python Shell. This may be Project Properties or a selected Launch

Configuration. When this is changed, the shell must be restarted from its Options menu before a newly

selected environment takes effect.

Edit Environment in Wing Pro and Wing Personal edits the runtime environment selected with

Use Environment. This highlights the initial working directory property, but all of the properties may be

changed. The shell must be restarted from its Options menu before the edited environment takes

effect.

Integrated Python Shell

139

mailto:support@wingware.com
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/launch-configs

Prompt on Stale Environment controls whether Wing will display a dialog indicating that the

Python Shell is no longer using a Python environment that matches the configured environment.

Integrated Python Shell

140

OS Commands Tool
The OS Commands tool in Wing Pro and Wing Personal executes and interacts with external

commands provided by the OS or by other software. It can be used to execute Python code outside of

the debugger, run build commands, integrate external tools into Wing, start code that is debugged using

wingdbstub, and so forth.

Adding and Editing Commands

There are three types of OS Commands:

(1) Command Lines are executed in the environment configured in the OS Command itself.

(2) Python Files are executed in the environment configured in their File Properties.

(3) Named Entry Points are executed in the environment configured by the selected Named Entry Point.

Commands can be added, edited, and deleted with the icons in the OS Commands tool and from its

Options menu.

Additionally, whenever a file is executed outside of the debugger, or when a build command is

configured in Project Properties or Launch Configurations, these are added automatically to the OS

Commands tool.

For details on setting up a new command, see OS Command Properties.

Executing Commands

Commands can be executed and terminated from icons in the OS Command tool and from its Options

menu.

The bottom portion of the OS Commands tool contains the console where commands are executed,

where output is shown, and where input can be entered for sending to the sub-process. Use the popup

menu to switch between running processes, or add multiple instances of the OS Commands tool to

view them at the same time.

The console provides a right-click context menu for controlling the process, copy/pasting, and clearing

or saving a copy of the output to a file.

Start Terminal

On Linux and macOS, or when working with a project that points to a remote host, Wing offers

Start Terminal in the OS Commands tool menus and the Tools menu in the menu bar. This configures

and starts a new Command Line style OS Command that runs a bash terminal.

For projects that use a virtualenv Python, the terminal will be started after running activate. This is set

in the Command Line property, which can be set back to bash -norc to avoid activating the virtualenv.

OS Commands Tool

141

https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/oscommands/properties

To set up a terminal that runs a different shell, add a Command Line style OS Command with

Command Line set to your shell executable (for example, Wing's default terminal configuration uses

bash -norc) and then enable the Use pseudo-TTY and Line mode options.

Note that Wing's OS Commands tool does not fully emulate a TTY, so the tab key, color, and cursor

movement are not supported. As a result of this, Wing sets TERM=dumb in the Environment in the OS

Command configuration for terminals.

Options

The Options menu includes items for restarting a command and clearing the execution console, and

also the following options:

• Auto-Clear Consoles controls whether the console is automatically cleared each time a

command is started or restarted.

• Python Prompt After Execution controls whether Python File style commands drop into the

Python prompt after the file is executed, rather than exiting the process.

• Wrap Long Lines controls whether long lines are shown on a single line or wrapped to the width

of the OS Commands tool.

Toolbox

The OS Commands toolbox contains the same items in the popup menu at the top of the tool, but is

more convenient for editing or removing multiple items, or quickly executing a series of commands. The

toolbox is hidden by default but can be shown with Show Toolbox in the Options menu. Right-click on

the list for available actions, or middle-click or double-click on the list to execute items.

12.1. OS Command Properties
The runtime environment for commands added to the OS Commands tool is configured in the dialog

shown when the item is added or edited.

Shared Properties

All OS Command types share the following configurable properties:

Title is the display title to use for the command. If not set, the command line or file name is shown

instead.

Run in Container is present in projects that use a container configuration, to select whether the

command should be run on the local host or in the container.

I/O Encoding is the encoding to use for text sent to and received from the sub-process.

Key Binding assigns a key binding to execute the command. To enter a binding, just press the desired

binding while focus is in the Key Binding field. Bindings can consist of multiple parts, such as Ctrl-H B.

Pressing multiple keys will create a key binding sequence, unless too much time elapses between the

OS Commands Tool

142

key presses. To reset the value to blank (no key binding), select all text and press Backspace or

Delete.

Raise OS Commands When Executed causes the OS Commands tool to be shown whenever this

command is executed. When disabled, the tool will not be brought to front.

Auto-save Files Before Execution automatically saves any unsaved changes in open files before the

command is executed, even if the Files > Auto-Save Files Before Debug or Execute preference is

disabled.

Use Pseudo-TTY (on Linux and macOS) runs the subprocess in a pseudo-TTY and tries to (minimally)

emulate how the command would work in a shell. Many of the ANSI escape sequences are not

supported, but the basics should work. For some commands, adding options can help it to work better in

the OS Commands tool. For example, bash -norc works better than bash if you have bash using

colors, and ipython -colors NoColor works better than ipython alone. This option is omitted for OS

Commands being executed on Windows.

Line Mode (on Linux and macOS) can be disabled to enter raw mode and send every keystroke to the

subprocess, rather than collecting input line by line. Often, but not always, when a pseudo-TTY is being

used then line mode should be disabled. Some experimentation may be required to determine the best

settings. This option is omitted for OS Commands executed on Windows, and all I/O is performed line

by line.

Shared stores the OS Command in the Settings Directory so that it appears in all projects.

Additional Properties for Command Lines

The Environment tab provided for Command Line style OS Commands allows specifying the

Initial Directory, Python Path, and Environment, which act the same as the corresponding values

configurable in Project Properties.

Hostname (only in Wing Pro) is used with Command Line style OS Commands to select the remote

host where the command should be executed. For Python File and Named Entry Point style OS

Commands, the hostname on which the command will execute is determined by the location of the

Python file. See Remote Hosts for details.

In command lines, use $(ENV) or ${ENV} to insert values from the environment or from the special

variables enumerated in Environment Variable Expansion. These values will be empty if undefined.

Note that the commands are executed on their own and not in a shell, so any commands that are built

into the shell cannot be used here. For example, on Windows dir and some others are built-in

commands so cannot be used directly; however, the form cmd /c dir will work in this case. On Linux,

invoking bash directly may be necessary in similar cases.

Additional Properties for Python Files

OS Commands Tool

143

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/variable-expansion

For Python File style OS Commands, Python Prompt after Execution in the Options menu specifies

that the Python interpreter should be left active and at a prompt after the file is executed.

Test Execute

While editing command properties, the Test Execute button can be used to try executing with the

current settings. A temporary entry is added to the OS Commands tool, and removed again after the

command properties dialog is closed.

12.2. Sharing Projects with OS Commands
By default OS Commands are stored in the *.wpr branch of the project file, which in Wing Pro may be

checked into a revision control system or otherwise shared with other users and hosts. If the project will

be used on different OSes or differently configured systems, some extra work may be needed to

configure the same OS Commands to work properly on each host.

Using Environment in Configuration

The best option to manage OS Commands shared across different environments is to use environment

variable references in the OS Command's properties. Environment variables used in OS Commands

can be defined differently by each user of the project in Project Properties. Because these are stored in

the per-user *.wpu branch of the project file (and not the shared *.wpr) the values can differ for each

host on which a project is used.

For example, instead of specifying bash -norc for a Command Line style command, the environment

variable USERSHELL could be set in the Environment in Project Properties to the user's preferred

shell, and then the OS Command could reference that value with ${USERSHELL}.

Environment variables can also be defined for directories used as the Initial Directory, in the

Python Path, or for any other value needed for any of the other properties of an OS Command.

In addition to referencing user-defined environment variables, OS Commands may reference any of the

special environment variables listed in Environment Variable Expansion.

Storing OS Commands Locally

Another option to keep some OS Commands out of the shared *.wpr branch of the project is to mark

them as Shared in their configuration. This causes them to be stored in the User Settings directory and

not the project file. Thus they will be omitted from the *.wpr that is commited to revision control.

Storing OS Commands in the Per-User Project File

In Wing Pro, it is also possible to reconfigure a project to cause all the OS Commands in the project to

be stored in the user-specific *.wpu branch of the project file. This is done by removing

console.toolbox from the proj.shared-attribute-names property in the *.wpr file, as described in more

detail in the section "Changing Which Properties are Shared" in Sharing Projects.

OS Commands Tool

144

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/variable-expansion
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/proj/project-types

Unit Testing
Wing Pro's Testing tool provides a convenient way to run and debug unit tests written using the

standard library's unittest and doctest modules, pytest, nose, and the Django testing framework.

Adding Tests

Tests are added from the Testing menu, with Add Single File and Add Current File to add individual

files, or with Add Files from Project to apply a filter to the set of all files in the project. For details, see

Project Test Files.

The testing framework used to run files is selected with Default Test Framework under the Testing tab

of Project Properties or with Test Framework under the Testing tab of File Properties for individual test

files.

Running Tests

To run tests, press the Run Tests button in the Testing tool, or use one of the items in the Testing

menu. For details, see Running and Debugging Tests.

While tests are running, the Testing tool updates to indicate the status of the run. After the tests have

finished running, the status icon for each test will change to indicate the result of the run:

 indicates the test passed

 indicates the test failed

 indicates the test was skipped

 indicates the test was not run or did not complete

Viewing Test Results

Individual tests may be expanded to show output generated by the test or any exception that occurred.

Exceptions, including any PEP 3134 chained exceptions, may be expanded to display tracebacks.

Collapse All Tests and Expand All Failed Tests in the right-click context menu in the Testing tool can

be used to quickly hide all test details, or show details only for failed tests.

Double-click on any test or use Goto Source in the right-click context menu in the Testing tool to

display the source code for the test in the editor.

To focus on a subset of the test files, enter a fragment matching those test file names into the File Filter

field in the Testing tool. Restore the field to blank redisplays the entire lists of tests.

Output shown for tests may optionally be wrapped to fit the display by checking the Wrap Output Lines

item in the right-click context menu on the Testing tool.

Unit Testing

145

https://wingware.com/doc/testing/proj
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/testing/running
https://www.python.org/dev/peps/pep-3134/

13.1. Project Test Files
A subset of all the files in the project may be added to the Testing tool by specifying one or more

Test file patterns under the Testing tab of Project Properties. This can be initiated with

Add Files from Project in the Testing menu.

Any project file that matches a test file pattern is considered to be a test file, and will be displayed in the

Testing tool. The list will update automatially as project files are added and removed or the contents of

project directories changes.

Test file patterns can be applied to the full path of the test file. For example, the wildcard pattern

internals*/*/test_*.py would match files named test_*.py in any directory below a directory with a name

starting with internals. A similar approach works with regular expression style patterns. For details on

the syntax for wildcards, see Wildcard Search Syntax. For details on the syntax for regular expressions,

see Regular Expression Syntax in the Python documentation.

13.2. Running and Debugging Tests
Tests can be run and debugged from the Testing menu, in the following ways:

• Run All Tests runs all the unit tests listed in the Testing tool.

• Run Tests in Current File runs all the tests found in the current editor.

• Run Tests at Cursor runs the test or tests at the caret or selection in the current editor

• Run Failed Tests reruns all the tests marked as failed in the Testing tool.

• Run Tests Again reruns all the tests that were run the last time tests were run.

Test files or individual tests may be selected in the Testing tool and run with the Run Tests button or

using the items in the right-click context menu.

Tests are run in the order they are shown in the Testing tool.

To stop running tests, press Abort Tests in the Testing tool or select Abort Running Tests from the

Testing menu.

To clear the previous test results from the Testing tool, use Clear Results in the right-click context

menu.

Debugging

For each of the run options, there is an equivalent debug option that will run the tests in the debugger.

These are in the Debug group of the Testing menu.

When tests are debugged, output goes to the Debug I/O tool and the contents of the Testing tool are

not updated with the results of the test.

Unexpected Exceptions

Unit Testing

146

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/edit/search-wildcard
https://docs.python.org/library/re.html#regular-expression-syntax

Some testing frameworks such as pytest may stop at internal exceptions that should be ignored by

clicking on Ignore this exception location in the Exceptions tool. This occurs when the testing

framework raises and then handles AssertionError in order to probe the capabilities of the running

Python. By default, Wing will always stop on assertions, even if they are handled, because in most

cases a failing assertion indicates a bug in code. Once ignored, Wing won't stop on these internal

exceptions again and debugging can proceed as usual.

Execution Options

There are several options available for how Wing runs unit tests.

Process Model

When multiple test files are run at once, they may be run in a separate process for each file (the

default), or all test files in one directory may be run in a single process. This is selected with

Process Model under the Testing tab of Project Properties.

In the Per-Module model, Wing is running the equivalent of the following command line:

cd /path/to/files
python -m unittest one.py
python -m unittest two.py

In the Per-Package model, Wing is instead running the equivalent of:

cd /path/to/files
python -m unittest one.py two.py

In both cases all tests should be run, but two processes are used in the first case and only one in the

second case. Which model you choose depends on the requirements of your test suite.

Running Tests Concurrently

Two or more test processes may be run in parallel by increasing the Number of Processes under the

Testing tab of Project Properties. This can increase performance on systems with multiple CPU cores,

but may introduce problems if the tests do not handle concurrency well.

Running Test Packages

When test files that are located in a package (a directory that contains __init__.py), they may be loaded

either as package modules, or as top-level modules. Each testing framework defines a default behavior

for this case, but this can be overridden using Run as Package Modules under the Testing tab of

Project Properties.

When files are loaded individually as package modules, Wing is running the equivalent of:

python -m unittest package.module

Unit Testing

147

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/project-properties

When files are loaded as a top-level package, Wing is running the equivalent of:

python -m unittest module

13.3. Running unittest Tests from the Command Line
Wing's test runner for the unittest testing framework can be run from the command line, in order to

store results in an XML file that can be loaded into Wing later using Load Test Results in the Testing

menu. The test runner is src/testing/runners/run_unittest_xml.py within the Install Directory listed

in Wing's About box. It should be started as in the following example:

/path/to/python /path/to/wing/src/testing/runners/run_unittests_xml.py [options] -q testModule.className.testName

Replace /path/to/python with the Python that should be used to run the tests, /path/to/wing with the

installation directory for Wing, [options] with any of the command line options listed below, and

testModule.className.testName with the real test specification.

In the test specification, testModule is the module name (without .py), className is the test class

name, and testName is the name of the test method to run. To run all tests in a class, omit testName.

To run all tests in a module, also omit className.

Command Line Options

--directory=<dirname> runs the tests in the given directory. When omitted, the tests are run in the

current directory, inherited from the command line.

--output-file=<filename> writes results to the selected file. When omitted, results are written to stdout.

--append-to-file appends results to the file selected with the --output-file option, rather than truncating

the file.

--one-module-per-process runs each module in a separate process space to avoid unintended

interactions between the tests. Tests are still run sequentially and not concurrently.

--pattern=<glob filename pattern> runs tests in each filename matching the given pattern. This option

may be repeated multiple times with different wildcards. This option also turns on the

--one-module-per-process option.

Note: Only the unittest test runner supports running from the command line. The other test runners

cannot be used in this way.

Unit Testing

148

Debugger
Wing Pro's Python debugger includes a powerful toolset for rapidly locating and fixing bugs in single and

multi-threaded Python code running in a single or multi-process environment. The debugger supports

breakpoints, stepping through code, inspecting and changing stack or module data, watch points,

expression evaluation, and command shell style interaction with the paused debug process. Code may

be run locally, on a remote host, virtual machine or device, or in a container like those provided by

Docker.

There are a number of ways to use the debugger. Which one you choose depends on where your code

is running, and how it is invoked:

Local Stand-Alone Code -- Wing can debug stand-alone scripts and applications that run on your local

machine and that are launched on demand from within Wing. See Debugger Quick-Start for a quick

introduction.

Remote Stand-Alone Code -- Wing Pro can debug stand-alone code running on a remote host, virtual

machine or device, in the same way as it debugs locally running code. Wing uses a remote agent

launched by SSH in order to work directly with files stored on the remote host, as if Wing were itself

running on that system. For details, see Remote Development.

Containerized Code -- Wing Pro can also debug code running in containers like those provided by

Docker. In this model, the IDE works with the local files that are used to build the container, and

launches code for unit tests and debug in the container environment. For details, see Working with

Containers and Using Wing Pro with Docker.

Local Externally Launched or Embedded Code -- Wing can debug locally running code that is

launched by a web server or framework, embedded Python code that is used to script a larger

application, and any other Python code that cannot be directly launched from the IDE. In this case, the

code is started from outside Wing and connects to the IDE by importing Wing's debugger. Debug can be

controlled from the IDE and through an API accessible from the debug process. For details, see

Debugging Externally Launched Code.

Remote Externally Launched or Embedded Code -- Wing Pro can also debug externally launched or

embedded code that is running on another host. In this case, Wing uses a remote agent to access the

remote host via SSH and the debugged code imports Wing's debugger in order to connect back to the

IDE through an automatically established reverse SSH tunnel. For details, see Debugging Externally

Launched Remote Code.

Manually Configured Remote Debugging -- Wing can also debug code running on a remote host or

device that is not accessible through SSH or where Wing's remote agent cannot be run. In this case, the

device must be able to connect to the host where Wing is running via TCP/IP. Connectivity, file sharing,

file location mapping, and other configuration needed to make debugging possible is accomplished

entirely manually. For details, see Manually Configured Remote Debugging.

Debugger

149

https://wingware.com/doc/debug/quick-start
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/containers
https://wingware.com/doc/proj/containers
https://wingware.com/doc/howtos/docker
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/debug/remote-debugging
file:///Users/Shared/build/ide-osx/build-files/build-temp/manual/debug/manual-remote-debugging

Because the debugger core is written in optimized C, debug overhead is relatively low. However, you

should expect your code to run 25-30% slower within the debugger. Overhead is proportional to number

of Python byte codes executed, so code that does a lot of work in Python and very little in support

libraries will incur more overhead.

14.1. Debugger Quick Start
Overview of Capabilities

Wing can be used to debug all sorts of Python code, including desktop applications, web applications,

numeric and scientific applications, games, and many others. Code that Wing debugs may be launched

from the IDE, or started outside of the IDE. It may be running stand-alone on the local host or launched

from a web server or web framework. Wing Pro can also debug code running on a remote host, virtual

machine or device, in an application that uses Python as a scripting language, or inside a container like

those provided by Docker. The debugger can work with asynchronous and multi-threaded code and (in

Wing Pro) multiple concurrent processes.

Wing also supports working with many different packages and frameworks, including wxPython, Tkinter,

PyQt, PyGObject, matplotlib, Jupyter pygame, Django, Flask, Pyramid, mod_wsgi, Plone and many

others. Wing can also work with code running in an embedded Python interpreter in the context of a

larger application such as Blender, Maya, Nuke, and Source Filmmaker.

While Wing is capable of debugging Python code in many development scenarios, this Quick Start

guide focuses on the case where you are working with locally stored code that is launched from the IDE.

If you need to launch code from outside of the IDE, on a remote host, virtual machine or device, or on a

container like those supported by Docker, please see this overview.

Getting Started

Before debugging, you will need to install Python on your system if you have not already done so.

Python is available from python.org or you can use a distribution like Anaconda.

To start debugging some Python code, open up the file in the editor and then select Start / Continue

from the Debug menu. This will run to the first breakpoint, unhandled exception, or until the debug

program completes. Select Step Into instead to run to the first line of code. For details see Starting

Debug.

To set breakpoints, just click on the left-most margin next to the source code in the editor. In Wing Pro,

conditional and ignore-counted breakpoints are also available from the Breakpoint Options group in

the Debug menu, or by right-clicking on the breakpoints margin. For details, see Setting Breakpoints.

You can step through code with the items in the Debug menu or from the toolbar. For details see Flow

Control.

To view debug data you can hover your mouse over a value in the editor or use the Stack Data tool

from the Tools menu to inspect locals and globals. In Wing Pro, you can also interact with the current

Debugger

150

https://wingware.com/doc/howtos/wxpython
https://wingware.com/doc/howtos/pyqt
https://wingware.com/doc/howtos/pygobject
https://wingware.com/doc/howtos/matplotlib
https://wingware.com/doc/howtos/jupyter
https://wingware.com/doc/howtos/pygame
https://wingware.com/doc/howtos/django
https://wingware.com/doc/howtos/flask
https://wingware.com/doc/howtos/pyramid
https://wingware.com/doc/howtos/mod_wsgi
https://wingware.com/doc/howtos/plone
https://wingware.com/doc/howtos/blender
https://wingware.com/doc/howtos/maya
https://wingware.com/doc/howtos/nuke
https://wingware.com/doc/howtos/sfm
https://wingware.com/doc/debug/index
https://python.org/
https://anaconda.com
https://wingware.com/doc/debug/starting-debug
https://wingware.com/doc/debug/starting-debug
https://wingware.com/doc/debug/setting-breakpoints
https://wingware.com/doc/debug/flow-control
https://wingware.com/doc/debug/flow-control

debug stack frame and try out new code in the Debug Console from the Tools menu, or press

Shift-Space to view all visible values in the editor. For details see Viewing Debug Data and Interactive

Debug Console.

Use the Debug I/O tool to view your program's output, or to enter values for input to the program you

are debugging. If your program depends on characteristics of the Windows Console or a particular

Linux/Unix shell, see External I/O Consoles for more information.

In some cases, you may need to specify a Python Executable, Python Path or other environment

using Project Properties in the Project menu. Setting the Python Executable is only necessary if

Wing cannot find Python on your system or if you have more than one version of Python installed.

Command line arguments to use when debugging a file may be set in File Properties for the file. See

Debug Environment for more options.

There are many other capabilities available in the debugger, as described in the rest of this chapter and

Advanced Debugging Topics.

14.2. Debug Environment
The Python executable that should be used for debugging, and environment like Python Path and

starting directory, are specified in Project Properties in the Project menu.

Per-File Environment

In cases where different debug environments are needed for different files, use File Properties for each

file to specify a Launch Configuration to use with that file.

If different debug environments are needed for different launches of the same file, set up a Named Entry

Point instead.

Command Line Arguments

Command line arguments to use when debugging a file can be set using Debug Environment in the

Debug menu, under the Debug tab of File Properties for the file, or by defining a Named Entry Point.

Unit Testing Environment

The environment to use for files when they are debugged as unit tests by the Testing tool is instead set

under the Testing tab of Project Properties or File Properties.

14.3. Named Entry Points
Named entry points define additional debug/execute entry points into Python code, by pairing a Python

file or a named module with the desired execution environment. Named entry points can be debugged

or executed from the Debug Named Entry Point and Execute Named Entry Point sub-menus of the

Debug menu.

Debugger

151

https://wingware.com/doc/debug/viewing-data
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/debug-process-i-o
https://wingware.com/doc/debug/external-i-o-consoles
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/debug/debug-properties
https://wingware.com/doc/debug/advanced
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/testing/index
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/file-properties

Named Entry Points in the Debug menu displays the named entry point manager. Use the toolbar in

the dialog or right-click on the list to create, edit, duplicate, or delete a named entry point. To rename an

entry point, click on its name and type the new name.

Right-click on a named entry point in the list and select Set Debug Key Binding or

Set Execute Key Binding to assign a key binding that will debug or execute that named entry point.

Named Entry Point Fields

Each named entry point defines the following fields to launch either a Python file or a named module

using python -m.

Python File is the file to launch by invoking Python with its filename.

Named Module is the module to launch with python -m and the module named.

Environment specifies the environment to use when launching the file. This can either be the

project-defined environment from Project Properties with the specified run arguments, or it can be a

selected launch configuration. For Python files selected by filename rather than module name, the file

may also be launched using python -m and the specified run arguments.

Show this dialog before each run displays the named entry point properties dialog before debugging

or executing it.

14.4. Specifying Main Entry Point
Normally, Wing will start debugging in whatever file you have active in the current editor. Depending on

the nature of your project, you may wish to specify a file or a Named Entry Point as the default debug

and execution starting point. This is done with Set Current As Main Entry Point in the Debug menu,

by right clicking on a file in the Project tool and selecting Set As Main Entry Point, or by setting

Main Entry Point in Project Properties.

When a main entry point is defined, it is used whenever you start the debugger, except if a specific file is

debugged, for example with Debug Current File in the Debug menu.

The path to the main entry point, if one is set, is highlighted in bold text in the Project tool.

The main entry point defined for a project is also used by source code analysis to determine the Python

path to use for analysis. As a result, changing this value will cause partial reanalysis of all source files.

See Source Code Analysis for details.

Debugger

152

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/edit/source-code-analysis

14.5. Setting Breakpoints
Breakpoints can be set on source code by opening the source file and clicking on the breakpoint margin

to the left of a line of source code. Right-clicking on the breakpoint margin will display a context menu

with additional breakpoint operations and options. In Wing Pro, the Breakpoints tool in the Tools menu

can be used to view, modify, or remove defined breakpoints. Alternatively, the Debug menu or the

toolbar's breakpoint icons can be used to set or clear breakpoints at the current line of source (where

the insertion caret or selection is located).

Breakpoint Types

In Wing Pro, the following types of breakpoints are available:

Regular breakpoints will always cause the debugger to stop on a given line of code, whenever that

code is reached.

Conditional breakpoints contain an expression that is evaluated each time the breakpoint is reached.

The debugger will stop only if the condition evaluates to True (any non-zero, non-empty, non-None

value, as defined by Python). You may edit the condition of any existing breakpoint with the

Edit Breakpoint Condition... item in the Breakpoint Options group of the Debug menu, by right

clicking on the breakpoint, or in the Breakpoints tool.

Temporary breakpoints are removed automatically after the first time they are encountered. No record

of the breakpoint is retained for future debug sessions.

Breakpoint Attributes

Once breakpoints have been defined, you can operate on them in a number of ways to alter their

behavior. These operations are available in the Debug menu, in the breakpoint margin's right-click

context menu, and from the Breakpoints tool:

Ignore Count ignores a breakpoint a given number of times. The debugger will only stop if it is reached

more often than that. The ignore count is reset to its original value with each new debug run. Use the

Breakpoint tool to monitor the remaining number of times a breakpoint will be ignored.

Disable/Enable can be used to temporarily disable and subsequently re-enable breakpoints. Any

disabled breakpoint will be ignored until re-enabled.

Breakpoints Tool

The Breakpoints tool, available in the Tools menu, displays a list of all currently defined breakpoints.

The following columns of data are provided:

Enabled is checked if the breakpoint is enabled.

Location gives the file and line number where the breakpoint is set.

Debugger

153

Condition lists the conditional that must be true for the breakpoint to cause the debug process to stop.

This is blank if the breakpoint is not conditional.

Temporary is checked if the breakpoint is a temporary one-time breakpoint.

Ignores indicates the number of times the breakpoint should be ignored before it causes the debugger

to stop.

Ignores Left shows the number of ignores left for the breakpoint, for the current debug process.

Hits shows the number of times the breakpoint has been reached in the current debug process, if any.

Most of these values can be edited by clicking on the list. To delete the selected breakpoints, press the

Delete key.

To visit the file and line number where a breakpoint is located, double click on it in the list or select

Show Breakpoint from the right-click context menu. Additional editing options are also available from

this context menu.

Keyboard Modifiers for Breakpoint Margin

Clicking on the breakpoint margin will toggle to insert a regular breakpoint or remove an existing

breakpoint. You can also shift-click to insert a conditional breakpoint, and control-click to insert a

breakpoint and set an ignore count for it.

When a breakpoint is already found on the line, shift-click will disable or enable it, control-click will set its

ignore count, and shift-control-click will set or edit the breakpoint conditional.

14.6. Starting Debug
The following items in the Debug menu, or their key bindings, can be used to start debugging:

• Start / Continue runs the main entry point, if one has been set as described in Specifying Main

Entry Point, or otherwise the file open in the current editor. Execution stops at the first breakpoint

or exception, or upon program completion.

• Step Into starts a debug session that stops at the first line of code.

• Debug Current File runs the file from the current editor. This will stop on the first breakpoint or

exception, or upon program completion.

• Run to Cursor starts or continues debugging until it reaches the line selected in the current editor,

until a breakpoint or exception is encountered, or until program completion.

• Debug Recent can be used to rerun a recent debug session. This will stop on the first breakpoint

or exception, or upon program completion.

Other ways to start debug include:

• Debug Selected in the right-click context menu on the Project tool runs the selected file.

Debugger

154

https://wingware.com/doc/debug/main-entry-point
https://wingware.com/doc/debug/main-entry-point

• In Wing Pro, Named Entry Points can be used from the Debug menu, to debug or execute files in

a particular environment.

• Code may also be debugged from the Python Shell tool by clicking on the bug icon in the top right

of the tool and entering some code or using the Evaluate options in the Source menu. See

Debugging Code in the Python Shell for details.

• In Wing Pro and Wing Personal, debug may also be initiated from outside of Wing. See Debugging

Externally Launched Code for details.

Once a debug process has been started, the status indicator in the lower left of the window should

change from white or grey to another color, as described in Debugger Status.

Note that when debugging code from the Python Shell the debugger only appears active if code is

actually running and the shell is not at the prompt.

Custom Python Compilations

Wing's debugger contains an extension module that uses the cross-Python API to support multiple

versions of Python with a single compilation of the module. This should cover most custom compilations

of Python. However, if you need to support a new OS or device, or an unusual compile configuration,

you may need to recompile the debugger core to match your compilation of Python. This is possible for

Wing Pro users, through access to the source code under NDA. Please contact us for details.

14.7. Debugger Status
The debugger status indicator in the lower left of editor windows is used to display the state of the

debugger. The color of the bug icon summarizes the status of the debug process, as follows:

• White -- There is no debug process, but Wing is listening for a connection from an externally

launched process.

• Gray -- There is no debug process and Wing is not allowing any external process to attach.

• Green -- The debug process is running.

• Yellow -- The debug process is paused or stopped at a breakpoint.

• Red -- The debug process is stopped at an exception.

These colors may vary with customization of the user interface. Hover the mouse over the bug icon to

display expanded debugger status information in a tool tip.

The status of the debugger is also reflected in the toolbar, which adds items while a debug process is

active.

14.8. Flow Control
Once the debugger is running, the following commands are available to control further execution of the

debug process from Wing.

Debugger

155

https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/debug/shell-debugging
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/status
mailto:support@wingware.com

Stepping Through Code

When stopped on a given line of code, execution can be controlled as follows from the Debug menu:

Step Over Instruction will step over a single instruction in Python. This may not leave the current line if

it contains something like a list comprehension or single-line for loop.

Step Over Statement will step over the current statement, even if if spans more than one line or

contains a looping construct like a list comprehension.

Step Over Block will step over or finish the current block of code, such as a for loop, conditional,

function, or method.

Step Into will attempt to step into the next executed function on the current line of code. If there is no

function or method to step into, this command acts like Step Over Instruction. When used on an

import, this will skip Python code executed in importlib and instead will step directly into the imported

module. This behavior can be disabled with the Debugger > Advanced > Step Past importlib Frames

preference.

Step Out will complete execution of the current function or method and stop on the first instruction

encountered after returning from the current function or method.

Continue will continue execution until the next breakpoint, exception, or program termination.

Run To Cursor will run to the location of the cursor in the frontmost editor, or to the next breakpoint,

exception, or program termination.

You can you also step through code using the toolbar icons. The step icon in the toolbar implements

Step Over Statement.

Pausing and Terminating Debug

At any time, a freely running debug process can be paused with the Pause item in the Debug menu or

with the pause tool bar button. This will stop at the current point of execution of the debug process, as

long as some Python code is being executed.

At any time during a debug session, the Stop Debugging menu item or toolbar item can be used to

force termination of the debug process. This option is disabled if the current process was launched

outside of Wing. It may be enabled for all local processes by using the

Debugger > Listening > Kill Externally Launched Processes preference.

Move Program Counter

Move Program Counter Here in the editor's right-click context menu moves the current position of the

execution counter within the innermost stack frame to any other valid position within the same scope.

Stepping or execution will continue with the selected line.

Because of how Python is implemented, this feature works only in the innermost stack frame and it does

not work when the debugger is stopped on an exception.

Debugger

156

14.9. Viewing the Stack
Whenever the debug program is paused at a breakpoint, at an exception, or during stepping, the current

stack is displayed in the Call Stack tool. This shows all program stack frames encountered between

invocation of the program and the current run position. Outermost stack frames are higher up on the list.

If there are PEP 3134 chained exceptions, these are listed in the order that they occurred, above the

final exception.

When the debugger steps or stops at a breakpoint or exception, it selects the innermost stack frame by

default. In order to visit other stack frames further up or down the stack, select them in the Call Stack

tool.

You may also change stack frames using the Up Stack and Down Stack items in the Debug menu, the

up/down stack icons in the toolbar, the toolbar stack popup menu, and the stack selector popup menus

at the top of other debugging tools.

When you change stack frames, all the tools in Wing that reference the current stack frame will be

updated, and the current line of code at that stack frame is shown in the editor.

In Wing Pro, the current stack frame is also used to control evaluation context in the Debug Console

and Watch tools.

To change the type of stack display, right-click on the Call Stack tool.

When an exception has occurred, a backtrace is also captured by the Exceptions tool, where it can be

accessed even after the debug process has exited.

14.10. Viewing Debug Data
Wing Pro's debugger provides many ways to inspect your debug program's data:

1. The Stack Data tool displays values in locals and globals for the currently selected stack frame.

The display includes an expandable tree of values, and array and textual views for individual

values. See Stack Data View for details.

2. The Modules tool supports the same type of inspection for values in all loaded modules (as

determined by sys.modules).

3. The Watch tool can watch specific values from either of the above views. Right-click on values to

watch them by symbolic name or object reference. See Watching Values for details.

4. The Watch tool can also watch expressions typed into the tool.

5. Hovering the mouse cursor over a symbol in the editor displays the value of that symbol in a

tooltip, if it is in defined in the current stack frame. See Viewing Data on the Editor for details.

6. Holding down Shift-Space shows tooltips containing the values of all visible names on the editor.

See Viewing Data on the Editor for details.

7. The Debug Console can be used to interact with the current stack frame of the debug process, in

order to inspect data with arbitrary Python code. See Interactive Debug Console for details.

Debugger

157

https://www.python.org/dev/peps/pep-3134/
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/tracking-values
https://wingware.com/doc/debug/stack-data-view
https://wingware.com/doc/debug/tracking-values
https://wingware.com/doc/debug/editor-data
https://wingware.com/doc/debug/editor-data
https://wingware.com/doc/debug/debug-console

Debug data displayed by Wing is fetched from the debug server on the fly as you navigate. Because of

this, you may experience a brief delay when a change in an expansion or stack frame results in a large

data transfer.

For the same reason, leaving large amounts of debug data visible on screen may slow down stepping

through code.

14.10.1. Stack Data Tool

The Stack Data tool can be used to view debug data for locals and globals. It contains a process,

thread, and stack frame selection area, an expandable tree area for viewing data, and a details area for

inspecting individual values as an array or in textual form.

Process, Thread, and Stack Frame Selector

The top part of the tool contains popup menus for selecting the current debug process, thread, and

stack frame to focus on. The process selector is omitted in Wing 101 and Wing Personal, which do not

support multi-process debugging. The thread selector is hidden unless there is more than one thread in

the debug process.

This area also contains the Stack Data Options Menu.

Value Display

The value display area is shown below the stack selector area, and will contain the values for the

currently selected process, thread, and stack frame. Each value or part of a value is shown as one line

in the tree.

Simple values, such as strings and numbers, and values with a short string representation, are

displayed in the Value column of the tree. Strings are always contained in "" (double quotes). Any value

outside of quotes is the repr of an instance, a number, or a Python constant such as None or False.

Integers can be displayed as decimal, hexadecimal, or octal, as controlled by the

Debugger > Data Display > Integer Display Mode preference.

Complex values, such as instances, lists, and dictionaries, will be shown in a short form containing type

and (optionally) the memory address, for example <dict 0x80ce388>. These can expanded by clicking

on the expansion indicator in the Variable column. The memory address uniquely identifies the

instance. If you see the same address in two places, you are looking at two object references to the

same instance. Memory addresses may be hidden by toggling Show Memory Addresses in the tool's

Options menu.

If a complex value is short enough to be displayed in its entirety, the <type address> form is replaced

with its value, for example {'a': 'b'} for a small dictionary. These values can still be expanded from the

Variable column. The size threshold used for this is set with the Debugger > Line Threshold

preference. If you want all values to be shown uniformly, set this preference to 0.

Expanding Values

Debugger

158

https://wingware.com/doc/debug/popup-menu-options

When a complex value is expanded, the position or name of each sub-value will be displayed in the

Variable column, and the value of each sub-value (possibly also complex values) will be displayed in

the Value column. Nested complex values can be expanded indefinitely, even if this results in the

traversal of cycles of object references.

Once you expand a value, the debugger will continue to present that entry expanded, even after you

step further or restart the debug session. Expansion state is saved and reused in later debug sessions,

until you quit Wing.

Selected values can be viewed as an array or text by right-clicking on the item and choosing

Show Value as Array or Show Value as Text. The content of the detail area is updated when other

items in the Stack Data tool are selected. See Array and Textual Data Views for details.

Data Handling Errors

Wing may fail to show some data values because they are too large or can't be inspected safely. These

are indicated in Stack Data in the following forms:

• <huge sometype; len=10000> -- indicates a value of type sometype with given top-level length

(if known) is too large to display because its overall size exceeds the

Debugger > Data Display > Huge List Threshold or Huge String Threshold preferences. This

may occur also for values with a small top-level size but which appear to generate a representation

that large enough to hang up the debugger during data inspection.

• <opaque sometype> -- indicates that a value of type sometype cannot be displayed because it is

being filtered out by the Debugger > Data Filters > Do Not Expand preference or because

settings described in Advanced Data Display prevent extraction of the value.

• <verror sometype; code=xyz> -- indicates that a value of type sometype cannot be displayed

because the debugger could not extract a displayable representation of the value. These value

errors often indicate bugs in the code that implements the values Wing is trying to inspect.

However, please report these errors using Submit Bug Report in Wing's Help menu or by

sending email to support@wingware.com. Your report may enable us to improve Wing's data

inspection facility to better handle the case you are seeing.

Some values that are too large for display in the Stack Data tool may still be viewed as arrays by

right-clicking on the value and selecting Show Value as Array. Arrays are loaded incrementally

according to what is visible on screen, and thus are less subject to size thresholds.

In Wing Pro you may also be able to use the Debug Console to access large or opaque values (for

example try typing dir(varname)), or enter expressions into the Watch tool.

For details, see Problems Handling Values.

Debugger

159

https://wingware.com/doc/debug/details-view
https://wingware.com/doc/debug/advanced-data-display
mailto:support@wingware.com
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/evaluating-expressions
https://wingware.com/doc/debug/problems-handling-values

14.10.1.1. Array, Data Frame, and Textual Data Views

The value details area of the Stack Data tool can display selected values as an array or in textual form.

The details view area is shown and hidden with Show Value Detail in the Stack Data tool's Options

menu. The position of the details view can be changed by checking or unchecking the

Show Detail to Side item in the Options menu.

Array View

Values like Pandas DataFrames, numpy ndarrays, xarray.DataArrays, sqlite3 result sets, and Python

lists, tuples, and dicts can be viewed as an array by right-clicking on the item and selecting

Show Value as Array. The array viewer loads slices of data as needed for display, rather than loading

the whole data value at once.

A filter area is provided for searching the data. Only rows that match the filters will be shown. The filters

are applied on the server side, to limit the amount of data examined and transferred to the IDE.

Each filter can be a string to search for in any data column, or may specify the column to search in the

form colspec:text. For example, 0:msg searches for the string msg only in column zero. If column

labels are shown, as they are for sqlite3 results and some numpy and Pandas data, the column label

can be used instead of the column number. For example, name:oli will search the name column for the

string oli.

If multiple space-separated filters are entered, they must all match a row for that row to be displayed.

Filtering options are accessed by clicking on the drop down arrow to the right of the filter enter area:

• Case Sensitive can be checked for case-sensitive searching, for both the search string and any

column specifiers.

• Text Search, Wildcard Search, and Regex Search select the type of matching to use.

• Search All Columns and Search Visible Columns select whether your filters are applied only to

the visible range of columns, or to all columns. The default is to filter only on visible columns since

filtering on all columns can be very slow in large arrays.

The array view can also display array-like instances that implement __len__ and __getitem__ and

dict-like instances that implement keys and __getitem__ if the

Debugger > Introspection > Allow Calls in Introspection preference is enabled. This should be used

with caution because it invokes these user-defined methods in a way that may be untested, possibly

leading to unexpected changes in runtime state, hanging, threading deadlocks, or crashing.

Textual View

When the debugger encounters a long string, it will be truncated in the Value column. In this case, the

full value of the string can be viewed in the details area by right-clicking on a value and selecting

Show Value as Text.

Debugger

160

This can be useful in some other cases as well, where the textual representation of a value is easlier to

read than the tree or array view.

14.10.1.2. Stack Data Options Menu

The Stack Data tool's Options menu contains the following display options:

Show/Hide Value Detail toggle display of the array or textual value detail area.

Show Detail to Side show the array or textual value detail area to the right of the main display, instead

of below it.

Show _name Protected Variables shows or hides symbols with names starting with a single

underscore (protected members).

Show __name Private Variables shows or hides symbols with names starting with double underscore

(private members).

Show __name__ Special Variables shows or hides symbols with names starting and ending with

double underscore (special members).

Show Integers as Decimal shows all integers in decimal (base 10) form.

Show Integers as Hex shows all integers in hexadecimal (base 16) form.

Show Integers as Octal shows all integers in octal (base 8) form.

Show Memory Addresses shows or hides memory addresses for instances.

Resolve Properties enables or disables displaying properties in Stack Data. This should be used with

caution. See Advanced Data Display for details.

14.10.1.3. Stack Data Context Menu

Right-clicking on the Stack Data tool displays a popup menu with options for navigating data:

Show Value as Array show the selected value as an array in the value details area.

Show Value as Text shows the selected value as text in the value details area.

Hide Value Detail hides the value details area shown with the above menu items.

Expand More increases the expansion of the selected complex data value by one additional level. If

many values are expanded, you may experience a delay before the operation completes.

Collapse More decreases the expansion of the selected complex data value by one level.

Watch by ... in Wing Pro adds a value to the Watch tool, to track it over time as described in Watching

Values.

Force Reload -- This forces Wing to reload the displayed value from the debug process. This is useful

in cases where Wing is showing an evaluation error or when the debug program contains instances that

Debugger

161

https://wingware.com/doc/debug/advanced-data-display
https://wingware.com/doc/debug/tracking-values
https://wingware.com/doc/debug/tracking-values

implement __repr__ or similar special methods in a way that causes the value to change when

subjected to repeated evaluation.

14.10.1.4. Filtering Value Display

Values shown in the Stack Data tool that are not of interest during debugging may be omitted by type or

name (for variables and dictionary keys) by setting the Debugger > Data Filters > Omit Types and

Debugger > Data Filters > Omit Names preferences. By default, these omit display of classes,

functions, methods, and some other types.

For Omit Types, if type(value).__name__ is found in the list then it is omitted from the display.

For Omit Names, if the variable name or dictionary key is found in the list then it is omitted from the

display.

The Debugger > Data Filters > Do Not Expand preference can be used to tell the debugger to avoid

all attempts at probing certain values, based on their data type. This is useful to avoid inspection of

values that cause problems or crashing when handled by the debugger. For example, values defined in

buggy extension modules may cause crashing of the debug process if the debugger invokes code that

isn't normally executed. This preference is also respected during introspection of the runtime state for

auto-completion and other features in the IDE.

14.10.1.5. Advanced Data Display

Wing handles debug data conservatively to avoid invoking code that might cause unexpected changes

in debug program state, hanging, crashing, thread deadlocks, and other problems that can occur if the

debugger exercises code in a way that it was not designed to handle. Some advanced options are

provided on the Debugger > Introspection preferences page, to allow Wing to inspect data more

deeply:

• Resolve Properties enables calling fget() on properties so that properties can be shown in the

Stack Data tool. This is off by default since calling property methods may changed program state

unexpectedly, cause threading deadlocks, and bring out bugs in properties code not seen during

regular execution.

• Allow Calls in Data Inspection enables calling user-defined __len__, __getitem__, __call__

and similar special methods during data inspection. By default, Wing only calls these if

implemented in C code, as for Python's standard data structures.

• Call Python __repr__ Methods enables calling __repr__ even if it is implemented in Python. This

is enabled by default, since it is usually safe, but may be disabled for cases where these calls

cause problems. Known cases where this option must be disabled include SQL database

implementations that include all of very large query results in the repr.

• Inspect Base Classes controls whether Wing will try to inspect base classes for class attributes.

This is enabled by default, since it is usually safe, but may be disabled for cases where it causes

Debugger

162

problems. Known cases where this option must be disabled include openerp and odoo, since they

crash on inspection of some base classes.

When any of these options cause errors in the debugger, Wing will try to continue inspection of other

data values whenever possible and mark the offending values with <error handling value>. However,

if the inspection causes the debug process to crash or deadlock, Wing will fail to identify which value

caused the problem, and the debug session will end.

If you are having problems with the debug process crashing unexpectedly while paused in Wing's

debugger, try disabling all of the above options and then reenabling those that you need one at a time.

More information can be obtained about failures caused by these options by enabling additional

debugger logging with the Debugger > Diagnostics > Debug Internals Log File preference.

14.10.2. Viewing Data on the Editor

Wing can show debug data values in tooltips over the editor in one of two ways.

Hovering Over the Editor

Hovering the mouse over a symbol in the editor will show a tooltip with its value, if one is available in the

current stack frame. If a selection is made, hovering will show the value of the entire selection.

By default, Wing only shows values for selected symbols and not for all selected expressions. To show

the value of any expression, set the Debugger > Hover Over Selection preference to

All (Use with Caution!). As the name suggests, changing this preference can result in the unintended

evaluation of expressions that change the debug program state or that invoke arbitrary functionality in

the debug process.

Showing All Available Values

In Wing Pro, holding down Shift-Space will show the values of all visible symbols on the editor. The

values are shown only once for each symbol, usually on the first occurrence of the symbol, and will be

hidden as soon as the key binding is released.

For simple variable names (such as myvar), this will show the already-obtained value from locals and

globals in the current stack frame. For dotted names (such as self.myvar), this will evaluate the value

on demand, also in the current debug stack frame.

If Wing can't fit the value tips into the code, it will move them out of the way and point each to its value.

Color coding is used to make it easier to distinguish nearby values.

14.10.3. Watching Values

Wing can watch debug data values, using a variety of techniques for tracking the value over time.

Watching a value is initiated by right-clicking on a value in the Stack Data, Modules, or Watch tool and

selecting one of the following ways to watch the value in the Watch tool:

Debugger

163

Watch by Symbolic Path uses the symbolic path from locals() or globals() for the currently

selected stack frame, and tries to re-evaluate that path whenever the value may have changed. For

example, if you define a dictionary variable called myvar and watch myvar['foo'], the watched

symbolic path is myvar.foo. This can be applied to myvar whether it's a dictionary or an instance

with attribute foo. The Watch tool continues to show any value for that slot of myvar, even if you

delete myvar and recreate it, change its type, or move to another stack frame with a variable of the

same name. In other words, the value is tracked only by reevaluation of the symbolic path

myvar.foo and is independent of the life of any particular object instance.

Watch by Direct Object Reference watches the selected value using its object reference. If you

use this method to watch myvar, it tracks the contents of that instance, even if the symbol myvar

goes out of scope or is reassigned a new value. The Watch tool continues to show the contents of

the instance as long as it exists, until there are no more references to it in the debug process. In

other words, the symbolic path to the value that was originally watched is irrelevant and only

instance identity is used to track the value. This is useful for watching a particular instance as you

step in the debugger, even if references to that instance go out of scope. Because it is meaningless

to track immutable types like None this way, this option is disabled or enabled according to the

value you select to watch.

Watch by Parent Reference and Slot combines the above methods by using the object reference

to the parent of the selected data value and a symbolic representation of the slot within the parent

in order to determine where to look for the watched value. For example, watching

myinstance.attrib will store the object reference to the instance referenced by myinstance and

the symbolic name attrib. The Watch tool displays the attribute attrib in the referenced object

instance, as long as there are still references to that instance in the debug process. This means

that reassignment of myinstance to another value does not alter what is displayed in the Watch

tool. Only reassignment of the selected instance slot changes what is displayed.

Watch by Module Slot looks up a module by name in sys.modules and references the value

within that module by symbolic path. Any change in the value, even across module reloads, is

reflected in the Watch tool. This option is only available when clicking on values within a module,

such as sys.path or os.environ.

For any of these, if the value cannot be evaluated because it does not exist, the debugger displays

<undefined>. This happens when the last object reference to an instance is discarded, or if a selected

symbolic path is undefined or cannot be evaluated.

The Watch tool will remember watch points across debug sessions, except those that make use of an

object reference because those do not survive the debug process.

Debugger

164

As in the Stack Data tool, values in the Watch tool can be displayed as an array or in textual form in the

value details area. This is done by right-clicking on a value and selecting Show Value as Array or

Show Value as Text.

14.10.4. Evaluating Expressions

The Watch tool can also be used to view the value of arbitrary expressions in the context of the current

debug stack frame. These may be entered by clicking on any cell in the Watch tool's tree and editing or

entering the desired expression in the Variable column. Press Enter to complete the edit.

Since expressions are evaluated in the context of the current debug stack frame, this feature is

available only if there is a paused debug process. For the same reason, the value of expressions may

change as you move up and down the stack.

Some caution is required to avoid undesired side-effects in the debug process. In cases where

evaluating an expression results in changing the value of local or global variables, your debug process

will continue in that changed context and the updated values will be shown in Wing's debugger tools.

Only expressions that evaluate to a value may be entered. Other statements, like variable assignments

and import statements are rejected with an error. Exceptions that occur during evaluation or an

expression are not shown, and breakpoints are not reached. To execute other statement types or to

debug problems with an expression, use the Debug Console.

14.10.5. Problems Handling Values

Wing's debugger tries to handle debug process data as gently as possible, in order to avoid entering

into lengthy computations or triggering errors in the debug process. Even so, not all debug data can be

shown on the display. This section describes each of the reasons why this may happen.

Huge Values

Wing may consider values too large to handle if it thinks that packaging the value for transfer to the IDE

would hang up the debug process. These values are displayed in the form <huge type 0x803ca872> in

the Stack Data tool.

Some values that are too large for display in the Stack Data tool may still be viewed as arrays by

right-clicking on the value and selecting Show Value as Array. Arrays are loaded incrementally

according to what is visible on screen, and thus are less subject to size thresholds.

An alternative available in Wing Pro for viewing large data values is to enter expressions into the Watch

tool or Debug Console, in order to view parts of the data without transferring the whole value to the IDE.

The thresholds that are used to determine whether a value is too large to display may be set in the

Debug > Data Display > Huge List Threshold and Debug > Data Display > Huge String Threshold

preferences. The former controls how large len(value) may be and the latter controls how long a string

Debugger

165

https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/evaluating-expressions
https://wingware.com/doc/debug/debug-console

may be. Setting these preferences higher may increase data transfer times and may require also

increasing the Debugger > Network > Network Timeout preference to prevent timeouts.

Data Handling Errors

Wing may encounter errors during data handling because the inspection and packaging process may

call special methods such as __cmp__ and __str__ in your code. If these methods have bugs in them,

the debugger may reveal those bugs at times when you would otherwise not see them.

The rare worst case scenario is crashing of the debug process if flawed C or C++ extension module

code is invoked. In this case, the debug session is ended.

More common, but still rare, are cases where Wing encounters an unexpected Python exception while

handling a debug data value. When this happens, the value is displayed as <error handling value>.

These errors are not reported in the Exceptions tool. However, extra output containing the exception

being raised can be obtained by setting the Debugger > Diagnostics > Debug Internals Log File

preference. Or, in Wing Pro, try inspecting the value with the Debug Console.

Options that can prevent some types of data handling errors are documented in Advanced Data

Display.

Opaque Values

Wing may treat values as opaque if they cannot be converted into a form that can be displayed in the

IDE. This happens only rarely for data types defined within C/C++ code, or if a value contains certain

Python language internals. Opaque values are denoted in the form <opaque 0x80ce784> and cannot

be expanded further. In Wing Pro you may be able to use the Debug Console to access them (for

example try typing dir(varname)).

Value Timeouts

Wing may time out handling a value when packaging it hangs up the debug process. The debugger tries

to avoid this by carefully probing a value's size before packing it up. In some cases, this does not work,

causing the debugger to wait for the duration set by the Debugger > Network > Network Timeout

preference and then displaying the value as <network timeout during evaluate>.

Managing Value Errors

Wing remembers all debug data handling errors that it encounters and stores them in the project file.

These values will not be refetched during subsequent debugging, even if Wing is quit and restarted.

To override this behavior for an individual value, use Force Reload in the right-click context menu on

the value.

To clear the list of all errors previously encountered, so that all values are reloaded, use

Clear Stored Value Errors in the Debug menu. This operates only on the list of errors known for the

Debugger

166

https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/advanced-data-display
https://wingware.com/doc/debug/advanced-data-display
https://wingware.com/doc/debug/debug-console

current debug main entry point, if a debug session is active, or for the main entry point, if any, when no

debug process is running.

To avoid reoccurrence of more severe data value handling errors after clearing stored value errors, see

Filtering Value Display.

14.11. Debug Process I/O
For a debug process launched from Wing, I/O associated with print(), writing to stdout or stderr, calls

to input(), or reads from stdin, always occurs in the Debug I/O tool, unless an external console has

been configured as described in External I/O Consoles.

Debug processes launched outside of Wing, using wingdbstub, always do I/O through the environment

from which they were launched, whether that's a console window, web server, or any other I/O

environment.

The code that services debug process I/O does two things: (1) any waits on sys.stdin are multiplexed

with servicing of the debug network socket, so that the debug process remains responsive to Wing even

while waiting for keyboard input, and (2) if the debug process was launched from Wing, I/O is redirected

over the network to the IDE.

Multiplexing I/O can cause problems in some code. See Debug Process I/O Multiplexing for details.

If multiple debug processes are active, Wing creates one output buffer for each process launched from

the IDE and the process selected in the top left of the tool may be used to move between them.

When commands are typed in the Debug Console in Wing Pro, I/O is redirected temporarily to the

Debug Console only during the time that the command is being processed.

Options

The following options are available in the Options menu in the Debug I/O tool:

Clear clears the contents of the current output buffer.

Close All Terminated unconditionally closes all output buffers for debug processes that have been

terminated.

Wrap Lines causes long lines to be wrapped in the display.

Never Auto-Show prevents Wing from ever automatically showing the Debug I/O tool.

Always Auto-Show on Output causes Wing to automatically show the Debug I/O tool when any

output is received from the debug process.

Auto-Show on First Output causes Wing to automatically show the Debug I/O tool only the first time

output is received from a debug process.

Debugger

167

https://wingware.com/doc/debug/filtering-value-display
https://wingware.com/doc/debug/external-i-o-consoles
https://wingware.com/doc/debug/debug-i-o-multiplexing
https://wingware.com/doc/debug/debug-console

Auto-Focus for Input causes Wing to show the Debug I/O tool and set focus into the I/O buffer

whenever a debug process is waiting for keyboard input. This is disabled by default in Wing Personal

and Wing Pro and disabling the Debugger > Advanced > Use sys.stdin Wrapper preference prevents

this feature from working.

Retain History causes Wing to retain old output buffers, up to the number configured with the

Files > Max Recent Items preference. When this is unchecked, only one buffer is retained. Old buffers

are cleared automatically only when a new debug process is started, to avoid losing output for a related

group of partially-running processes. Old buffers can be cleared unconditionally at any time with

Close All Terminated from the Debug I/O tool's Options menu.

Show Child Processes enables including child processes in the process selector. Otherwise only the

top-level parent processes are shown.

Configure External Console allows replacing Wing's builtin Debug I/O tool with an OS-appropriate

console run in a separate window. See External I/O Consoles for details.

Configure Encoding allows setting the encoding used for I/O to debug processes. This must be set to

match the expectation of the debug process.

Show Debug I/O Documentation displays this documentation page.

14.11.1. External I/O Consoles

In cases where a debug process launched from Wing requires specific characteristics provided by a

full-featured terminal emulator or Windows console, or to better handle very large amounts of debug

process output, you can redirect debug I/O to a new external window using the

Debugger > I/O > Use External Console preference.

The most effective way to keep the external console visible after the debug process exits is to place a

breakpoint on the last line of your code. Alternatively, enable the

Debugger > I/O > External Console Waits on Exit preference. However, this can result in many

external consoles being displayed at once if you do not press Enter inside the consoles after each

debug run.

On Linux and macOS it is possible to select which console applications will be tried for the external

console by altering the Debugger > I/O > External Consoles preference.

On Windows, Wing always uses the standard DOS Console that comes with your version of Windows.

Environment Limitations

Depending on the terminal implementation used, environment variables set by Wing may not be

inherited by the Python process that runs within the external console. This breaks virtualenv, Anaconda

environments, and any other case where the configured environment is needed for code to be able to

run.

Debugger

168

https://wingware.com/doc/debug/external-i-o-consoles

An easy work-around for virtualenv is to selected the Command Line option for Python Executable in

Project Properties or the launch configuration. Then enter the full path of the virtualenv's Python. This

is the value of sys.executable (after import sys) in the desired virtualenv.

To work around this in other cases, create a launch script that sets up your environment and then starts

Python with all arguments that were passed to the script. Then set this script as the Command Line in

your Python Executable in Project Properties or your launch configuration.

For example on Windows:

@echo off
set MYENV=value
call C:\path\to\envsetup.bat
C:\path\to\python.exe %*

Or on macOS and Linux:

#!/usr/bin/env bash
export MYENV=value
. /path/to/envsetup.sh
/path/to/python "$@"

Both examples show setting MYENV within the script and calling an external environment setup script

envsetup. Either may be used as a way to provide the environment to the invoked Python.

14.11.2. Debug Process I/O Multiplexing

Wing alters the I/O environment in order to make it possible to keep the debug process responsive while

waiting for I/O, and to redirect I/O over the connection to the IDE. This code mimics the environment

found outside of the debugger, so any code that uses only Python I/O does not need to worry about this

change.

There are however several cases that can affect users that bypass Python I/O by doing C-level I/O from

within an extension module:

• C/C++ extension modules that use the C-level stdin or stdout will bypass Wing's debugger I/O

environment. This means that output sent to C-level stdout will not be redirected to the IDE. Also,

waiting on stdin in C or C++ code will make the debug process unresponsive to messages from

the IDE, such as Pause and changes to breakpoints, until the debug process exits its wait state.

• Calling C-level stdin from multiple threads in a multi-threaded program may result in altered

character read order when running under Wing's debugger.

• When debugging on Windows, calling C-level stdin, even in a single-threaded program, can result

in a race condition with Wing's I/O multiplexer that leads to out-of-order character reads. This is an

unavoidable result of limitations on multiplexing keyboard and socket I/O on this platform.

Debugger

169

Disabling I/O Multiplexing

If you run into a problem with keyboard I/O in Wing's debugger, you should:

1. Turn off Wing's I/O multiplexer by unchecking the Debugger > I/O > Use sys.stdin Wrapper

preference.

2. Turn on the Debugger > I/O > Use External Console preference. See External I/O Consoles for

details.

Once that is done, I/O should work properly in the external console, but the debug process will remain

unresponsive to Pause or breakpoint changes from Wing whenever it is waiting for input, either at the

C/C++ or Python level.

Also, keyboard input invoked as a side effect of using the Debug Console in Wing Pro will happen

through unmodified stdin instead of within the Debug Console, even though command output will still

appear there.

14.12. Interactive Debug Console
The Debug Console is an interactive Python shell for evaluating and executing Python code in the

current debug stack frame, while the debug process is paused. This is a powerful tool for debugging

and trying out new code interactively.

The Debug Console shares most of the features of the Python Shell, including command history, ability

to evaluate code from the editor, active ranges, auto-completion, goto-definition, and integration with the

Source Assistant.

Writing New Code Interactively

The Debug Console can be used to write new code in the live runtime context in which it is intended to

work. To do this, set a breakpoint where you plan to place the new code, debug until you reach that

breakpoint, then work in the Debug Console to design and try out the code.

Conditional breakpoints are a natural companion for the Debug Console because they can be used to

isolate the particular case for which a new feature is intended.

Active Ranges

Another way to work with the Debug Console is to mark an active range of code in the editor. This is

done by selecting a range of lines in the editor and pressing the Set Active Range icon at the top right

of the Debug Console.

Once a range is set, additional icons appear to execute or debug the active range, jump to the active

range in the editor, or clear the active range.

The active range is marked in the editor and will adjust its position and extent as code is added or

deleted.

Debugger

170

https://wingware.com/doc/debug/external-i-o-consoles
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/edit/source-assistant

14.12.1. Managing Program State

If commands you type change any local, instance, or global data values, cause modules to be loaded or

unloaded, set environment variables, change current directory, or otherwise alter the run environment,

your debug process will continue within that altered state as if those changes had been made during

normal execution.

The Stack Data, Watch, and Modules tools update after each command executed in the

Debug Console, in order to reflect any changes caused by those commands. Since you may not notice

these changes, some caution is needed to avoid creating undesired side-effects in the running debug

program. When in doubt, restart the debugger.

14.12.2. Debugging Code Recursively

Code executed in the Debug Console is run without debug by default, and any exceptions are simply

printed to the tool's console. Wing can also debug code recursively, so that any breakpoints or

exceptions reached from the Debug Console are reported in the debugger. This is enabled by clicking

on the bug icon in the upper right of the tool, or by using the Enable Debugging item in the Options

menu.

Debugging code from the Debug Console works the same way as described in Debugging Code in the

Python Shell.

To interact with recursively debugged code, while the Debug Console prompt is busy, you can add

additional Debug Console instances to the user interface by right clicking on tool tabs. Or, turn on

Enable Recursive Prompt in the Options menu so a new prompt is shown whenever the debugger is

paused or at a breakpoint, even if the Debug Console's earlier prompt is still in the process of

executing code.

As in the Python Shell, Stop Debugging and Start/Continue will return to the innermost prompt

frame. Stop Debugging does this without debug but does not preemptively interrupt the current

invocation. In cases where this is a problem, the debug process should be restarted instead.

14.12.3. Debug Console Options

The Options menu in the Debug Console provides the following:

Clear truncates previous text from the shell.

Save a Copy stores a copy of the shell's contents to a disk file.

Wrap Lines causes the shell to wrap long output lines in the display.

Pretty Print causes Wing to use Python's pprint module to format output.

Enable Auto-completion controls whether Wing will show the auto-completer in the Debug Console.

Debugger

171

https://wingware.com/doc/debug/stack-data-view
https://wingware.com/doc/debug/tracking-values
https://wingware.com/doc/debug/shell-debugging
https://wingware.com/doc/debug/shell-debugging

Filter History by Entered Prefix causes up/down arrow key traversal of history to match only items

that start with the string between the prompt and the caret. If no string was typed before pressing the up

arrow then all history items are traversed.

Evaluate Only Whole Lines causes Wing to round up the selection to the nearest line when evaluating

selections, making it easier to select the desired range.

Enable Debugging controls whether code run in the Debug Console will be debugged recursively

Enable Recursive Prompt causes the Debug Console to present a new prompt when debugging,

even if the previous prompt invocation has not completed because the debugger is paused or at a

breakpoint or exception. Execution returns to the previous prompt when the debug process is

continued.

The preference Debugger > Shells > Show Editor on Exceptions in Shells can be used to determine

whether source code windows will be raised when exceptions occur in the Debug Console.

14.12.4. Debug Console Limitations

Some code will work in unexpected ways in Wing's Debug Console due to how list comprehensions,

generator expressions, and nested functions work in Python 3. This results in inability to evaluate some

code when stopped at a breakpoint in a function or method.

Nested Function Scope

The most comonly noticed example is inability access variables in an enclosing scope when within a

nested function. For example when the debugger is stopped on the line return 1 in the following code,

typing self in the Debug Console raises a NameError:

class C:

 def m(self):
 def nested():
 return 1
 nested()

c = C()
c.m()

This is a result of how Python's compiler binds variables from the nested scope into nested functions. If

the variable is not used in the nested function then it will not be defined there at all.

There is no work-around for this problem, other than moving up to the enclosing stack frame in the

debugger and inspecting the variable there instead.

Debugger

172

List Comprehensions and Generators

List comprehensions and generator expressions suffer from a related problem when used in the

Debug Console. For an example, try stopping on print(foo) in the following code:

def x():
 from string import capwords
 foo = ['one two', 'three four']
 print(foo)

x()

Now typing the following list comprehension in the Debug Console will raise a NameError indicating

that capwords is not defined:

y = [capwords(x) for x in foo]

This is because in Python 3 the list comprehension is implemented internally as a nested function and

Python's compiler plays tricks to bind the necessary variables from the enclosing scope into the nested

function. Even though capwords is defined in locals() the compiler does not use that when creating the

code object for the list comprehension. Instead, it references the symbol table of the enclosing function

which in the case of the Debug Console is (unavoidably) not x().

Generator expressions have the same problem:

y = (capwords(x) for x in foo)
x = list(y)

And so do nested functions, if defined within the Debug Console:

def f():
 capwords('test me')
f()

A possible work-around to use in some cases is to first load the locals into globals by typing the

following in the Debug Console:

globals().update(locals())

However, this drastically alters program state in ways that may be destructive even if the original

contents of globals() is restored after the evaluation.

Debugger

173

14.13. Multi-Process Debugging
Wing Pro's debugger can debug multiple processes at once, either processes launched separately from

the IDE, or (optionally) sub-processes spawned by a parent process.

When multiple processes are running at once, Wing adds a process selector to the stack selection area

at the top of the various debugging tools. This selector displays all the connected debug processes,

arranged into an indented tree that indicates which processes are children of others. The selector

annotates each process entry to show its process ID and whether or not it is paused or running.

Multi-process debugging is on by default but can be disabled with the Debugger >

Processes > Enable Multi-Process Debugging preference. When disabled, only one debug process

can connect at a time or be started from the IDE.

14.13.1. Debugging Child Processes

Sub-processes started with the Python multiprocessing module or with os.fork() may be debugged

automatically, so that each child process appears as a separate debug process in Wing. This is

disabled by default but can be enabled with the Debugger > Processes > Debug Child Processes

preference or by setting Debug/Execute > Debug Child Processes in Project Properties.

Sub-processes started with os.system(), CreateProcess (on Windows), os.exec() (on Posix), or

similar calls will not be debugged automatically because the OS completely replaces the parent process

context and there is no way to keep a debug connection intact. However, it is still possible to debug

processes launched in this way by manually initiating debug in the sub-process as described in

Debugging Externally Launched Code.

Notice that processes started by os.fork() followed by os.exec() will be debugged only for the (usually

brief) period of time between the os.fork() and os.exec() calls.

Debugging Child Processes Created with sys.executable

By default when debugging sub-processes is enabled, Wing replaces sys.executable to cover some of

the common ways in which sub-processes may be launched, particularly on Windows. This can be

disabled with the Debugger > Processes > Replace sys.executable preference.

Because the multiprocessing standard library module uses sys.executable to launch its children on

Windows, this option must be enabled in order to debug children created by that module.

Wing replaces sys.executable at startup only. As a result, user code that alters the value (other than by

calling multiprocessing.forking.set_executable) will break debugging of child processes that are

launched with a command line that contains sys.executable.

When sys.executable replacement is enabled, code that invokes sys.executable to start a child

process must also provide the environment variables starting with WINGDB_ to the child process.

Otherwise, the debugger cannot determine which Python to run or how to connect to the IDE and the

child process will fail to start.

Debugger

174

https://wingware.com/doc/debug/debugging-externally-launched-code

If child processes are created with sys.executable the code that starts the child processes will need to

correctly handle spaces in the path within sys.executable. Otherwise, child processes will fail to launch

if Wing is installed into a directory path that has spaces in it and child process debugging is enabled.

One way to work around cases where sys.executable replacement does not work is to manually

initiating debug in the sub-process as described in Debugging Externally Launched Code.

Target Processes for Handles on Windows

Replacing sys.executable will cause problems on Windows if a parent process launches children with

a command line that contains a Handle created specifically for its child process, for example by setting

hTargetProcessHandle in a call to DuplicateHandle. In this case, the handle will be invalid in the child

because replacing sys.executable creates an intervening process and the child runs as the grand-child

instead.

If a Handle is instead set to be inheritable for all child processes, for example by setting bInheritHandle

in a call to DuplicateHandle, then replacing sys.executable will work without any problems.

Other Notes and Limitations

When debugging child processes created with the multiprocessing module, Wing will stop on

exceptions raised in child processes. Continuing debug from that point will pack up and return the

exception to the parent process, as in normal operation. Exceptions in children can be ignored with the

Ignore this exception location checkbox in the Exceptions tool.

Overriding the _bootstrap method of multiprocessing.process.Process (or

multiprocessing.process.BaseProcess in Python 3.4+) in a custom process class will prevent Wing

from stopping on exceptions in child processes unless the exception is propagated to the inherited

method. A work-around for this would be to call logging.exception with any exception before sending it

out to the parent process.

Some approaches to spawning child processes may result in the creation of intermediate processes

that appear in Wing's process tree display. For example, using the shell=True option in

subprocess.Popen will do this on Linux. When setting shell=False you may need to change the

command passed to Popen to a list rather than a string.

Debug overhead may reveal timing bugs not seen outside of the debugger. For example, a parent

process may attempt to interact with a child process too quickly, causing problems only under the

debugger. This is particularly likely on Windows, where there is an intermediate process created

between the parent and child process.

14.13.2. Process Control

When multi-process debugging is enabled, Wing will allow creation of multiple processes from the

Debug > Processes sub-menu. This menu also provides a way to continue, pause, restart, or terminate

all debug processes at once.

Debugger

175

https://wingware.com/doc/debug/debugging-externally-launched-code

Pressing the Alt key while clicking on the Continue, Terminate, or Restart toolbar icons also causes

the operation to be applied to all applicable debug processes at once.

By default when a new process connects and reaches a breakpoint or exception, it is made into the

current debug process only if there is no previously current and paused debug process, or if it is the first

process that has stopped for the process group most recently launched from the IDE (this does not

include processes that attach using wingdbstub unless they are in a process group started from the

IDE). In other cases, Wing displays a message at the bottom of the IDE window indicating that a debug

process has stopped but does not make it the current process.

This behavior can be changed using the Debug > Processes > Switch to Stopped Processes

preference. Setting this preference to Always Switch may be confusing if many processes are reaching

a stopping point at once. However, this is the only way to automatically switch to a debug process

started with wingdbstub when another debug process is already active.

Wing also lets you control the maximum number of debug processes that may be attached to the IDE at

once using the Debugger > Processes > Maximum Process Count preference.

Terminating Processes

When a debug process is terminated from Wing, the IDE will by default also terminate all other

processes in the process group. This is appropriate behavior in many but not all cases. The

Debugger > Processes > Termination Model preference provides several options for managing

termination of debug processes in a multi-processing environment:

Leave Other Processes Running kills only the selected process and leaves all other processes

running.

Kill Child Processes with Parent also kills all children, grand-children, and other processes spawned

by the process that is being terminated. However, any parent, grand-parents, uncles, cousins, etc, of

the terminated process are left running.

Kill Entire Process Group kills all processes in the group, including all parents, grand-parents,

children, grand-children, uncles, cousins, etc. This is the default termination model.

Prompt for Action When a Process is Killed displays a dialog listing processes associated with the

debug process that is being terminated and offers to kill selected processes, all children, or the entire

process group.

Note that when a only subset of the processes in a procress group are killed, those remaining

processes that expect to interact with one of the terminated processes may raise "broken pipe" or

similar errors.

Debugger

176

14.14. Debugging Multi-threaded Code
Wing's can debug multi-threaded code, as well as single-threaded code. When a debug process has

multiple threads, a thread selector popup is added to the stack selector area at the top of the various

debugger tools.

By default, Wing debugs all threads in a debug process, and will stop all threads immediately if a single

thread stops. Even though Wing tries to stop all threads, some may continue running if they do not enter

any Python code. In that case, the thread selector will list the thread as running. It also indicates which

thread was the first one to stop.

When moving among threads in a multi-threaded program, the Show Position icon that is shown in the

toolbar during debugging offers a convenient way to return to the original thread and stopping position.

Whenever debugging threaded code, please note that the debugger's actions may alter the order and

duration that threads are run. This is a result of the small added overhead, which may influence timing,

and the fact that the debugger communicates with the IDE through a TCP/IP connection.

Selecting Threads to Debug

To avoid stopping all threads in the debugger, you must launch the debug process from outside Wing,

import wingdbstub to initiate debug, and then use the debugger API's SetDebugThreads() call to

specify which threads to debug. All other threads will be entirely ignored. This is documented in

Debugging Externally Launched Code and the API is described in Debugger API

Note, however, that specifying a subset of threads to debug may cause problems in some code. For

example, if a non-debugged thread starts running and does not return control to any other threads, then

the debug process will cease to respond to the IDE. This is unavoidable since there is no way to

preemptively force the debug-enabled threads to run again.

14.15. Managing Exceptions
By default, Wing's debugger stops at exceptions when they would be printed by the Python interpreter

or when they are logged with logging.exception. Wing will also stop on all AssertionError exceptions,

whether or not they are printed or logged, since these usually indicate a program error even if they are

handled. These behaviors can be altered with the Debugger > Exceptions preference group, as

described below.

Ignoring Exceptions

Individual exceptions can be ignored by checking the Ignore this exception location check box in the

debugger's Exceptions tool and continuing debug.

This is useful in ignoring non-critical exceptions that are being raised by code that is not currently of

interest, in order to be able to work on other problems.

Debugger

177

https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/debugger-api

Ignored exceptions are remembered in the project and may be cleared with Clear Ignored Exceptions

in the Debug menu.

Ignored exceptions are still reported if they actually lead to program termination.

Exception Reporting Mode

The overall strategy for identifying and reporting exceptions is configured with the

Debugger > Exceptions > Report Exceptions preference. The following choices are available:

• When Printed stops on exceptions at the time that they would have been printed out by the

Python interpreter. This is the default.

For code with catch-all exceptions written in Python, Wing may fail to report unexpected

exceptions if the handlers do not print the exception. In this case, it is best to rewrite the catch-all

handlers as described in Trouble-shooting Failure to Stop on Exceptions.

Note that in this exception handling mode, any code in finally clauses, except clauses that reraise

the exception, and with statement cleanup routines will be executed before the debugger stops

because they execute before the traceback is printed.

• Always Immediately stops at every single exception immediately when it is raised. In most code

this will be very often, since exceptions may be used internally to handle normal, acceptible

runtime conditions. As a result, this option is usually only useful after already running close to code

that requires further examination.

• At Process Termination makes a best effort to stop and report exceptions that actually lead to

process termination. This occurs just before or sometimes just after the process is terminated. The

exception is also printed to stderr, as it would be when running outside of the debugger.

When working with an Externally Launched Debug Process , this mode may not be able to stop the

debug process before it exits, and in some cases may even fail to show any post-mortem

traceback at all, except as printed to stderr by the debug process.

Reporting Logged Exceptions

The Debugger > Exceptions > Report Logged Exceptions in When Printed Mode preference

controls whether exceptions that are not printed but that are logged with a call to logging.exception will

be reported by the default When Printed exception reporting mode. This preference is ignored in other

exception reporting modes.

Exception Type Filters

The Debugger > Exceptions > Never Report and Debugger > Exceptions > Always Report

preferences can be used to specify that certain exception types should never be reported at all, or

always reported regardless of whether they are printed or logged. For example, by default Wing will

Debugger

178

https://wingware.com/doc/install/trouble-debug-nostop-exceptions
https://wingware.com/doc/debug/debugging-externally-launched-code

never stop on SystemExit or GeneratorExit since these occur during normal program behavior, and

Wing will always stop on AssertionError since this usually indicates a bug in code even if it is handled.

In some code, adding NameError or AttributeError to the Always Report list may help to uncover

bugs that are being masked by overly broad exception handlers. However, this will not work if these are

treated as normal expected exceptions. This is common enough that they are not included in Wing's

default Always Report list.

14.16. Running Without Debug
We recommend using Wing's debugger whenever Python code is executed, since this is the most

efficient way of catching and fixing any problems encountered by the code. In most cases, the debugger

overhead is low enough that executing outside the debugger has no real benefits.

However, Python code may also be executed outside of the debugger with Execute Current File and

Execute Recent in the Debug menu, or with Execute Selected after right-clicking on the Project tool.

This uses the OS Commands tool to manage the process.

Debugger

179

https://wingware.com/doc/proj/index
https://wingware.com/doc/oscommands/index

Advanced Debugging Topics
This chapter describes advanced debugging techniques, including debugging externally launched code,

remote debugging, alternative methods for starting debug, and using Wing's debugger together with a

debugger for C/C++ code.

See also the collection of How-Tos for tips on working with specific third party libraries and frameworks

for Python.

15.1. Debugging Externally Launched Code
This section describes how to start debugging from a process that is not launched by Wing. Examples

of code that must be launched externally include tasks running under a web server and embedded

Python scripts running inside a larger application.

The following instructions can be used to start debugging in externally launched code that is running on

the same machine as Wing:

1. Copy wingdbstub.py from the install directory listed in Wing's About box into the same directory

as the code you want to debug. Make sure that WINGHOME inside wingdbstub.py is set to the

full path of your Wing installation.

2. At the point where you want debugging to begin, insert the following source code:

import wingdbstub. If you are debugging code in an embedded Python instance, see the notes in

Debugging Embedded Python Code.

3. Make sure the Debugger > Listening > Accept Debug Connections preference is turned on, to

allow connection from external processes.

4. Set any required breakpoints in your Python source code by clicking on the breakpoint margin to

the left of the code in Wing, or with the breakpoint items in the Debug menu.

5. Initiate the debug program from outside Wing in a way that causes it to import wingdbstub and

reach a breakpoint or exception. You should see the status indicator in the lower left of Wing's

window change to yellow, red, or green, as described in Debugger Status. When a breakpoint is

reached, Wing should come to the front and show the file where the debugger has stopped. If no

breakpoint or exception is reached, the program will run to completion, or you can use the Pause

command in the Debug menu.

If you run your debug process as a different user, and in some other cases, Wing will initially refuse the

connection and ask you to accept a new security token. After accepting it, debugging again should

succeed.

To preauthorize the debug connection, you can copy the file wingdebugpw from your Settings

Directory into the same directory as your copy of wingdbstub.py.

If you have problems making this work, try setting the kLogFile variable in wingdbstub.py to log

additional diagnostic information.

Advanced Debugging Topics

180

https://wingware.com/doc/howtos/index
https://wingware.com/doc/debug/debugging-embedded-code
https://wingware.com/doc/debug/status
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir

15.1.1. Debugging Externally Launched Remote Code

This section describes how to debug code launched on a remote host. These instructions are needed

only if you cannot launch your code from Wing, for example if it runs under a web server or as an

embedded script in a larger application.

The following instructions rely on Wing Pro's Remote Hosts feature to display and edit remote files. If

you cannot use that feature for some reason, follow the instructions for Manually Configured Remote

Debugging instead.

1. First set up a remote host configuration as described in Remote Hosts and create a project that

sets the Python Executable in Project Properties to the remote host and includes your remote

source code. Before continuing, check that you can open remote files in Wing's editor.

2. Copy wingdbstub.py from the directory where you installed the remote agent into the same

directory as your debug program. By default this is ~/.wingpro8/remote-8.3.3.0/wingdbstub.py

where ~ is the remote user's home directory. This will vary if you changed the Install Dir under the

Advanced tab in the remote host configuration. If another copy of wingdbstub.py is used,

configure it set WINGHOME to the installation directory of the remote agent and localhost:50050

for the Wing host and port.

3. At the point where you want debugging to begin, insert the following into your code:

import wingdbstub. If you are debugging code in an embedded Python instance, see the notes in

Debugging Embedded Python Code. If you are debugging code running as a different user than

the one in your remote host configuration, see Managing Permissions below.

4. Make sure the Wing preference Debugger > Listening > Accept Debug Connections is turned

on, to allow connection from external processes. Once this is enabled, Wing will start listening for

connections on the remote host you configured in your project.

5. Set any required breakpoints in your Python source code.

6. Initiate the debug program from outside Wing in a way that causes it to import wingdbstub and

reach a breakpoint or exception.

You should now see the status indicator in the lower left of the main Wing window change to yellow,

red, or green, as described in Debugger Status. If no breakpoint or exception is reached, the program

will run to completion, or you can use the Pause command in the Debug menu.

Managing Permissions

If your code is running as a different user than the one specified in your remote host configuration, as

may be the case if running under Apache or another web server, then you will need to make some

additional changes to make remote debugging work. For example, your remote host configuration may

set Host Name to devel@192.168.0.50 so the user that installs the remote agent is devel while the

code is actually run by the user apache.

Advanced Debugging Topics

181

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/manual-remote-debugging
https://wingware.com/doc/debug/manual-remote-debugging
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/debugging-embedded-code
https://wingware.com/doc/debug/status

In this case you must change the disk permissions on the Install Dir from which you copied

wingdbstub.py so it can be read by the user that runs your debug process. The best way to do this is

to create a group that includes both users and use that group for the directory, for example with

chgrp -R groupname dirname.

Then change your copy of wingdbstub.py by replacing ~ with the full path to the home directory of the

user in the remote host configuration. This is needed because ~ will expand to a different directory if the

code is run as a different user.

You may also want to change the permissions on the debugger security token file wingdebugpw so

that both users can read it, for example with chmod 640 wingdebugpw. The default for this file is to

allow only the owner to read it. If this isn't done, Wing will generate a different debugger security token

on the remote host and will initially reject your debug connection and prompt for you to accept the new

security token. Once that is done, future debug connections will be accepted.

Changing Remote Debug Port

Remote debugging is implemented by listening locally and establishing a reverse SSH tunnel to the

remote host configured in your project.

By default Wing listens on port 50050 on the remote host. Note that this is different than the default port

used to listen on the local host, which is 50005, in order to prevent the remote agent from interfering

with a local copy of Wing, when both are in use.

If this conflicts with another service on the remote host, or if there are multiple remote debug

connections to a single host, you will need to change this port number to be unique for each developer.

To do this, edit the Debug Port property under the Advanced tab of your remote host configuration and

track this change in kWingHostPort in your copy of wingdbstub.py on the remote host.

You can verify that Wing is listening on the remote host and inspect the port number being used by

hovering your mouse over the bug icon in the lower left of Wing's window.

Debugging on Multiple Remote Hosts

Wing listens locally and on the remote host specified in Python Executable in Project Properties. To

listen on multiple hosts at once, use separate projects and multiple instances of Wing. You can open

additional instances of Wing by adding --new to the command line.

Diagnosing Problems

If you have problems making this work, try setting the kLogFile variable in wingdbstub.py to log

diagnostic information.

15.1.2. Externally Launched Process Behavior

This section describes what happens if wingdbstub cannot attach to Wing, and how termination of

remote debug works.

Advanced Debugging Topics

182

https://wingware.com/doc/install/command-line-usage

Failure to Attach to IDE

Whenever the debugger cannot contact Wing during import wingdbstub, for example if the IDE is not

running or can't be reached, then the debug program will be run without debug. This allows

debug-enabled web tasks and other programs to work normally when Wing is not present.

You can force the debug process to exit in this case by setting the kExitOnFailure flag in

wingdbstub.py.

In Wing Pro, it is possible attach to processes that import wingdbstub but start without debug. See

Attaching for details.

Enabling Process Termination

By default, Wing recognizes externally launched processes and disables process termination for them.

The Debugger > Listening > Kill Externally Launched Processes preference can be set to enable

Wing to terminate also externally launched processes.

Avoiding Connection Timeout

Some environments may preemptively close the debug connection from the outside if there is no activity

over some period of time. To prevent this from happening, set the

Debugger > Advanced > Connection Keep-Alive preference to the number of seconds between

keep-alive messages.

15.1.3. Debugging Embedded Python Code

Python is designed so it can be embedded into larger applications as a scripting language, as a way to

write high-level code that controls the functionality of that application. This is common, for example, in

applications designed for 2D and 3D animation, compositing, and rendering, and some game

development software. Examples include Blender, Autodesk Maya, NUKE, and Source Filmmaker.

When Python code is run by an embedded interpreter, you may need some extra configuration to make

debugging work properly. What is needed depends on how the host application embeds and invokes

Python.

Single Python Instance

If the host application is simply creating a single Python instance and reusing it for all script invocations,

setting kEmbedded=1 in wingdbstub.py will usually be all that is needed, in addition to adding

import wingdbstub to your code.

This tells the debugger that complete exit of the debug code does not indicate that Python has exited as

well, so that the debug connection can remain intact between script invocations.

Custom Python Thread States

Some host applications manually create or alter the Python thread states that is used for each script

invocation. This may disable the debugger and/or disconnect the debug process from the IDE.

Advanced Debugging Topics

183

https://wingware.com/doc/debug/attaching-and-detaching
https://wingware.com/doc/howtos/blender
https://wingware.com/doc/howtos/maya
https://wingware.com/doc/howtos/nuke
https://wingware.com/doc/howtos/sfm

To solve this, invoke Ensure() in the debugger API, to reset the debugger for each script invocation:

import wingdbstub
wingdbstub.Ensure()

This tells the debugger to ensure that the debug tracer is properly installed and that the debug process

is connected to the IDE, as needed in this particular application.

Multiple Python Instances

In other cases where the host application uses an entirely different Python instance for each invocation,

you will need to arrange that the Debugger API function ProgramQuit() is called before each instance

of Python is destroyed.

In this case, you should leave kEmbedded=0 in wingdbstub.py. The debugger will disconnect and

reconnect for each script invocation, as if they were separate debug processes.

You may also need to unset the environment variable WINGDB_ACTIVE before importing wingdbstub,

if this is left in place by the host application. When this is present it will prevent wingdbstub from

initiating debug in the second or later Python instance because the debugger will think that debugging is

already active.

15.1.4. Configuring wingdbstub

In some cases you may need to alter other preset configuration values at the start of wingdbstub.py.

These values completely replace the corresponding values set in Project Properties File Properties, and

Launch Configurations in the IDE. Those are used only when the debug process is launched from Wing.

The following options are available:

• Set kWingDebugDisabled=1 to disable the debugger entirely. This is equivalent to setting the

WINGDB_DISABLED environment variable before starting debug.

• Set kWingHostPort to specify where Wing is listening for connections from externally launched

debug processes, so the debugger can connect to it when it starts. This is equivalent to setting the

WINGDB_HOSTPORT environment variable before starting debug. The default value is

localhost:50005.

Note that hostname will still be localhost if you are debugging over an SSH tunnel, as will be the

case if you are using a remote host configuration. The SSH tunnel takes care of listening on

localhost and then tunnels the connection to the host where the IDE is running.

See Manually Configured Remote Debugging for details on changing this value.

• Set KLogFile to write a diagnostic log of debugger activity to a file. Usually, you should set this

only at the request of Wingware Technical Support. This is equivalent to setting the

Advanced Debugging Topics

184

https://wingware.com/doc/debug/debugger-api
https://wingware.com/doc/debug/debugger-api
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/file-properties
file:///Users/Shared/build/ide-osx/build-files/build-temp/manual/proj/launch-configs
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/manual-remote-debugging

WINGDB_LOGFILE environment variable before starting debug (use a value of - to turn off

logging to file even if kLogFile is set).

When setting this value to a file name, the file will be created if it does not exist. Similarly named

files are created if multiple processes are being debugged, one for each process.

Use <stdout> or <stderr> to write to Python's sys.stdout or sys.stderr. Note that using <stderr>

will cause problems on Windows if the debug process is not running in a console.

• Set kEmbedded to 1 when debugging embedded scripts, so the debug connection will be

maintained across script invocations, rather than closing the debug connection when the script

finishes. This is equivalent to setting the environment variable WINGDB_EMBEDDED. See

Debugging Embedded Python Code for details.

• Set kAttachPort to define the default port at which the debug process will listen for requests to

attach. This is available in Wing Pro only and is equivalent to setting the WINGDB_ATTACHPORT

environment variable before starting debug.

If this value is less than 0, the debug process does not listen for attach requests. Otherwise, the

debugger listens on this port whenever the debug process is running without being connected to

the IDE, as might occur if it initially fails to connect or if the IDE detaches from the process.

See Attaching and Detaching for details.

• Set kSecurityToken to the security token used to authenticate with the IDE before the debug

connection is accepted. This is the value in the wingdebugpw file (the portion after the :) in the

Settings Directory for the user that is running the IDE. When this value is None the security token

is located used kPWFilePath and kPWFileName as described below.

• Set kPWFilePath and kPWFileName tell the debugger where to find the security token file

required for a debug connection to the IDE to succeed. This is equivalent to setting the

environment variables WINGDB_PWFILEPATH and WINGDB_PWFILENAME before starting

debug.

kPWFilePath should be a Python list of strings containing directory names if set in

wingdbstub.py or a list of directories separated by the path separator (os.pathsep) when sent by

environment variable. The string $<winguserprofile> may be used to specify the Settings

Directory for the user that is running the debug process.

kPWFileName sets the file name to use for the security token. The default is wingdebugpw.

• Set WINGHOME to the Wing installation directory (or the name of Wing's .app folder on macOS)

so that wingdbstub.py can find the debugger. This is equivalent to setting the environment

variable WINGHOME before starting debug.

For Windows and Linux, and for copies of wingdbstub.py in a remote agent installation,

WINGHOME will usually be set automatically during installation. The value may need to be set on

Advanced Debugging Topics

185

https://wingware.com/doc/debug/debugging-embedded-code
https://wingware.com/doc/debug/attaching-and-detaching
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir

macOS, if Wing was installed from the .zip installer on Windows or the .tar installer on Linux, if

running Wing from sources, or if configuring remote debug manually.

Setting any of the above-described environment variable equivalents will override any value given in the

wingdbstub.py file.

15.1.5. Starting Debug Automatically Using sitecustomize

It is possible to use Python's sitecustomize feature (provided by the site standard library module) to

automatically start debugging all code that runs using a particular Python installation.

To set this up on the same host where Wing is running:

(1) Make a new directory sitecustomize and then add a file named __init__.py to the directory with the

following contents:

from . import wingdbstub

This is the hook that will cause Python on the containers to load Wing's debugger. It is loaded by

Python's Site-specific configuration hook.

(2) Configure a copy of Wing's wingdbstub.py to place into this sitecustomize directory.

You can find the master copy of wingdbstub.py at the top level of your Wing installation (or on macOS

in Contents/Resources inside WingPro.app). If you don't know where this is, it is listed as the

Install Directory in Wing's About box.

You will need to make copy of this file to your sitecustomize package directory.

On macOS or if you installed Wing from the .zip or .tar installer, you will need to set WINGHOME inside

your copy of wingdbstub.py to the full path of your Wing installation -- the same place you found the

wingdbstub.py file.

(3) Move your sitecustomize directory into the site-packages directory in your Python installation.

You can determine this value by starting Python and inspecting it with the following lines of code:

>>> import os, sys, site
>>> v = sys.version_info[:2]
>>> print(os.path.join(site.USER_BASE, 'lib', 'python{}.{}'.format(*v), 'site-packages'))

This prints the location where you need to move your sitecustomize directory.

(4) Configure Wing to listen for externally initiated debug connections. This is done by clicking on the

bug icon in the lower left of Wing's window and enabling Accept Debug Connections.

If your debug process spawns child processes that you also wish to debug, then you will also need to

open Project Properties from the Project menu and set Debug Child Processes under the

Debug/Execute tab to Always Debug Child Processes.

Advanced Debugging Topics

186

https://docs.python.org/3/library/site.html
https://docs.python.org/3/library/site.html

Starting Debug

Wing should now debug any Python code run using your Python installation, not matter how it is started.

Python loads your sitecustomize before any other code is run, which imports wingdbstub and thus

starts debug and makes a connection to the IDE.

To temporarily disable debug without making any other changes, turn off Accept Debug Connections

again as described in step (4) above.

Remote Hosts and Containers

This technique also works to automatically start debug on a remote host or container.

On a remote host, first follow the instructions in Debugging Externally Launched Remote Code to get

remote debugging working. Then proceed with the instructions above, using the copy of

wingdbstub.py from the remote agent installation on the remote host (usually

~/.wingpro8/remote-8.3.3). That file is already pre-configured to work on your remote host.

On a container, first follow the instructions for Working with Containers and Clusters and then set up

your sitecustomize so it is mounted into site-packages on your container. You will need to edit your

copy of wingdbstub.py to set WINGHOME to /wingpro8 and kHostPort to <hostname>:50005 where

<hostname>> is replaced with the name of the host system as viewed from the container. For Docker,

this is usually host.docker.internal:50005. Note that this assumes you are using the default debug port

in Wing; if not, use the value set with the Debugger > Listening > Server Port preference.

Trouble-Shooting

If you can't get the debugger to connect, try setting kLogFile in your copy of wingdbstub.py to

"<stderr>" or a valid log file name. You can email this output to support@wingware.com for help.

15.1.6. Debugger API

The debugger API controls debugging more closely from your Python code. It is used to control

threaded debugging, and to develop support for debugging embedded scripting or other custom

environments.

High-Level API

To use the high-level API, you must first configure and import wingdbstub as described in Debugging

Externally Launched Code for code running on the same host as the IDE, or Debugging Remotely

Launched Code if you are debugging code running on another host:

• wingdbstub.Ensure(require_connection=1, require_debugger=1) ensures that the debugger is

running and connected to the IDE. If require_connection is true, ValueError will be raised if a

connection to the IDE cannot be made. If require_debugger is true, ValueError will be raised if

the debugger binaries cannot be found or the debugger cannot be started.

Advanced Debugging Topics

187

https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/proj/container-intro
mailto:support@wingware.com
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/debug/remote-debugging

Low-Level API

The low-level API can be used through sys._wing_debugger (after import sys) in debug processes

launched from the IDE or those using wingdbstub. In the latter case, the same API is available on

wingdbstub.debugger:

• SetDebugThreadIdents(threads={}, default_policy=1) can be used in multi-threaded code to tell

the debugger which threads to debug. Set threads to a dictionary that maps from thread id, as

obtained from thread.get_ident(), or thread_id in the PyThreadState, to one of the following

values: 0 to run the thread without debug, or 1 to debug the thread and immediately stop it if any

thread stops. Set default_policy to the action to take when a thread is not found in the thread

map.

• Break() pauses the free-running debug program on the current line, as if at a breakpoint.

• SuspendDebug() disables debugging, in order to temporarily avoid debug overhead. This leaves

the connection to the IDE intact so that resuming is faster.

• ResumeDebug() resumes debugging if it has been called as often as SuspendDebug().

Here is a simple usage example:

import wingdbstub
a = 1 # This line is debugged
wingdbstub.debugger.SuspendDebug()
x = 1 # This is executed without debugging
wingdbstub.debugger.ResumeDebug()
y = 2 # This line is debugged

• StopDebug() stops debugging completely and disconnects from Wing. The debug program

continues executing in non-debug mode and must be restarted to start debugging again.

• StartDebug(stophere=0, connect=1) starts debugging, optionally connecting back to the IDE

and/or stopping immediately afterwards. This does not work after StopDebug() has been called.

• ProgramQuit() may need to be called before the debug program is exited if kEmbedded was set

to 1 in wingdbstub.py. This makes sure the debug connection to the IDE is closed cleanly. See

Debugging Embedded Python Code for details on when this is needed.

15.2. Manually Configured Remote Debugging

Note

Consider Easier Alternatives

Advanced Debugging Topics

188

https://wingware.com/doc/debug/debugging-embedded-code

This section describes the complex process of manually configuring remote debugging with

wingdbstub. These instructions are needed only if you cannot use the Remote Hosts feature. In

most cases, you will want to follow the much simpler instructions in Debugging Externally

Launched Remote Code instead.

Another alternative to consider before getting started is installing Wing on the remote host and using

remote display of the IDE via Remote Desktop (Windows), Screen Sharing (macOS), or X Windows

(Linux/Unix).

Configuration Steps

1. First set up Wing to successfully accept connections from another process within the same

machine, as described in section Debugging Externally Launched Code.

2. Optionally, alter the Debugger > Listening > Server Host preference to the name or IP address

of the network interface on which the IDE listens for debug connections. The default

All Valid Interfaces indicates that the IDE should listen on all the network interfaces found on the

host.

3. Optionally, alter the preference Debugger > Listening > Server Port to the TCP/IP port on which

the IDE should listen for debug connections. This value only needs to be changed if multiple

copies of Wing are running on the same host.

4. Configure any firewall on the system that Wing is running on to accept a connection on the server

port from the system that the debug process will run on, or set up an SSH tunnel as described in

Manually Configuring SSH Tunneling.

5. Install Wing's debugger on the machine on which you plan to run your debug program, using one

of the methods described in Manually Installing the Debugger.

6. Transfer copies of all your debug code so that the source files are available on the host where

Wing will be running and at least the *.pyc files are available on the remote host.

During debugging, the client and server copies of your source files must match or the debugger will

either fail to stop at breakpoints or stop at the wrong place, and stepping through code may not

work properly.

You will need to use Samba, rsync, sftp, NFS, or some other file sharing mechanism to keep the

remote files up to date as you edit them in Wing.

If files appear in different disk locations on the two machines, Wing can automatically discover the

mapping if you add all your source files to your project. See File Location Maps for details.

7. On your remote host, copy wingdbstub.py out of the debugger installation and into the same

directory as your source files and then add import wingdbstub to your Python source, as

Advanced Debugging Topics

189

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/ssh-tunnels
https://wingware.com/doc/debug/installing-debugger-core
https://wingware.com/doc/debug/file-location-maps

described in Debugging Externally Launched Code. You will need to set WINGHOME in your copy

of wingdbstub.py to match the location where you unstalled the debugger in step (5).

8. In wingdbstub.py on your remote host, set kWingHostPort. The host in this value must be the IP

address of the machine where Wing is running. The port must match the port configured with the

Debugger > Listening > Server Port preference on the host where Wing is running. If you set up

an SSH tunnel in step (4) the host will be 127.0.0.1 and the port will depend on the SSH tunnel that

was created.

9. Restart Wing and try running your program on the remote host. You should see the Wing debugger

status icon change to indicate that a debug process has attached.

Example

For an example configuration, see Manually Configured Remote Debugging Example.

Diagnosing Problems

If you have problems making this work, try setting the kLogFile variable in wingdbstub.py to log

additional diagnostic information.

15.2.1. Manually Configuring SSH Tunneling

If you are manually configuring remote debugging without Wing Pro's Remote Hosts feature, you may

find that firewalls get in the way of making a direct connection between the remote host and Wing

running locally. The best way around this is to establish an SSH tunnel that forwards network traffic from

the remote host to the local host. This also encrypts all your debugger traffic in a secure way.

Doing this does require a working SSH server, but most remote hosts will already have that running.

You will also need to set up remote login using SSH first, and in most case add your SSH key to the list

of allowed keys on the remote host, so that SSH can login without any password.

Setting up SSH to a remote host is described in detail in SSH Setup Details.

Once that is done, SSH tunneling can be configured as described below.

Tunneling with OpenSSH

When Wing is running on macOS or Linux, or if you have OpenSSH on Windows provided by cygwin or

Git Bash, tunneling can be done as follows from the machine that is running Wing (not the remote host):

ssh -N -R 50005:localhost:50005 username@remotehost

You'll need to replace username@remotehost with the login name and ip address of the remote host.

The -N option causes ssh to set up the tunnel but not run any command on the remote host.

Advanced Debugging Topics

190

https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/remote-debugging-example
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/ssh-setup-details

The -R option sets up a reverse tunnel, which is needed since the debug process initiates the

connection back to the IDE. The argument following it indicates that port 50005 should be tunneled from

the remote host to locahost.

Optionally, an -f option could be added just after ssh to cause ssh to run in the background. Without

this option, you can use Ctrl-C to terminate the tunnel. With it, you'll need to use ps and kill to manage

the process.

If you also want a login shell on the remote host, use this form instead:

ssh -R 50005:localhost:50005 username@remotehost bash

SSH Tunneling with PuTTY

When Wing is running on Windows and you don't have OpenSSH available, PuTTY can be used

instead to configure an SSH tunnel. This is done on the Connections > SSH > Tunnels page in PuTTY

configuration: Set Source port to 50005, Destination to localhost:50005, and select the Remote radio

button, then press the Add button. Once this is done the tunnel will be established whenever PuTTY is

connected to the remote host.

Using Different Port Numbers

The above assumes the default configuration, where Wing is listening for connections on port 50005. If

for some reason you can't use port 50005 as the debug port on either machine, this can be changed on

the remote host with kHostPort in wingdbstub.py or with the WINGDB_HOSTPORT environment

variable. To change the port the IDE is listening on, use the Debugger > Listening > Server Port

preference and or Debug Server Port in Project Properties in Wing.

If this is done, you will need to replace the port numbers in the SSH tunnel invocation in the following

form:

ssh -N -R <remote_port>:localhost:<ide_port> username@remotehost

<remote_port is the port specified in kHostPort or with WINGDB_HOSTPORT environment variable

on the remote host, and <ide_port> is the port set in Wing's preferences or Project Properties.

On Windows using PuTTY, the Source port is the port set with kHostPort or WINGDB_HOSTPORT

on the remote host, and the port in the Destination is the port Wing is configured to listen on.

15.2.2. File Location Maps

If you are manually configuring remote debugging without using Wing Pro's Remote Hosts feature, and

the full path to your source code is not the same on both hosts, then you need to take steps to tell Wing

how to determine which local files match those on a remote host.

Advanced Debugging Topics

191

https://wingware.com/doc/proj/remote-hosts

The easiest way to do this is to add all your source code to the project in Wing. This lets Wing discover

all your files, so it can automatically build a file mapping using hashes on their contents of the files. If

this works for you, no other configuration is necessary.

How it Works

Wing uses an SHA1 hash on the first 2MB of every source file that it finds in the project or through static

analysis of all imports in your code. This is matched up to hashes obtained from the debug process to

establish file identity, and a location map is built up automatically by looking at which directories appear

to match on the local and remote side.

If there are multiple identical local files that match a remote file, Wing will notify you and then pick one

arbitrarily. This can usually be fixed by removing the unwanted copies of source files from your project

and restarting the debug process.

You can turn off Wing's automatic file matching by unchecking the Debugger > Network >

Use Digests To Identify Files preference and then specifying a file location map manually, as

described in the next two sections.

15.2.2.1. Manually Configured File Location Maps

If you are manually configuring remote debugging without using Wing Pro's Remote Hosts feature, and

the full path to your source code is not the same on both hosts, and the automated file identification

system described in the previous section won't work for your case, then you will need to create a

mapping that tells Wing where it can find your source files on each host. This is done with the

Debugger > Network > Location Map preference, which lists corresponding local and remote directory

locations for each remote host's IP address.

Each host IP address in the location map is paired with one or more (remote_prefix, local_prefix)

pairs. The remote_prefix is the full path on the remote hosts's file system using the file naming

conventions for the remote host. The local_prefix is the full path of a local directory, using / forward

slash as the separator regardless of which OS Wing is running on (except when specifying UNC style

paths on Windows, in which case \ backslash is used).

The best way to understand this is to look at the Manually Configured Location Map Examples.

SSH Tunnels

When using an SSH tunnel, the IP address entered into the Location Map preference is the IP address

of the host the IDE is running on, since the IDE thinks the connection is coming from the local host. This

is often 127.0.0.1 but on Windows it may instead be the IP address for the host. This depends on the

peer ip that is reported on the IDE side for connections opened through the pipe.

Details and Limitations

Advanced Debugging Topics

192

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/file-location-map-example

If multiple matches are found for a given remote file, Wing uses the most specific match, with the

longest remote directory specification. Matches that point to existing local files are preferred over

non-existing ones, even if the match is more general.

When running Wing on Windows, UNC formatted file names such as \machine\path\to\file may be

used. In cases where setting up a persistent drive mapping is a problem, use a cmd.exe script with a

net use command to map the drive on demand.

Note that making symbolic links on the client or server will not work as an alternative to using this

mapping. This is a side-effect of functionality in the debugger that ensures that debugging works right

when symbolic links are present. As a result, source file names are always resolved to their actual full

path location.

Trouble-shooting

When in doubt, an easy way to determine the correct file path to use is to place assert 0 into a file and

refer to the traceback shown in the Exceptions tool in Wing when the file is debugged via wingdbstub.

This can be used to set up the location map correctly, assuming you know the local location of the file.

15.2.2.2. Manually Configured File Location Map Examples

The best way to understand location maps, used for low-level manual configuration of remote

debugging, is to inspect a few examples.

Defaults Explained

The default value for the Debugger > Network > Location Map preference contains one entry for

127.0.0.1 where the mapping is set to Same as localhost. This treats the full paths to files on both the

remote host and local host as identical.

Two Linux or macOS Hosts

In this example Wing is running on desktop1 and debugging some code on server1 with IP address

192.168.1.1. Files located in /home/apache/cgi on server1 are the same files seen in

/svr1/home/apache/cgi on desktop1 because the entire file system on server1 is being shared via

NFS and mounted on desktop1 under /svr1.

To support this example, the following would be added to the location map preference:

Remote IP 192.168.1.1 - Remote: /home/apache/cgi, Local: /svr1/home/apache/cgi

To enter this change in Wing's preferences, you would add 192.168.1.1 as a new Remote IP Address,

select Specify Mapping, and enter a single mapping with Remote set to /home/apache/cgi and Local

set to /svr1/home/apache/cgi.

Two Hosts Using an SSH Tunnel

Advanced Debugging Topics

193

When using an SSH tunnel, the IP address to which you add a mapping is always 127.0.0.1 because

the tunnel forwards traffic in such a way that the IDE sees the connection as coming from the local host.

The remote and local file paths given are the same as for the other examples given here. For the

previous example it would be:

Remote IP 127.0.0.1 - Remote: /home/apache/cgi, Local: /svr1/home/apache/cgi

IDE on Linux or macOS with Debug Process on Windows

If you are debugging between two hosts of different type, the native path name format is used for the

Remote specification and forward slashes are always used for the Local specification.

For example, the following entry would be used when running Wing on a Linux or macOS host and the

debug process on a Windows host with ip address 192.168.1.1, where the Linux or OS X directory

/home/myuser is being shared via Samba to the Windows machine and mapped to the e: drive:

Remote IP 192.168.1.1 - Remote: e:\src, Local: /home/myuser/src

IDE on Windows with Debug Process on Linux/Unix

In this example, Wing is running on Windows and the debug process is on a Linux or macOS remote

host with IP address 192.168.1.1. As in the previous example, the Linux or macOS directory

/home/myuser is being shared via Samba to the Windows machine and mapped to the e: drive:

Remote IP 192.168.1.1 - Remote: /home/myuser/src, Local: e:/src

Note the use of forward slashes in the the Local specification even though the file is on a Windows

machine.

Two Windows Hosts

In this example, Wing is running on Windows and the debug process on another Windows machine with

IP address 192.168.1.1. The host where Wing is running has mapped the entire remote host's c: drive

to e::

Remote IP 192.168.1.1 - Remote: c:\src, Local: e:/src

Two Windows Hosts using UNC Share

This example is the same as the previous one, except that the UNC style path is used for the host

where Wing is running:

Remote IP 192.168.1.1 - Remote: c:\src, Local: \\server\share\dir

Notice that backslashes are used in the Local specification when entering UNC style paths.

Advanced Debugging Topics

194

https://wingware.com/doc/debug/ssh-tunnels

Windows and cygwin

In this example Wing runs on a Windows machine that also has cygwin installed. The cygwin files at

/c/src/test are the same as the directory c:\srctest on the Windows side:

Remote IP 127.0.0.1 - Remote: /c/src/test, Local: c:/srctest

Notice that the IP address is 127.0.0.1 since cygwin runs on the same machine as Windows.

macOS Host and Raspberry Pi accessed via SSH Tunnel

In this example, Wing is running on a macOS host that is connected to a Raspberry Pi through an SSH

tunnel. The files in /home/pi/ on the Raspberry Pi match those in /Users/pitest/src/ on the machine

where Wing is running:

Remote IP 127.0.0.1 - Remote: /home/pi, Local: /Users/pitest/src

Notice that because of the use of an SSH tunnel, the remote IP address is reported as 127.0.0.1 and

not the IP address of the Raspberry Pi.

15.2.3. Manually Configured Remote Debugging Example

Note

This example is for manually configured remote debugging only. It is not relevant for users of

Wing Pro's Remote Hosts feature.

Here is a simple example that enables debugging a process running on a Linux host with IP address

192.168.1.200, using Wing running on a Windows host with IP address 192.168.1.210.

Configuring the Connection

On the Windows host, the following preferences must be specified:

• The Debugger > Listening > Accept Debug Connections preference should be enabled

• The Debugger > Listening > Server Host preference should be set to All Interfaces (this is the

default)

• The Debugger > Listening > Server Port preference should be set to 50005 (this is the default)

On the Linux host, the following value is needed in wingdbstub.py:

kWingHostPort='192.168.1.210:50005'

Advanced Debugging Topics

195

https://wingware.com/doc/debug/ssh-tunnels
https://wingware.com/doc/debug/ssh-tunnels
https://wingware.com/doc/proj/remote-hosts

Once this is done and Wing has been restarted, you should be able to run code that imports

wingdbstub on the Linux host and see the debug connection establish on the Windows host.

File Sharing and Location Map

Next you will need to set up file sharing between the two machines (for example, with Samba) and then

establish a location map in your Wing preferences on the Windows host.

After file sharing has been set up, you can add all your source files to your project, to allow Wing to

automatically discover the locations of files on the local and remote host without any other configuration.

See File Location Maps for details.

15.2.4. Manually Installing the Debugger

When manually configuring remote debugging with using Wing Pro's Remote Hosts feature, Wing's

debugger must be installed on the remote host. To do that, you can either install Wing on that host, or

download the appropriate debugger package from https://wingware.com/downloads/wing-pro/ and

unpack it on the remote host.

Compiling from Source

On OSes for which there is no debugger package, choose the closest match and then recompile the

debugger core from source code. This option is only available to Wing Pro customers, and requires

signing a non-disclosure agreement. The compilation instructions are located in

build-files/README.DBG-SRC.txt inside the debugger source distribution.

15.3. Using wingdb to Initiate Debug
Debug can be started on the command line by running wingdb (or wingdb.exe on Windows) from the

top level of the Wing installation. These are invoked like the Python command line, after setting some

environment variables that tell Wing which Python installation to use and how to connect to the IDE.

Minimal Configuration

First make sure that Wing is listening for debug connections by clicking on the bug icon in the lower left

and enabling Accept Debug Connections.

Next set the environment variable WINGDB_PYTHON to the full path to the python or python.exe to

use. This is needed only if you do not want to use the default python.

Now you can start debugging by running wingdb (or wingdb.exe) as if it were Python. Debugging

should start and the process should connect back to Wing.

For example on Windows:

set WINGDB_PYTHON=C:\Python38\python.exe
"C:\Program Files (x86)\Wing Pro 8\wingdb.exe" myscript.py arg1 arg2

Advanced Debugging Topics

196

https://wingware.com/doc/debug/file-location-maps
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/downloads/wing-pro/
https://wingware.com/pub/wingide/support/source-non-discl.pdf

On Linux:

export WINGDB_PYTHON=python3.8
/usr/lib/wingpro8/wingdb myscript.py arg1 arg2

On macOS:

export WINGDB_PYTHON=python3.8
"/Applications/Wing Pro.app/Contents/Resources/wingdb" myscript.py arg1 arg2

Advanced Configuration Options

Other environment variables that control the debugger's behavior include:

WINGDB_PYARGS provides any arguments to send to Python itself. Do not use this for arguments

sent to your Python code. Those are specified on the command line instead.

WINGDB_STEPINTO is set to 0 or 1 to indicate whether to stop on the first line of code (default=0)

WINGDB_WAIT_ON_EXIT controls whether the debug process should wait on exit for further

interaction with the debugger (default=don't wait)

WINGDB_ENV_FILE causes the debugger to load environment from this file and then exec

sys.executable in the environment, rather than running in the inherited environment. The environment

file contains a sequence of byte strings, each separated by a '\0' byte. The 1st of every pair is a key and

the 2nd is the value. (default=run in inherited environment)

WINGDB_HOSTPORT is the host:port where the IDE is running, if different than the default of

localhost:50005. The host can be either a host name or an IP address and the port is the one shown

when the mouse is hovered over the bug icon in the lower left of Wing's main window. We strongly

recommend using Wing Pro's Remote Hosts feature instead. Otherwise, you'll also need most of the

tedious manual configuration described in Manually Configured Remote Debugging.

WINGDB_SECURITYTOKEN can contain the security token to use for authentication with the IDE. If

not specified, the default is to read the token from the wingdebugpw file in the user settings directory

(the value used is the portion after the :).

WINGDB_USERSETTINGS is used only to find the debugger implementation if provided by an update

made while running Wing with a non-default Settings Directory, as specified using the --settings

command line argument (default=use the standard location for the directory)

WINGDB_LOGFILE is the full path to a diagnostic log file. Set this only at the request of Wingware

Technical Support. It will slow down the debugger (default=no logging)

WINGDB_LOGVERYVERBOSE controls whether to print extremely verbose low-level diagnostic

logging. Set this only at the request of Wingware Technical Support. It will drastically slow down

debugging (default=off)

Advanced Debugging Topics

197

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/manual-remote-debugging
https://wingware.com/doc/install/user-settings-dir

The following optional envs are only used to support Python 2.5; in Python 2.6+ set

PYTHONIOENCODING instead:

WINGDB_STDOUT_ENCODING sets the encoding to use for stdout

WINGDB_STDIN_ENCODING sets the encoding to use for stdin

15.4. Attaching and Detaching
Debug processes normally connect to Wing automatically during startup. However, Wing can also

attach to debug processes that are not already connected with the IDE. There are two cases where this

is useful:

(1) When an externally launched process that uses wingdbstub (as described in section Debugging

Externally Launched Code) cannot reach the IDE at startup, for example because the IDE is not yet

running or was not configured to accept debug connections.

(2) When a process attached to the IDE is disconnected using Detach from Process in the

Debug > Processes sub-menu.

Detaching

Detach from Process in the Debug > Processes sub-menu detaches from the current debug process.

Detach from All Processes detaches from all currently connected debug processes.

Whenever a process is detached, it continues to run outside of the debugger, without stopping at any

breakpoints or exceptions. If a process is paused in the debugger when it is detached, the process will

start running again immediately after the IDE disconnects.

Attaching

Attach to Process in the Debug > Processes sub-menu displays a dialog that contains known

processes that were previously attached to Wing, and any additional host/port pairs given with the

Debugger > Network > Common Attach Hosts preference. You may also type in a host/port value

here (see Identifying Processes below).

Once you are attached to a process, it continues running until it reaches a breakpoint, unhandled

exception, or Pause is used.

Identifying Processes

When debugging externally launched code in Wing Pro, the kAttachPort constant in wingdbstub.py

sets the port on which the debug process will listen for attach requests from Wing.

If there are multiple concurrent processes and the specified port is in use then a random port number

will be used instead. This port number will be communicated to the IDE if the debug process succeeds

in connecting to it at startup, so the process can be listed in the Attach to Process dialog. Otherwise,

you must use a unique value for the kAttachPort for each process.

Advanced Debugging Topics

198

https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/debugging-externally-launched-code

Access Control

Wing creates a security token that is used to control who can attach to debug processes. As long as

your debug process is running as the same user and on the same host as the IDE, attach and detach

should work without any additional configuration.

If you run your debug process as a different user, or on a different machine than the IDE, Wing will

initially refuse the connection and ask you to accept the security token from the other account or host.

After accepting it, attaching again should succeed.

To preauthorize the debug connection, you can copy the file wingdebugpw from the Settings Directory

where Wing is running into the Settings Directory for the other user or host, or into the same directory as

wingdbstub.py if you are using that to initiate debug.

15.5. Debugging C/C++ and Python Together
Wing's debugger is for Python code only and doesn't itself handle stepping into C/C++. However, you

can use Visual Studio, gdb, or another debugger concurrently, in order to debug Python and C/C++ at

the same time.

The easiest way to do this is to launch the debug process from Wing, note the process ID shown when

hovering the mouse over the bug icon in the lower left of Wing's window, and then attach the C/C++

debugger to that process.

Alternatively, it is also possible to launch the debug process with the C/C++ debugger and then initiate

debug as described in Debugging Externally Launched Code.

To debug the C/C++ code you need to be running with a copy of Python compiled from sources with

debug symbols. Note that Wing's debugger will be unavailable whenever the C/C++ debugger is

paused.

15.5.1. Debugging Extension Modules on Linux/Unix

The first step in debugging C/C++ modules with gdb is to make sure that you are using a version of

Python that was compiled with debug symbols. To do this, you need a source distribution of Python and

you need to configure the distribution as described in the accompanying README.rst file.

In most cases, this can be done as follows: (1) Type ./configure, (2) type make OPT=-g, and (3) type

make. Once the build is complete you can optionally install it with make install or just run Python in

place without installing it.

When this is complete, compile your extension module against that version of Python.

Starting Debug

In order to run code both within Wing's Python debugger and gdb, launch your debug process from

Wing first, then note the process ID shown in the tooltip that appears when you hover the mouse over

the debug icon in the lower left of Wing's main window.

Advanced Debugging Topics

199

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/debug/debugging-externally-launched-code

Next, start gdb and type attach <pid> where <pid> is replaced with the process ID reported by Wing.

This will pause the process as it attaches, which gives you a chance to set breakpoints. When you're

ready to continue the process, type c in gdb.

You are now debugging both at the Python and C/C++ level. You should be able to pause, step, and

view data in Wing whenever gdb is not paused. When gdb is paused, Wing's debugger cannot be used

until the process is continued at the gdb level.

Tips and Tricks

• Misc/gdbinit in the Python source distribution contains useful macros for inspecting Python code

from gdb. For example, pystack will print the Python stack, pylocals will print the Python locals,

and pyframe prints the current Python stack frame. To use it, copy it into your ~/.gdbinit.

• The following works to view Python data in PyObject * obj:

(gdb) p PyObject_Print (obj, stderr, 0)

• Breakpoints in a shared library cannot be set until after the shared library is loaded. ^C^C can be

used to interrupt the debug process, set breakpoints, and then continue.

• If LD_LIBRARY_PATH or other environment is not set as expected, check whether it is set in

.cshrc. This file is read each time gdb runs so may overwrite your value. To work around this, set

LD_LIBRARY_PATH in .profile instead. This file is read only once at login time.

See Debugging with Gdb for more information.

15.6. Debugging Non-Python Mainloops
The debug process connects to the IDE using a TCP/IP socket which is serviced from the debug tracer.

Since Python only calls the tracer when Python byte codes are being executed, the debug process may

become unresponsive if it spends long periods of time in non-Python code, such as in a C or C++ event

loop. In this case, messages from Wing, such as Pause or changes to breakpoints, will be ignored by

the debug process until some Python code is run again.

This is rarely an issue in practice since most code calls Python code periodically, and Wing's debugger

contains hooks that entirely avoid the problem in PyQt, Gtk, Tkinter, wxPython, and Zope.

In the rare cases where the problem does occur, simple work-arounds include: (1) Schedule some

Python code to run periodically as an idle task or timeout, or (2) just don't try to Pause or change

breakpoints while the debug process is busy.

An alternative is to write a plug-in that services the debugger's sockets even when no Python code is

being called, as described below.

Writing Non-Python Mainloop Support

Advanced Debugging Topics

200

https://wiki.python.org/moin/DebuggingWithGdb

Wing provides an API for adding the hooks necessary to ensure that the debugger's network sockets

are serviced at all times. In order to use this, you must be able to register the debugger's socket in your

environment's mainloop, or cause your mainloop to call select() on the socket periodically and invoke a

provided callback when there is activity on the socket.

Mainloop hooks are written as separate modules that are placed into src/debug/tserver in your Wing

installation directory (on macOS, this is inside Contents/Resources in Wing's .app folder). This

directory contains several examples that can be used as a starting point.

To add your own non-Python mainloop support, you must:

1. Copy one of the source examples, such as _gtkhooks.py, to a file name _xxxxhooks.py where

xxxx is the name of your non-Python mainloop environment.

2. Determine the names of indicator modules Wing can used to identify that this mainloop

environment is being loaded and set kIndicatorModuleName.

3. Implement the _Setup(), RegisterSocket(), and UnregisterSocket() methods. Do not alter any

code from the examples except the code within the methods. The name of the classes and

constants at the top level of the file must remain the same.

4. Add the name of your module, minus the '.py' to the list kSupportedMainloops in

_extensions.py

Don't hesitate to contact support@wingware.com if you need help.

15.7. Debugging Code with XGrab* Calls
Under X11, Wing does not attempt to break XGrabPointer or XGrabKey and similar resource grabs

when your debug process pauses. This means that X may be unresponsive to the keyboard or mouse

or both in some debugging cases.

Here are some tips for working around this problem:

(1) Most Linux systems offer some way to break through X11 pointer and keyboard grabs.

For example, X.org installations define a key symbol that releases all pointer and keyboard grabs. You

can map a key sequence to it with xdotool as in the following example:

xdotool ctrl+alt+n XF86Ungrab

(2) Some toolkits have an option to disable resource grabs specifically to avoid this problem during

debugging. For example, PyQt has a command line option -nograb that prevents it from ever grabbing

the keyboard or pointer. Adding this to the debug process command line solves the problem.

When this option is not available, another option is to move processing into a timer or idle task so it

occurs after the grab has been released.

Advanced Debugging Topics

201

mailto:support@wingware.com
https://www.semicomplete.com/projects/xdotool/

(3) If all else fails, you can log in remotely, use ps to find the debug process, and kill it with kill or kill -9

. This will unlock your X display.

(4) Setting DISPLAY to send your debug process window to another X display avoids tying up Wing in

this way. The remote display will release its grabs once you kill the debug process from the IDE.

15.8. Debugger Limitations

Note

If you are having problems getting the debugger to stop at breakpoints or to display source as

you step through your code, always read the Trouble-shooting Failure to Debug section first.

This section documents all know limitations in the debugger implementation. Many of these are

extremely rare and esoteric:

(1) Your source files must be stored on disk and accessible to the IDE. If you are trying to debug code

fragments, try writing them to disk temporarily and setting the __file__ variable in the module name

space before invoking Python's exec or eval. This will allow Wing's debugger to map code objects to

the source you've temporarily written to disk.

(2) Running without saving will lead to incorrect display of breakpoints and run position because the

debug process runs against the on-disk version of the source file. Wing will indicate that some files are

out of sync so this case should only occur if you ignore its warnings.

(3) There are several cases where Wing may fail to stop at breakpoints or exceptions, or may fail to find

source files. All of these are caused by storage of incorrect file names in *.pyc files:

• Moving *.pyc files on disk after they are generated invalidates the file name stored in the file if it is

a partial relative path. This happens if your PYTHONPATH or sys.path contains partial relative

path names.

• A similar problem may result from use of compileall.py and some other utilities that don't record a

correct filename in the *.pyc file.

• If you run the same code twice using different paths to the same working directory, as is possible

on Linux and macOS with symbolic links, the file names left in *.pyc may contain a mix of each of

these paths. If the symbolic link that was used is subsequently removed, some of the file names

become invalid.

The fix for all of these problems is to remove the *.pyc files and let Python regenerate them from the

corresponding *.py files with the correct file name information.

Hint: You can open *.pyc files in most text editors to inspect the stored file names.

Advanced Debugging Topics

202

https://wingware.com/doc/install/trouble-debug

(4) For code that spends much of its time in C/C++ without calling Python at all, the debugger may not

reliably stop at breakpoints added during a run session, and may not respond to Pause requests. See

Debugging Non-Python Mainloops for details.

(5) You cannot use pdb or other debuggers together with Wing's debugger. The two debuggers conflict

because they attempt to use the same debug tracer in the Python interpreter.

(6) If you override __import__ in your code, you will break the debugger's ability to stop at breakpoints

unless you call the original __import__ as part of your code whenever a module is actually imported. If

you cannot call the original __import__ for some reason, it may be possible to instead use wingdbstub

and then call wingdbstub.debugger.NotifyImport(mod) from your import handler, where mod is the

module that was just imported.

(7) If you set __file__ in a module's name space to a value other than its original, Wing will be unable to

stop at breakpoints in the module and may fail to report exceptions to the IDE's user interface.

(8) If you use an extension module to call C/C++ level stdio calls instead of using the Python-level

facilities, the debug process will remain unresponsive to Wing while waiting for keyboard input, I/O

redirection to the Debug Console in Wing Pro will fail, and you may run into out-of-order character

reads in some cases. Details can be found in Debug Process I/O.

(9) Using partial path names in module __file__ attributes can in rare cases cause Wing to fail to stop

on breakpoints and exceptions, to fail to display source files, or to confuse source files of the same

name.

A partial path name may end up in __file__ only when (a) invoking Python code with a partial path

name, for example with python myfile.py instead of python /path/to/myfile.py, (b) sending partial

path names into exec, (c) using partial path names in your PYTHONPATH or sys.path, or (d) using

compileall.py or similar tool to compile modules with a partial path name.

Because Wing does everything possible to avoid this problem in practice, it actually only occurs in the

following rare cases:

• When modules are loaded with partial path names and os.chdir() is called before debugging is

started. This is only possible when using wingdbstub.

• When modules are loaded with partial path names and os.chdir() is called after

wingdbstub.debugger.SuspendDebug() and before wingdbstub.debugger.ResumeDebug().

• When modules are loaded with partial path names and removed from sys.modules before the

debugger is started or while debugging is suspended.

• When code objects are created on the fly using compile() or the C API, a relative filename or an

incorrect filename are used for the filename argument, and os.chdir() is called before the code is

executed.

(10) Wing tries to identify when source code in the IDE matches or does not match the code that is

running in the debug process. There are certain very rare cases where this will fail, which may lead to

Advanced Debugging Topics

203

https://wingware.com/doc/debug/non-python-mainloops
https://wingware.com/doc/debug/debug-process-i-o

failure to stop on breakpoints and other problems even when files are identified by the IDE as being

synchronized:

Using execfile(), eval(), or exec with a globals dict that contains __file__ will cause Wing to incorrectly

assert that the specified file has been reloaded. In practice, this scenario usually occurs when execfile()

is called from the top level of a module, in which case the module is in fact being loaded or reloaded (so

no mis-identification of module load status occurs). However, in cases where a module load takes a

long time or involves a long-running loop at the top level, the execfile(), eval(), or exec may occur after

edits to the module have been made and saved. In this case, Wing will mis-identify the module as

having been reloaded with the new edits.

This problem can also be triggered if a globals with __file__ is explicitly passed to execfile(), eval(), or

exec. However, it will only occur in this case when the code object file name is ?, and locals and

globals dictionaries are the same, as they are by default for these calls.

(11) Naming a file <string> will prevent the debugger from debugging that file because it is confused

with the default file name used in Python for code that is not located in a file.

(12) The debugger may fail to step or start after stopping at a breakpoint if the floating point mode is set

to single precision (24 bit) on Intel x86 and potentially other processors. This is sometimes done by

graphics libraries such as DirectX or by other code that optimizes floating point calculations.

(13) When using Stackless Python, overriding stackless.tasklet.__call__ without calling the Wing

debugger's __call__ will break the debugger.

Advanced Debugging Topics

204

Integrated Version Control
Wing Pro provides integrated support for Git, Mercurial, Bazaar, Subversion, CVS, and Perforce. This

supports adding, moving, renaming, and removing files, status, log, commit, update, revert, diff,

push/pull, and some other operations specific to each system.

These operations are accessed from menus in the menubar and tools in the Tools menu that Wing

adds according to which version control systems are used for the directories and files that you have

added to your project. The operations are also available by right-clicking on an editor or in the Project

tool.

File operations are integrated with the Project tool's file management features, so that moving,

renaming, or deleting files in the Project tool uses the appropriate version control operations.

When a VCS is active, Wing also adds Compare to Repository to right-click context menus. This kicks

off Difference and Merge between the working version and the repository version it is based on.

16.1. Setting Up Version Control in Wing
Wing relies on being able to run the command line executable, such as hg, git, or p4 for each version

control system. These must be installed first, if you don't already have them.

You will also need to check out a repository, or add your files to a new repository, according to the

instructions for the VCS that you are using. This must be done outside of Wing, since the version control

integration is not designed to create repositories or initially check out files from a VCS.

Wing assumes you are using an external SSH key manager to authenticate version control operations,

or that the version control commands are configured to display an authentication dialog. Wing does not

store passwords, nor does it provide a way to enter them for each operation. Refer to the

documentation for each version control system to set up the appropriate authentication method. If

you've never set up SSH before, see also SSH Setup Details.

Activating Version Control in Wing

Once you have your files added to version control, you can set them up in Wing simply by adding

directories and files to your Wing project, using the items in the Project menu. The relevant version

control menus should appear in the menu bar.

Which VCSs will be considered for projects can be controlled in the Version Control preferences

group, with the Active preference under each version control system's preferences page. This supports

entirely disabling a version control system, enabling it only if used in the project, or setting it as always

active, so its menu and tool will always be available.

Trouble-Shooting

Integrated Version Control

205

https://wingware.com/doc/proj/file-management
https://wingware.com/doc/diff/index
https://wingware.com/doc/proj/ssh-setup-details

To diagnose problems with the version control integration, enable Show Console in the VCS tool's

Options menu. This adds a tab to the tool that displays the commands that are executed and their

output.

In some cases you may need to point Wing to the executable for your VCS using the Executable

preference on the VCS's page, under the Version Control preferences area. This should be set to the

full path to the command line executable and not the executable for GUIs like TortoiseHg.

16.2. Version Control Tools
The version control tools for each active version control system can be shown by selecting them from

the Tools menu or as a side effect of selecting operations from any of the version control menus.

When initially shown, the version control tool contains a Project Status view that shows the file status

for the entire project. It summarizes which files have been modified, and can also show unregistered

files when the Show Unregistered option in the right-click context menu is enabled.

Each operation invoked for a version control system displays an additional view within the version

control tool. These views collect any parameters for the operation and display the result of the

operation. Use the menu in the top of the version control tool to switch between operations or to return

to the Project Status view. Clicking on the X icon closes the view for the current operation.

The Options menu can be used to access the version control preferences, documentation, and a

console that displays the version control invocations that Wing is making.

16.3. Common Version Control Operations
Some operations are similar across all the supported version control systems. While there are some

minor variations among these, the basic idea is the same and they perform within Wing in the same way

as they would on the command line.

Commit copies changes in the local file system to the version control repository that the files are

associated with. The repository might be entirely local in distributed systems such as Git or Mercurial, or

it may be on a remote host in centralized systems such as Subversion and CVS.

The view shown for a commit operation has a several tabs that contain the commit message, the diffs

for this commit, the list of files eligible for the commit, and the results once the commit is run. The Files

tab may be used to select files for the commit by un-checking files that should not be committed.

Diff displays the differences between files on the local file system and files in the repository. The diff

appears as a view in the revision control tool. Its right-click context menu may be used to copy the diff

text, go to the source for a particular section of the diff, or re-run the diff command.

Status displays the status of files. The files are displayed as a tree by default, but may also be

displayed as a flat list by right-clicking and selecting View as List. To the left of the file name, there is

an icon to indicate if the file has been modified (or added or removed), has a conflict, is locked, or is not

Integrated Version Control

206

registered. Unregistered files are omitted from the status view by default but can be shown by

right-clicking on the tool and selecting Show Unregistered.

Log displays a list of all the revisions, with commit comments, for one or more files or directories.

Revert disposes of any local changes and reverts the local files to match the revision that they were

based on in the repository.

Commit Project runs the commit operation against all the files in the project.

Project Status runs the status operation against all the files in the project.

Add marks a file or directory to be added to the repository with the next commit.

Remove requests that a file or directory be removed from the repository with the next commit.

16.4. CVS
Wing's CVS integration requires the cvs command line executable to be installed separately from Wing.

Please see http://www.nongnu.org/cvs/ for information about CVS. The cvs executable may either be in

your path or set with the Version Control > CVS > CVS Executable preference.

The CVS integration works best if usernames and passwords are handled by an SSH agent. For details

on this see SSH Setup Details and the CVS documentation.

If this is not possible and you must use the obsolete pserver authentication mechanism, you will need

to issue the cvs login command once from the command line before starting Wing.

The CVS integration defines the following commands, in addition to those documented in Common

Version Control Operations:

Update updates the local copy with changes from the repository.

Update Project updates all the directories in the project with changes from the repository.

16.5. Git
Wing's Git integration requires the git command line executable to be installed separately from Wing.

Please see https://git-scm.com/ for information about Git. The git executable may either be in your path

or set with the Version Control > Git > Git Executable preference.

The Git integration defines the following commands, in addition to those documented in Common

Version Control Operations:

Discard Changes discards all local changes and reverts local files back to the current branch head

revision.

Blame/Praise shows the revision, author, and date for every line in a file.

List Branches lists all branches in the local repository.

Integrated Version Control

207

http://www.nongnu.org/cvs/
https://wingware.com/doc/proj/ssh-setup-details
https://wingware.com/doc/versioncontrol/common-operations
https://wingware.com/doc/versioncontrol/common-operations
https://git-scm.com/
https://wingware.com/doc/versioncontrol/common-operations
https://wingware.com/doc/versioncontrol/common-operations

Create Branch creates a new named branch and switches to it.

Switch Branch switches to a different existing named branch with git checkout <branch>.

Fetch Repository Changes fetches changes from a remote repository with git fetch <remote>.

Pull Branch Changes pulls changes on a branch from a remote repository to the local repository with

git pull <remote> <branch>.

Push Branch Changes pushes changes on a branch from the local repository to a remote repository

using git push <remote> <branch>.

Push to Stash temporarily saves all local changes and reverts back to the current branch head

revision.

Pop from Stash restores the most recently stashed changes to the local copy of files.

List Stash lists all the change sets that have been stashed. hi

16.6. Mercurial
Wing's Mercurial integration requires the hg command line executable to be installed separately from

Wing. Please see https://www.mercurial-scm.org/ for information about Mercurial. The hg executable

may either be in your path or set with the Version Control > Mercurial > Mercurial Executable

preference.

The Mercurial integration defines the following commands, in addition to those documented in Common

Version Control Operations:

Resolve marks merge conflicts in a file to be resolved, by running hg resolve -m.

Annotate shows the revision number for every line in a file.

Pull Changes fetches changes from a remote repository to the local repository and optionally updates

the working directory.

Update updates the entire working directory with changes from the local repository.

Push Changes pushes changes in the local repository to a remote repository.

Create Branch creates a new named branch and switches to it.

List Branches lists all named branches.

Switch Branch switches to a selected named branch.

Merge From Branch merges changes from a selected branch into the working directory.

Shelve moves all local changes to shelved status and returns the working directory to unchanged

status.

Unshelve brings changes previously shelved back into the working directory.

Integrated Version Control

208

https://www.mercurial-scm.org/
https://wingware.com/doc/versioncontrol/common-operations
https://wingware.com/doc/versioncontrol/common-operations

List Shelves lists all change sets that have been shelved.

Rebase moves changes that have been committed but not yet pushed to the tip of the current branch.

This may be used when Mercurial complains about multiple branch heads during Push. It must be

preceded with Pull to get the latest changes in the repository, and then will merge pulled changes also

into the working directory. This command may show the merge tool configured in the .hgrc file, if there

are conflicting changes and a manual merge is necessary. It does not use Wing's integrated

difference/merge tool because that does not support three way merging.

16.7. Perforce
Wing's Perforce integration requires the p4 command line executable to be installed separately from

Wing. Please see http://www.perforce.com for information about Perforce. The p4 executable may

either be in your path or set with the Version Control > Perforce > Perforce Executable preference.

Wing's Perforce integration is disabled by default and must be enabled with the

Version Control > Perforce > Active preference.

Wing finds the Perforce working directory by executing p4 client -o in the environment defined in

Project Properties, when a project is opened or the environment is changed. The client specification

must be defined outside of Wing.

Perforce defines the following command, in addition to those documented in Common Version Control

Operations:

Sync updates the client work space with changes from the depot.

Edit prepare files for editing and makes any editor the file is opened in writable. Note that Revert on an

unmodified file that's opened for editing will release the file from edit status.

Sync Project updates all client work space directories project with changes from the depot.

Configuration Details

If the Project Home Directory project property is set to a value outside of the Perforce tree, it may be

necessary to add -d pathname with the appropriate pathname for your configuration to the preference

Version Control > Perforce > Extra Global Arguments.

If you usually use the Perforce GUI, you may need to start up the GUI before the environment used by

the p4 executable is set up properly.

16.8. Subversion
Wing's Subversion integration requires the svn command line executable to be installed separately from

Wing. Please see http://subversion.tigris.org/ for information about Subversion. The svn executable

may either be in your path or set with the Version Control > SVN > SVN Executable preference.

Integrated Version Control

209

http://www.perforce.com
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/versioncontrol/common-operations
https://wingware.com/doc/versioncontrol/common-operations
http://subversion.tigris.org/

The Subversion integration works best if usernames and passwords are handled by an SSH agent. For

details on this see SSH Setup Details and the Subversion documentation.

Using SSH is preferred because there is no safe way to interact with the svn executable to pass it a

username and password. The --username and --password command line arguments can be used, but

will expose the password to anyone on the system who can list process command lines. If there is no

alternative, these can be specified in the Version Control > SVN > Extra Global Arguments

preference.

Subversion defines the following commands, in addition to those documented in Common Version

Control Operations:

Update updates the local copy with changes from the repository.

Resolved indicates that a conflict that arose during update has been resolved. Files that are in conflict

cannot be checked in with commit until the resolved operation is completed.

Blame/Praise displays the the revision number and author for every line in a file.

Last Revision Diff shows the differences in the most recently committed change set for a file.

Update Project updates all the directories in the project with changes from the repository.

Integrated Version Control

210

https://wingware.com/doc/proj/ssh-setup-details
https://wingware.com/doc/versioncontrol/common-operations
https://wingware.com/doc/versioncontrol/common-operations

Source Code Analysis
Many of Wing's features rely on a powerful source code analysis engine that runs in the background as

you work. This inspects all the Python code in your project, and all the code that it uses, as found

through import statements.

The source code analysis engine inspects code using type inference, type annotations, and

user-provided interface description files. It also makes use of live runtime state whenever available, by

loading and inspecting extension modules, and by introspecting symbols in the context of an active

debug process or the integrated Python Shell.

17.1. How Analysis Works
To analyze your source code, Wing uses the Python Executable and Python Path that you have

specified in your Project Properties and any main entry point. This environment defines which modules

are found by import statements and alters some aspects of type inference, according to Python

version.

Show Analysis Stats in the Source menu displays the Python environment that is being used for

source code analysis.

Note that this environment is used to analyze all files in your project, even if some of them use Launch

Configurations or File Properties to set up a different Python environment for themselves. This is usually

OK, but in some cases it may be better to set up a separate project for each Python environment.

Wing's source code analysis process can be summarized as follows:

• To resolve an import statement, Wing searches the Python Path and same directory for a

matching importable module.

• If the module is Python code, Wing runs static analysis on the code to extract information from it.

• If the module is an extension module, Wing looks for a *.pi or *.pyi interface description file, as

described later in this chapter.

• If the module cannot be inspected, Wing tries to import it in a separate process space, in order to

analyze its contents.

• If a debug process is active, or when working in the Python Shell, Wing tries to read relevant type

information from the live runtime state associated with the source code

The results of this analysis are cached on disk and recomputed only as necessary when the Python

environment or code changes.

17.2. Helping Wing Analyze Code
There are a number of ways to assist Wing's source code analyzer in determining the type of values in

difficult-to-inspect dynamic Python code, C/C++ extension modules, and other code that is resistant to

analysis.

Source Code Analysis

211

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/debug/main-entry-point
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/debug/python-shell
https://wingware.com/doc/edit/analysis-disk-cache

17.2.1. Setting the Correct Python Environment

The most common reason that Wing fails to provide useful source code analysis is failure to configure

Python Executable and Python Path in Project Properties. This is important so that Wing knows which

version of Python your code is designed for, and so it can find any modules that are not on Python's

default sys.path.

In cases where code makes changes to sys.path at runtime, it may help to set the file where those

changes are made as the main entry point. Wing tries to read sys.path changes and incorporate them

into the Python environment used for source code analysis. If this fails, add the appropriate items to

Python Path in Project Properties.

17.2.2. Using Live Runtime State

Running to a breakpoint is a great way to help Wing analyze code. This allows Wing to extract complete

and correct type information from the live runtime state, as a supplement to the information found

through static analysis. The auto-completer, Source Assistant, and other tools make use of this

information when it is available.

This approach also has the advantage that new code can be tried out immediately in Wing Pro's Debug

Console, in the context of the runtime environment for which it is being designed.

Working in the Python Shell also provides access to runtime type analysis.

17.2.3. Adding Type Hints

Wing can understand several different kinds of type hints added to Python code.

PEP484 and PEP 526 Type Annotations

Adding type hints in the styles standardized by PEP 484 (Python 3.5+) and PEP 526 (Python 3.6+) is

another way to help Wing understand difficult-to-analyze code.

For example, the following indicates to Wing the argument and return types of the function myFunction:

from typing import Dict, List

def myFunction(arg1: str, arg2: Dict) -> List:
 return arg2.get(arg1, [])

The type of variables can be indicated by a comment that follows an assignment:

x = Something() # type: int

Or in Python 3.6+ the type can instead be specified inline:

x:int = Something()

Source Code Analysis

212

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/debug/main-entry-point
https://wingware.com/doc/edit/auto-completion
https://wingware.com/doc/edit/source-assistant
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/python-shell
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0526/

The types that Wing can recognize include basic types like str and int and also the following from the

typing module: List, Tuple, Dict, Set, FrozenSet, Optional, and Union.

Type Hinting with isinstance()

Another way to inform Wing of the type of a variable is to add an isinstance call to your code. For

example isinstance(obj, CMyClass). This is useful in older Python versions, or when combined with

debug-only runtime type checking like assert isinstance(obj, CMyClass).

In cases where doing this introduces a circular import or other problems, use a conditional:

if 0:
 import othermodule
 isinstance(obj, othermodule.CMyClass)

The source code analysis engine will still pick up on the type hint, even though it is never executed.

17.2.4. Defining Interface Files

Creating a *.pyi Python Interface file is another way to describe the contents of a module that Wing has

trouble analyzing. This file is simply a Python skeleton with the appropriate structure, call signature, and

return values to match the functions, attributes, classes, and methods defined in a module.

Wing reads the *.pyi and merges its contents with any information it obtained through direct inspection

of the module. .pyi files can use PEP 484 (Python 3.5+) and PEP 526 (Python 3.6+) type annotations,

regardless of whether Python 2 or Python 3 is being used.

Wing also supports reading interface files named *.pi but these cannot use PEP 484 or PEP 526 type

annotations. The .pi extension was used in previous versions of Wing that predated the PEPs. It is still

supported but should not be used for newly created interface files.

In somes cases, as for Python bindings for GUI and other toolkits, *.pyi or *.pyi files can be

auto-generated from interface description files. The code that Wing uses to automatically generate *.pi

files from extension modules is in src/wingutils/generate_pi.py in your Wing installation, and another

example that is used to generate interface information for PyGTK is in src/wingutils/pygtk_to_pi.py.

Naming and Placing *.pyi Files

Wing expects the *.pyi file name to match the name of the module. For example, if the name referenced

by import is mymodule then Wing looks for mymodule.pyi.

The most common place to put the *.pyi file is in the same directory as the *.pyd, *.so, or *.py module it

is describing. *.pyi files that describe entire packages (directories containing __init__.py) should be

placed in the package directory's parent directory.

If Wing cannot find the *.pyi file in the same directory as the module, it proceeds to search as follows,

choosing the first matching *.pyi file:

Source Code Analysis

213

https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0526/

1. In the path set with the Source Analysis > Advanced > Interface File Path preference.

2. In the resources/builtin-pi-files in the Wing installation. This is used to ship type overrides for

Python's builtin types and standard library.

3. In resources/package-pi-files, which is used to ship some *.pyi files for commonly used third

party packages.

For all of these, Wing inspects the path directory for a matching *.pyi file and treats any sub-directories

as packages.

In cases where Wing cannot find a *.pyi at all for a C/C++ extension module, it will still attempt to load

the extension module by name, in a separate process space, so that it can introspect its contents. The

results of this operation are stored in pi-cache within the Cache Directory shown in Wing's About box.

This file is regenerated only if the *.pyd or *.so for the loaded extension module changes.

Merging *.pyi Name Spaces

When Wing finds a *.pyi file, it merges the contents of the *.pyi file with any information found by

analyzing or introspecting the module itself. The contents of the *.pyi file take precedence when

symbols are defined in both places.

Creating *.pyi Variants by Python Version

In rare cases, you may need to create variants of your *.pyi files according to Python version. An

example of this is in resources/builtin-pi-files, the directory used to ship type overrides for Python's

builtin types and standard library.

Wing always looks first at the top level of an interface path directory for a matching *.pyi file. If this fails

then Wing tries looking in a sub-directory #.# named according to the major and minor version of Python

being used with your source base, and subsequently in each lower major/minor version back to 2.0.

For example, if c:\share\pi\pi-files is on the interfaces path and Python 2.7 is being used, Wing will

check first in c:\share\pi\pi-files, then in c:\share\pi\pi-files\2.7. then in c:\share\pi\pi-files\2.6, and so

forth.

17.2.5. Helping Wing Analyze Cython Code

Wing works best with Cython’s pure Python mode. In this case, the source code is stored in .py files,

and source analysis works the same as it does in all other Python files. Debugging also works when the

.py file is executed directly rather than compiling it. See Pure Python Mode for details on using Cython

this way.

Cython-compiled modules that don't use pure Python mode are inspected in the same way as extension

modules, which means that some type information, including name and type of arguments to functions,

is unavailable. In that case, *.pyi files may be used to improve Wing's analysis of the interface in the

module, as described in Defining Interface Files.

Source Code Analysis

214

https://cython.readthedocs.io/en/latest/src/tutorial/pure.html
https://wingware.com/doc/edit/analysis-helping-pyi-files

Wing cannot analyze .pyx files directly and uses the simplified non-Python completion support when

working within those files.

17.3. Analysis Disk Cache
The source code analyzer writes information about files it has examined into the Cache Directory that

is listed in Wing's About box, accessed from the Help menu.

Wing does not perform well if the space available for this cache is smaller than the space needed for a

single project's source analysis information. This can be solved by increasing the

Source Analysis > Max Cache Size preference.

The analysis cache may be removed in its entirety by pressing Clear Cache next to the preference.

Wing will reanalyze your code and recreate the cache as necessary.

If the same cache will be used by more than one computer, make sure the clocks of the two computers

are synchronized. The caching mechanism uses time stamps, and may become confused if this is not

done.

Source Code Analysis

215

Working with Containers and Clusters
Wing Pro can work with Python code that is running on containers, like those provided by Docker, in the

same way that you work with code running locally. This works both with individually configured

containers or with clusters of containers managed by a container orchestration system.

Note

Wing currently supports containers that are hosted by Docker or LXC/LXD, and clusters

managed by Docker Compose. Containers must be running either Linux or macOS as their OS.

The host OS (where Wing is running) may be Windows, macOS, or Linux.

Overview
There a number of ways to work with containers in Wing:

1. An individual container may be configured from your Wing project and used as the

Python Executable in Project Properties. In this case, Wing relies on the container management

system to build the container and then starts up a single instance of the container as the location to

run or debug Python code, unit tests, the integrated Python Shell, and OS Commands.

2. Multiple containers created and managed by a container orchestration system may be used with

your Wing project, by configuring and using a cluster for the Python Executable in

Project Properties. In this model, Wing starts the whole cluster of containers and debugs Python

code running on a selected subset of containers. Wing can also run code out of context of the

cluster, by starting instances of containers without launching the whole cluster.

3. It is also possible to manually configure remote debugging to containers, using Wing Pro's remote

development capability for containers that can be reached via ssh or by manually configured

remote debugging for other cases.

How it Works
When Wing is configured to work with a container or cluster, it works with files stored on the local host

when editing, analyzing and error checking code, performing revision control operations, searching, and

so forth. However, debug processes, unit tests, the Python Shell, and optionally commands defined in

OS Commands are all launched inside the containers.

Wing uses the container system to map its installation and other needed files into the container

environment, in order to support inspecting container environment, debugging code, and accessing

container-only files.

Working with Containers and Clusters

216

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/manual-remote-debugging
https://wingware.com/doc/debug/manual-remote-debugging

Wing implements support for containers and clusters through a plugin interface. Support for Docker,

Docker Compose, and LXC is included as a reference implementation. For more information on adding

a custom container system, see Container Plugins and Cluster Plugins.

18.1. Individual Containers
This section describes how to configure Wing when you are using individually managed containers for

your project. In this case, each Wing project specifies a single container as the default location in which

to run Python code launched by the IDE. Additional containers may also be configured in the project

and used for specific files or actions, for example to debug a client and server running on separate

containers, or as a way to run unit tests on a different container instance.

Configuration Overview

For Docker, Wing provides special support for project creation from the New Project dialog, either to

set up a new Wing project for an existing Docker container, or to create a new Docker container at the

same time as the Wing project. This is described in detail in Using Wing Pro with Docker and is easier

than proceeding with manual configuration.

For other types of containers, configuration must be done manually, as described below.

Manual Configuration

Projects that use a container do so by selecting Container for the Python Executable in

Project Properties and then configuring a container.

A container configuration consists of:

Identifier is a unique name used by Wing to refer to this container configuration. It does not have to be

the same as the container system's identification for the container.

Type selects the container system to use for the container. The available types are supported through

the container plugin API.

Configuration selects the style of configuration use for this container. This may either use an existing

already-build image ID, or specify a container system configuration file or directory to use for the

container. This field is hidden for container systems that don't use configuration files.

Image ID selects the container image ID to use for the container. When Configuration was set to

Use Image ID then this specifies the image ID to use. When Configuration was set to

Specify Configuraton then it should match the image ID set by that configuration, if any. In other cases

it may be any image name to use when creating the container image for this project. The drop down to

the right allows selecting from the list of known valid image IDs, either all image IDs found on the

system or those defined in the selected container system configuration.

File Mappings lists the directories that exist both on the host system and the container, so that Wing

knows which files that are being debugged or tested are identical to local files. Wing automatically adds

Working with Containers and Clusters

217

https://wingware.com/doc/plugins/container
https://wingware.com/doc/plugins/cluster
https://wingware.com/doc/howtos/docker
https://wingware.com/doc/plugins/container

its own support directory to this list when the container is launched, inb order to mount it on the

container at /wingpro8.

Establish Mappings controls whether or not Wing sets up the given file mappings when the container

is launched. When enabled, Wing establishes the mappings with file sharing to the container. When

disabled, Wing uses the File Mappings given above only to determine which files on the container

match local files, and assumes that files are mapped or copied by the container system configuration

and build process. Even when this is disabled, Wing will establish an internally defined dynamic file

mapping that makes the debugger and other IDE functionality available on the container.

Python Executable specifies the Python that should be run on the container. The default is to use

python3 or python found on the PATH on the container.

Build selects how to rebuild the container image for this container configuration. This may either use

the container system confuration selected with Configuration above, or a specified build script. This

field is hidden for container systems that don't use configuration files and a build process.

Connect Hostname is the hostname or IP address that can be used on the container to establish a

TCP/IP connection back to the host system where Wing is running. This capability is used to set up

remote inspection of the container, and to run unit tests, debug processes, the Python Shell, and OS

commands on the container. Docker version 18.03 or later running on Windows and macOS defines

host.docker.internal for this purpose. In other cases, the IP address of the host system may need to

be determined manually. This field is hidden for container systems that support automatically

determining the container instance IP address.

Port Forwarding identifies network ports that should be forwarded from the host system to the

container. This is used to allow access to network services, such as a web server, that are running on

the container. Containers may also specify port mappings at build time, but in some cases (such as with

Docker Desktop on macOS) this is not possible. Note that services running on the container must listen

on all interfaces (0.0.0.0) and not localhost (127.0.0.1) in order for port forwarding from the host to

container to work properly.

Inherit Project Environment tells Wing to set environment variables defined in Project Properties into

the container environment. This is off by default since in most cases containers define their own

environment. When any environment variables are defined in Project Properties, Wing will prompt to

explain how these will be treated in the container. This prompt can be disabled from the dialog or with

the Project > Containers > Show Environment Warning preference.

All container configurations are made available in the container-manager accessed with Containers in

the Project menu.

Working with Containers and Clusters

218

Container Instance Management

When individual containers are configured like this, a single instance of each container is started and

reused to run all debug processes, unit tests, the Python Shell, commands run on the container by

OS Commands, and processes used to inspect Python and files on that container. If the container

instance terminates unexpectedly, it is restarted automatically as needed.

The instance may also be restarted automatically when Wing's container configuration is changed or

when the image used for the container is rebuilt or changes. The action taken in these two cases can be

controlled with the following preferences on the Project > Containers preferences page:

Warn Before Container Configuration controls whether Wing warns before it allows any changes to a

container configuration for an actively running container.

Notify Container Configuration Change controls whether Wing notifies that a container instance has

been restarted as a result of a change to the container configuration in Wing Pro.

When Container Image Changes selects the action to take when Wing detects that a running

container instance's image has been rebuilt. The options are to automatically restart the container

instance, to leave the instance running with the old image, or to display a dialog to prompt for action.

Whenever a container instance restarts, for any reason, all debug processes, unit tests, and other

commands running on the container will be terminated and the Python Shell will be restarted.

Multiple Containers

Although Wing expects a single container to be specified as the main Python Executable in

Project Properties, and this is used to determine Python version and environment for your project, it is

possible to define several containers in a project and use them to launch specific files, unit tests, OS

Commands, or the Python Shell.

This is done by creating multiple container configurations from Containers in the Project menu, and

then defining one or more launch configurations that reference the containers through their Python

Executable property. Launch configurations can be created from Launch Configurations in the

Project menu and may then be used in:

File Properties, accessed by context menu from the editor or Project tool, can select a particular

launch configuration to use for an individual file. This is done by setting Environment under the

Debug/Execute tab to Use Selected Launch Configuration and choosing the desired launch

configuration. The file is then executed and debugged on the selected container. Note that this does

require that the file is mapped onto the container in one of the mappings specified in the container

configuration's File Mappings field.

Unit Tests may be run on a selected container by setting the Environment under the Testing tab in

Project Properties, or in a file's File Properties, to affect only the environment used when running unit

tests.

Working with Containers and Clusters

219

https://wingware.com/doc/proj/launch-configs

OS Commands may be run on a different container by setting the Execution Context under the

Environment tab for Command Line style OS commands, by setting the File Properties on the file

used for Python File style OS commands, or selecting a launch configuration for Named Entry Point

style OS commands.

Python Shell processes may be configured to run on a particular container by selecting a launch

configuration under Use Environment in the Python Shell's Options menu.

The same technique may be used to cause files, unit tests, OS Commands, or the Python Shell to be

launched on the local host rather than in any container, by selecting a launch configuration with

Python Executable set to Default or a specified Command Line or Activated Env.

Container-Only Files

For files that are stored only on the container, such as the Python standard libraries and the contents of

site-packages, Wing launches a container instance, fetches the files, analyzes them, and displays

them read-only.

18.2. Working with Clusters
This section describes how to configure Wing to work with a number of containers running in a cluster

managed by a container orchestration system. In this model, a selected set of containers are debugged,

and code may be launched either in context of the running cluster or in synthesized stand-alone

(out-of-cluster) instances of containers.

Configuration

Projects that use a cluster do so by selecting Cluster for Project Executable in Project Properties

and then configuring a cluster. Cluster configurations may also be accessed from Clusters in the

Project menu.

A cluster configuration consists of:

Identifier is a unique identifier for the cluster. This name is used only by Wing and does not have to

match the cluster orchestration system's identifier for the cluster.

Type selects the container orchestration system that manages the cluster. The available types are

supported through the cluster plugin API.

Configuration selects the container orchestration system's configuration file or directory for the

selected cluster.

Main Service is the main container service in the cluster, to use as the default location for running

processes that are launched out-of-cluster, such as the Python Shell by default. This field's menu is not

populated until the Type and Configuration have been set, since those are required to determine

which services exist in the cluster.

Working with Containers and Clusters

220

https://wingware.com/doc/plugins/cluster

Connect Hostname is the host name used on containers in the cluster to connect back to the host

where Wing is running. This is used to set up remote inspection of the container, and to run unit tests,

debug processes, and the Python Shell. Docker 18.03 or later running on Windows and macOS

defines host.docker.internal for this purpose. In other cases, the IP address for the host system may

need to be determined manually. This value only needs to be valid on the Main Service container and

any containers that will be debugged.

Inherit Project Environment tells Wing to set environment variables defined in Project Properties into

the cluster's container environments. This is off by default since in most cases containers define their

own environment. When any environment variables are defined in Project Properties, Wing will prompt

to explain how these will be treated in the container. This prompt can be disabled from the dialog or with

the Project > Containers > Show Environment Warning preference.

How Debugging Clusters Works

When a project selects a cluster for Python Executable, starting debug from the Debug menu or

toolbar will start the cluster as a whole using an automatically created derived copy of the

Configuration specified in Wing's cluster configuration. This derived copy adds some environment

variables and file mappings to the services that have been selected for debug in the Containers tool, in

order to cause Python code that is run on those container services to be debugged.

This is accomplished using Python's site.py capabilities. Wing mounts a Python package

sitecustomize into the user site directory on the container, which is determined by inspecting Python

on the container and obtaining the value of site.USER_SITE. This package is automatically loaded by

Python at startup and causes Wing's debugger to be activated by importing wingdbstub.

In order to debug multiple containers at once, the Debugger > Processes > Enable

Multi-Process Debugging preference must be enabled, which it is by default.

In some cases, as determined by the process model used by the code being run on containers, child

process debugging must also be enabled with the Debug > Processes > Debug Child Processes

preference or by using the Debug Child Processes property under the Debug/Execute tab in

Project Properties. For example, when Flask's auto-reload is enabled, child process debugging must

be enabled in Wing, in order to debug the child processes that Flask spawns to implement reloading.

Container Instance Management

As noted above, Wing's default debug behavior is to start the whole cluster and debug selected

services. However, Wing can also start debug, unit tests, OS commands, and the Python Shell in

out-of-cluster instances of containers that are defined by the cluster orchestration system.

Synthesized out-of-cluster instances of the Main Service selected in Wing's cluster configuration are

used by default for most things, but it is possible to specify not only whether or not to run processes

in-cluster but also which service in the cluster to run them on. This is done by creating a launch

configuration from Launch Configurations in the Project menu, settings Python Executable to

Working with Containers and Clusters

221

https://wingware.com/doc/proj/containers-tool
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/launch-configs

Cluster, selecting the service to run on, and choosing whether or not to run in-cluster. The launch

configuration can then be used in the following:

File Properties accessed by context menu from the editor or Project tool can select a particular launch

configuration to use for an individual file. This is done by setting Environment under the

Debug/Execute tab to Use Selected Launch Configuration and selecting the desired launch

configuration. The file is then executed and debugged on the selected cluster service, either in-cluster

or out-of-cluster.

Unit Tests may be run on a selected service in-cluster or out-of-cluster by setting the Environment

under the Testing tab in Project Properties or File Properties to affect only the environment used

when running unit tests.

OS Commands may be run on a selected service and in-cluster or out-of-cluster by setting the

Execution Context under the Environment tab for Command Line style OS commands, by setting

the File Properties on the file used for Python File style OS commands, or by selecting a launch

configuration for Named Entry Point style OS commands.

Python Shell processes may be configured run on a particular service, either in-cluster or

out-of-cluster, by selecting a launch configuration under Use Environment in the Python Shell's

Options menu.

In contrast to debugging all Python code running on cluster services, these configuration options make

it possible to start the cluster as a whole without debug from the Containers tool and then debug specific

files or tests in-cluster. Which approach to debugging you use depends on the nature of the code

running on your cluster.

Cluster Life Cycle

When a cluster configuration is edited while the cluster is active, Wing will terminate any container

instances associated with the cluster and restart the Python Shell. Warning dialogs are displayed

before and after a configuration change, unless disabled from the dialog or with the preferences on the

Project > Containers preferences page:

Warn Before Cluster Configuration controls whether Wing warns before it allows any changes to a

cluster configuration that is in use by running processes.

Notify Cluster Configuration Change controls whether Wing notifies that a cluster has been

terminated as a result of a change to the container configuration in Wing Pro.

These same warnings are displayed when starting or stopping a cluster from the Containers tool.

Note that Wing terminates but does not auto-restart the cluster as a whole. Only synthesized

out-of-cluster service instances are started on demand, for example to run the Python Shell. As a

result, for in-cluster execution, you will need to start the cluster manually from the Containers tool

before starting the in-cluster debugging, testing, or other processes.

Working with Containers and Clusters

222

https://wingware.com/doc/proj/containers-tool

Details and Notes

All cluster services started from Wing, even if they are not being debugged, add a mount of Wing's

installation directory into the container at /wingpro8. This is done so that Wing can inspect Python

environment and container-only files on the container, and so that additional in-cluster debug processes

may be started successfully.

To diagnose problems debugging a cluster, set the environment variable WINGDB_LOGFILE for the

services where debug is failing. This can be done in the cluster orchestration system's configuration or

by setting it under Environment in Project Properties and enabling Inherit Project Environment in

Wing's cluster configuration. The value should be <stderr> for logging into the Messages tool in Wing

or a valid writeable file path on the container. Contact support@wingware.com for help intepreting this

output.

18.3. Containers Tool
The Containers tool, accessed from the Tools menu can be used to view and manage the status of

container instances and clusters. The popup selector at the top of this tool provides access to container

and/or cluster configurations, as defined for the currently open project.

Individual Containers

When individual container configurations exist, as created with Containers in the Project menu, the

Containers tool displays a list of these configurations and their status.

Note that when working with individual containers, Wing manages a single container instance for each

container configuration and starts and restarts the instance as needed for debugging, running tests, the

Python Shell, and OS commands.

Right-click on the list to force a container instance to restart, to rebuild the container image, or to edit the

container's configuration.

Clusters

When cluster configurations exist, Wing adds one item to the selector at the top of the Containers tool

for each cluster. The cluster view provides buttons for rebuilding the cluster, starting the cluster as a

whole, either with or without debug, or stopping the cluster if it is running.

The services in the cluster are shown in the cluster view, along with the image being used by the service

and its status. Use the checkboxes in the services list to select which ones should be debugged when

the whole cluster is started with debug enabled.

When a cluster view is shown in the Containers tool, the Options menu includes the option

Show Synthesized Containers. When enabled, the services list will include out-of-cluster container

instances that Wing has synthesized to run processes for the Python Shell, or any debug, testing, or

OS command configured to run out-of-cluster. These synthesized containers are hidden by default.

Working with Containers and Clusters

223

mailto:support@wingware.com

Consoles

To show a console of container and cluster activity, select Show Console from the container tool's

Options menu. The console may be resized and will update to display the activity for the container or

cluster selected in the Containers tool.

Working with Containers and Clusters

224

Remote Development
Wing Pro can work with Python code that is stored on a remote host, device, virtual machine, or

container in the same way that you work with code stored locally. This includes editing, debugging,

testing, searching, version control, running a Python shell, executing command lines, and project

management.

Remote development is supported to macOS and Linux (Intel or ARM). A detailed list of supported

remote host types is available in Supported Platforms. Wing Pro itself can be running on Windows,

Linux, or macOS.

The form of remote development documented here works directly with files and resources stored on the

remote host. If you are working with containers like those provided by Docker, then please see Working

with Containers for an approach that is more appropriate for cases where a container is built from locally

stored files.

How it Works
Wing's remote development support works by installing a remote agent that carries out operations on

the remote host. All communication to the remote host is over secure SSH tunnels, one to access the

remote agent and one for the debugger.

Remote Development

225

https://wingware.com/doc/install/supported-platforms
https://wingware.com/doc/proj/containers
https://wingware.com/doc/proj/containers

Files are stored on the remote host, and everything you do is run on the remote host, including running

tests, debugging, executing files and command lines, searching, and issuing version control operations.

The remote agent replaces the need for setting up file sharing to the remote host, manually establishing

SSH tunnels, defining file location maps, and other manual configuration steps required for remote

debugging in Wing 5 and earlier.

If you have used wingdbstub for manually configured remote debugging in the past, you can continue

to use that approach. Or you can switch to the new approach, which supports both launching your

remote debug process directly from Wing or continuing to use wingdbstub through the remote agent if

you need to launch your code from outside of the IDE.

If you prefer to store the master copy of your code on your local system, you can do this as well by

setting up file sharing to the remote host using Samba, NFS, or other method. However, you will still use

the remote agent to access the files on the remote system, rather than opening them directly from local

disk into the IDE.

Remote Development

226

https://wingware.com/doc/debug/manual-remote-debugging
https://wingware.com/doc/debug/remote-debugging

Configuration Overview
There are several steps in setting up remote development:

1) Set up SSH access to your remote system. In many cases this is already in place, using ssh or

plink on the command line. Wing can just invoke those command line tools, or you can configure Wing

to use its own built-in SSH implementation.

2) Define a remote host configuration to tell Wing about the remote host and how to access it.

3) Set up a remote project in much the same way as is done for local projects.

These steps are detailed in the next three sections.

19.1. Setting up SSH for Remote Development

Choosing an SSH Implementation

Wing can either use the same command line tools that you use outside of Wing to connect to your

remote systems, or you can use Wing's builtin SSH implementation to manage your secure SSH

connections.

Using OpenSSH or PuTTY Executables

Wing can invoke the OpenSSH or PuTTY command line tools to implement secure access to remote

systems. This is the default approach because it often makes the most sense to connect to remote

systems the same way that you already do outside of Wing.

The following commands are used: ssh and scp (with OpenSSH) or plink.exe and pscp.exe (with

PuTTY on Windows).

Wing looks for these tools on the PATH on the machine where it is running, and on Windows it also

searches for PuTTY and Cygwin-provided ssh (in that order) in common installation locations, if it

cannot find them on the PATH.

If Wing cannot find ssh or plink.exe it will fall back to using its built-in SSH implementation. If you

instead want to use a command line OpenSSH or PuTTY executable then you will need to add its

directory to your PATH or use Wing's Remote Development > SSH Implementation preference to

specify the full path of the command. If this is set, Wing also tries to find scp (or pscp.exe for PuTTY on

Windows) in the same directory as the specified ssh or plink.exe executable.

Using Wing's Built-in SSH Implementation

If you don't have OpenSSH or PuTTY on your system, or you want to avoid using them, you can ask

Wing to use its own built-in SSH implementation to connect to your remote systems. This is done by

setting Wing's Remote Development > SSH Implementation preference to Built In.

Remote Development

227

This implementation will try to use a private SSH key if present on your system, or you can specify one

in the remote host configuration you will create in Wing. If no private SSH key is found or specified,

Wing will attempt to authenticate with a login password.

Setting up SSH Access

To work with a remote host, you first need to set up secure SSH remote access outside of Wing Pro.

You can configure this in any of the following ways:

(1) Create and use an SSH key pair and store your SSH private key into an SSH user agent, so that

SSH connections can be established without repeatedly reauthenticating.

(2) Create and use an SSH key pair without an SSH user agent, by typing in your passphrase to unlock

your private key whenever it is needed.

(3) Log into the remote system via SSH by typing your login password as needed.

The configuration of the sshd server on the remote system controls whether or not SSH key pairs

and/or login passwords are allowed for authentication. This may depend on your company's security

policy.

If you choose option (1) you will authenticate outside of Wing, using your system's SSH user agent,

before establishing a connection to the remote host. Depending on your security configuration, your

system may store credentials and unlock your private key automatically at login, it may prompt to unlock

your key when it is used by Wing, or it may be necessary for you to load your key into the SSH user

agent manually before Wing tries to connect to the remote host.

If you choose option (2) or (3), Wing will prompt you for your private key passphrase or your login

password as needed, once per session. See How Wing Stores Passphrases below for details.

Note

Important: Option (1) is the only choice that works with OpenSSH on Windows. All three options

work in all other cases.

If you cannot already log into the remote host using one of these options, please refer to SSH Setup

Details before going any further.

How Wing Stores Passphrases

If you have configured your SSH client to require a passphrase to unlock your private key, or if you

password authenticate with the remote system, then Wing will prompt you to enter these as needed.

Remote Development

228

https://wingware.com/doc/proj/ssh-setup-details
https://wingware.com/doc/proj/ssh-setup-details

Passphrases are stored in memory so they can be reused as needed, for example to reconnect to the

remote host after the connection is dropped, or to start an SSH tunnel for a new debug session.

However, passphrases entered into Wing are never written to disk and thus must be re-entered each

time Wing is restarted.

In the event that Wing fails to connect to a remote host, cached passphrases are purged and must be

reentered. You can also force Wing to purge any cached credentials from the Remote Hosts dialog, by

right-clicking on the host and selecting Clear Cached Credentials.

If you don't want Wing to ask for passphrases, you will need to create an SSH key pair and load your

private key into an SSH user agent (option (1) above). This is described in SSH Setup Details.

Preventing Access to an SSH User Agent

To prevent Wing from ever trying to access an SSH user agent like OpenSSH's ssh-agent or PuTTY's

pageant, you can uncheck the Remote Development > Allow Access to SSH User Agent

preference.

When this is done, you may need to specify which SSH private key to use in your Wing remote host

configuration, and Wing will prompt for your SSH private key passphrase or login password, as needed.

Custom SSH Connection Responses

Some SSH configurations require additional responses on the command line, before the SSH

connection can be made. For example, you may be prompted to select a two-factor authentication

method.

In this case, you can configure your responses using Connection Responses under the Advanced tab

in your remote host configuration. Responses may either be automatic with fixed values that are given

in the configuration or collected from the user.

This is only relevant if you are not using Wing's built-in SSH implementation. See Configuring Remote

Hosts for details.

19.2. Configuring Remote Hosts
Remote hosts are configured using Remote Hosts in the Project menu, to tell Wing about the remote

host and how to connect to it. The following values may be specified in the three tabs of the remote host

dialog:

Identifier (required) is the unique short name used to reference this remote host configuration. It is

used in the URLs that reference resources on the remote host. If an existing remote host configuration's

ID is changed, Wing will track that change in all the remote host references stored in the project.

However, for shared remote host configurations, it's best not to change the identifier after it is used.

Remote Development

229

https://wingware.com/doc/proj/ssh-setup-details
https://wingware.com/doc/proj/remote-config
https://wingware.com/doc/proj/remote-config

Host Name (required) is the remote host's name or IP address. The the host name may include the

username, in the form username@hostname or username@ipaddress. This is needed if the user

name on the remote host is different from the user on the local host.

Python Executable is the Python to use for running Wing's remote agent and for debugging or

executing remotely. This can be left blank if Python can be found on the PATH. In this case, Wing first

looks for python3 and then falls back to using python. Otherwise, it can either be set to Activated Env

to enter a command that activates a virtualenv or Anaconda environment on the remote host (so that

python launches the correct Python), or it can be set to Command Line to specify the python to run.

In the latter case, it should be the name of a Python that can be found on the PATH, the full path to the

Python executable, or a path relative to the configured Base Directory (see below). When in doubt

about the location of the Python you want to use, run it outside of Wing and execute

import sys; print(sys.executable) to obtain the value to use. Note that if your activate script's full path

contains a space you will need to use Command Line instead. If your Python cannot be run without

certain environment variables, such as PYTHONHOME or PYTHONPATH, you will need to set up a

custom startup script as described in Specifying Environment for the Remote Python.

Base Directory is the directory on the remote host from which all file references are made, so that Wing

will show only the relative path from the configured base directory. By default, it is the remote user's

home directory. If this value is a partial path, it is interpreted to be relative to remote user's home

directory. When this value is changed on an existing configuration, Wing will try to find resources

relative to the new base directory. Note that ~ (tilde) in remote file names will be expanded as the

Base Directory when it is set.

Forward SSH Agent controls whether to forward the local SSH Agent (running on the host where the

IDE is running) to the remote process. When this is done, processes run on the remote host will be able

to authenticate using the local SSH Agent. This can be useful, for example, for pushing changes to a

revision control repository or running other commands that require an SSH connection that can be

authenticate using keys stored in your local SSH Agent. The default is to allow any external

configuration or defaults to take effect.

Forward X11 enables X11 display from the remote host to the host where Wing is running. On macOS

and Windows this requires installing and configuring an X11 server, such as XQuartz on macOS or

MobaXTerm on Windows. With OpenSSH this uses ForwardX11Trusted style forwarding. For finer

control of authentication options, leave this option disabled in Wing and instead set options in your

.ssh/config file. On Windows with PuTTY, this is done in the SSH > Auth > X11 section of host

configuration in PuTTY. On Windows with VNC, you may instead need to set DISPLAY=:1 in the

Environment in Project Properties. Forwarding X11 only works with OpenSSH and PuTTY. It is not

supported by Wing's built-in SSH implementation.

SSH Port sets the port on which OpenSSH is running on the remote host. The default is port 22 or

whatever port number is configured in .ssh/config if using OpenSSH. When using PuTTY, Wing

ignores port numbers configured by a saved session and always uses port 22 as the default. This works

Remote Development

230

https://wingware.com/doc/proj/remote-python-env

around a bug in PuTTY's pscp.exe that prevents remote agent installation when there is no PuTTY

saved session. As a result, any non-standard port number used by a host reached through PuTTY must

also be set here in Wing's remote host configuration.

Private Key specifies how Wing accessed the private key to use when connecting to the remote host.

The default is to use the SSH user agent (ssh-agent for OpenSSH or pageant for PuTTY). The key file

format must match the SSH implementation being used (usually .rsa or .pem for OpenSSH and .ppk for

PuTTY). With OpenSSH on Linux or macOS, the key file must be set to be readable only by the user

running Wing, for example with chmod 600 mykey.pem. If the key is encrypted, Wing will prompt for

the passphrase to decrypt it when it is used.

File Encoding is the default text encoding to use when opening or creating files on the remote host, if

the file does not explicitly set the encoding.

I/O Encoding is the text encoding to use for I/O to and from processes started on the remote host by

the debugger or OS Commands tool.

Install Dir is the full path to the installation location of Wing's remote agent on the remote host. Wing

will automatically install and update the remote agent as needed. Using the default for this setting is

recommended, since that will automatically add and remove remote agent installations according to

which versions of Wing you are using.

Manage SSH Tunnel controls whether Wing manages SSH tunnels to allow the remote agent and

debugger to connect from the remote host to the IDE. The default of Auto-configured establishes SSH

tunnels only if the remote host is not the same as the local host. This should be disabled for container

systems that automatically forward network traffic, such as Windows Subsystem for Linux (WSL), and it

must be enabled when connecting to isolated containers that appear to be the same as localhost, like

Vagrant. Important: When this option is disabled, network traffic between the IDE and the remote

system is entirely unencrypted, both for the remote agent and the debugger. This option should only be

disabled when working on the local host or if the underlying network is otherwise encrypted (for

example, by a VPN or a manually configured encrypted tunnel).

Remote Agent Port is the TCP/IP port to use for the remote agent on the remote end of the SSH

tunnel. When this is not specified, Wing uses a random port number determined on the IDE side of the

connection. This usually works but there is no guarantee that the port will also be available on the

remote end. When set, this property should be an unused unprivileged ephemeral port number (usually

between 1025 and 65535 on Windows, 32768 and 61000 on Linux, and 49152 and 65535 elsewhere).

When a fixed port is specified, Wing still uses a random port on the local end of connections, unless

Manage SSH Tunnel is also disabled. In that case, the same port number is used at both ends of the

connection, and this must match port mappings established by configuration made outside of Wing.

This option must be set to Use Random Port when using ControlMaster in the OpenSSH

configuration. Using a fixed port in that case may fail because the control master can prevent reusing

the port when the remote agent is restarted.

Remote Development

231

Remote Debug Port is the first TCP/IP port to use for the debugger on the remote end of the SSH

tunnel. By default, as for Remote Agent Port, a random port is used. When a value is specified, Wing

uses only ports starting with the given port, up to however many ports are needed for active debug

sessions and Python Shells. When a port is specified, Wing still uses a random port on the local end of

connections, unless Manage SSH Tunnel is also disabled. In that case, the same port number is used

at both ends of the connection, and this must match port mappings established by configuration made

outside of Wing. This option must be set to Use Random Port when using ControlMaster in the

OpenSSH configuration because that will hold onto previously used SSH tunnel ports indefinitely until

the remote host is restarted.

Connection Responses is a collection of custom responses to send to the SSH client during startup.

Each value gives a string to match within the final line of output received so far from the SSH client and

a response. The match string is applied using glob style matching with * and ? wildcards and [] groups

(for example card selector or *select*card[123]* or *continue[?]*). Matching is case-insensitive by

default. The match string may be preceded by case: to force case-sensitive matching. If the match

string is empty then the response is sent immediately when any output is seen from the SSH client

process. The response is either a string to send to the SSH process or [prompt:type] to collect the

value from the user, where :type is optional and may contain password to obscure the input and/or

nocache to prevent caching the value in memory for future connections (for example

[prompt:password-nocache]). When [prompt] is used, a default value may be entered after the

closing]. Each response is sent only once, even if the match is seen again, but multiple entries with the

same match are allowed and are used in the order given. This feature is disabled when using Wing's

built-in SSH implementation, since there are no non-standard interactions during SSH startup in that

case.

Installing and Running the Remote Agent

After a remote host is configured, Wing will try to connect to that host and install the remote agent if it is

not already present. If installation of the remote agent fails, you will be presented with diagnostic output

to send to support@wingware.com for help.

In very rare cases you may need to install the remote agent manually as described in Manually

Installing the Remote Agent. One such case can occur on Linux when uname reports a different

bittedness than is being used by Python. For example, uname may report a 64-bit system but Python

may be 32-bit.

Once installed, the remote agent is started or restarted as needed and will exit after a timeout period if it

is unused. The remote agent allows Wing to search, inspect, read, and write files and directories, create

or delete files, start debug or execution, run unit tests, invoke version control operations, run

Python Shell, invoke commands in OS Commands, and perform other actions on the remote host to

support the IDE's functionality. The necessary SSH tunnels for communication to the remote agent and

to support debugging files remotely are also managed automatically.

Remote Development

232

mailto:support@wingware.com
https://wingware.com/doc/proj/manual-remote-install
https://wingware.com/doc/proj/manual-remote-install

You can find a log of the remote agent's activities in the file remote-agent.log within the Settings

Directory on the remote host.

Shared Remote Hosts Configurations

Remote host configurations can either be stored in the project file or shared in the Settings Directory so

they can be accessed from all projects. To make a remote host configuration shared, check the Shared

box for that configuration in the remote host manager accessed from Remote Hosts in the Project

menu.

In general, a shared remote host configuration should be used when the project file is stored on the

remote host, and non-shared remote host configurations should be used when a project file is stored

locally but accesses resources on a remote host.

19.3. Setting up Remote Projects
There are two ways to work with remote hosts: (1) a locally stored project file can reference remote

resources, and (2) a project file stored on a remote host and opened remotely can transparently access

resources on that remote host.

Local Project Files

For projects stored locally that need to access resources on another host, the Python Executable

property in Project Properties is set to Remote to indicate that a project's Python resides on a remote

host. The remote host configuration that is selected is typically an unshared configuration, so that it is

stored in the project and will be accessible if the project is moved to another machine. Note, however,

that remote host configurations may be specific to an individual machine's network environment, and

may need to be edited on other hosts.

After Python Executable has been set, other properties that reference files, such as Initial Directory

and Python Path, will be resolved on the remote host. The Browse buttons for those properties will

browse the remote host, and paths will be stored as partial paths relative to the configured

Base Directory or as full paths if located outside of the Base Directory. Paths on remote hosts are

always expressed using forward slash / and will be converted as needed to the native separator on the

remote host.

The selected remote host will also be used for adding files and directories to the project. When a URL

for a remote file or directory is shown, it will be in the form ssh://hostid/path/to/file.py where hostid is

one of the configured Remote Host IDs.

A locally stored project can include files and directories on multiple hosts, by adding several hosts and

using Add Existing File and Add Existing Directory with each host.

Remote Development

233

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir

Remote Project Files

Projects stored on a remote host are opened with Open Remote Project in the Project menu. This

menu item is not shown unless you have already created a shared remote host configuration. Projects

stored like this are normal Wing projects and may also be opened locally, if Wing can also be run on the

remote host itself. In this case, Python Executable is simply set to Default, Command Line, or

Activated Env, as if the project were stored locally. Wing resolves all the resources in the project file in

a way that allows it to access them on the host where the project is stored.

If any remote host configurations are added to a remotely stored project, in order to access other

remote hosts, those configurations must work on the host where the IDE is running.

Creating Project Files

To set up a new project that accesses a remote host, use New Project in the Project menu and select

or create a remote host configuration from the Host menu. This will ask for the same fields described in

the previous section, for creation of a remote host configuration. If you previously created a similar

configuration, use the Recent Hosts drop down to copy that configuration.

Projects created from the New Project dialog are saved locally, which is the recommended approach

for storing remote projects.

Storing Project Files Remotely

In some cases, storing the project file on the remote host is useful. This can be done by first creating a

shared remote host configuration with the Remote Hosts dialog, accessed from the Debug menu, then

creating a new project using that shared configuration, and finally choosing

Save Project on Remote Host from the Project menu to store the project on the remote host.

Note that this menu item is not shown if you do not have any shared remote host configurations defined

because there is no way to later open the project if you do not have a shared locally stored remote host

configuration for that host.

A regularly created local project can also be moved to a remote host with Save Project

On Remote Host. Saving the project in this way moves only the project file itself, and assumes that

resources referenced by the project will also be available on the remote host, with the same relative

paths from the project file.

19.4. Remote Development Features
Once you have your remote project set up, you should be able to edit, debug, test, and otherwise work

with Wing in the same way as you in the local case.

Editing

Editing on a remote host is no different than editing on a local host, except that in some cases the

contents of a file may take a bit longer to appear when it is first opened.

Remote Development

234

Debugging

Debugging also works the same way as for local files. Wing will initiate the debug connection

automatically through its SSH tunnels to the remote host. File names will be shown in the form

hostid:filename but otherwise debugging works the same way as on the local host.

To debug on several different remote hosts, use Launch Configurations in the Project menu to create

debug configurations on each host. This is done in the same way as for Project Properties, by setting

Python Executable under the Python tab to Remote. Then set up a Named Entry Point that pairs a

file on that remote host with a launch configuration for the same remote host.

Whether you use the Project-wide settings or a launch configuration, the file you debug needs to be

stored on the selected remote host. You cannot debug a file from one host on another host using this

style of remote debug configuration.

When debugging on a remote host, the Debugger > I/O > Use External Console preference is ignored

and I/O always appears in the Debug I/O tool. If a remote process needs to run in a different console,

start it there and initiate debug from your code as described in Debugging Externally Launched Remote

Code.

The Debugger > Diagnostics preferences are also not used when debugging on a remote host. The

following environment variables can be used instead to collect debugger diagnostics. These should only

be used at the request of Wingware Technical Support, and the resulting log file can be emailed along

with your bug report to support@wingware.com:

WINGDB_LOGFILE can be used to set up a diagnostics log file when trouble-shooting problems with

the debugger. The environment variable should be set to the full path of the log file on the remote host.

WINGDB_LOGVERYVERBOSE selects whether to print extremely verbose low-level logging. This is

almost never needed and will drastically slow down debugging.

Debugging Externally Launched Code

If you need to start your debug processes from outside Wing, as for services running on a remote host,

you can debug those processes by importing wingdbstub. When you install the remote agent, Wing

writes a correctly configured copy of wingdbstub.py into the remote agent's installation directory. To

use it, follow the instructions in Debugging Externally Launched Remote Code.

Python Shell

Once you have set Python Executable in Project Properties to a remote host, you can restart the

Python Shell from its Options menu to launch a shell that is running on the remote host.

Testing Remotely

If remote files have been added to the Testing tool the unit tests can be run or debugged as if they are

on the same host as the IDE.

Remote Development

235

https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/debug/remote-debugging

Version Control

If remote files are checked into a version control system, Wing should identify this as it does for local

files and include the appropriate tools in the Tools menu. Version control features work the same way

for remote files as for local files. However, it may be necessary to configure version control for the

remote host using the VCS tab in Project Properties.

Operations that access the version control repository (such as push and pull) may not work due to lack

of access to the necessary SSH keys. There are two possible solutions for this:

1. If the remote VCS command tries to display a password collection dialog, you can turn on the

Forward X11 option in your remote host configuration, so that the dialog will appear on the

machine where Wing is running. On Windows and macOS this requires installing an X11 server on

the local machine.

2. You can forward the local host's SSH agent credentials to the remote host by adding

ForwardAgent yes to your .ssh/config on the machine where Wing is running. It's best to limit

this to the hosts that require it and you should do it only if you understand the security implications.

OS Commands

The OS Commands tool also supports working remotely with the Hostname property under the

Environment tab of Command Line style commands. For Python File and Named Entry Point style

OS Commands, the host name is inferred from the location of the file being executed.

19.5. Remote Agent User Settings
The remote agent uses the same default location for the Settings Directory that the IDE does. In some

cases, such as on some embedded devices, this cannot be used because the file system is read-only.

In this case, the remote agent will fall back on using a directory named user-settings inside of the

WINGHOME specified in the remote host configuration. The user-settings directory will be created

automatically after the remote agent has been installed.

19.6. Specifying Environment for the Remote Python
Wing uses any Environment you specify in Project Properties to execute, debug, or test your code.

But this environment cannot be used when running the remote agent, since it is started in the

environment provided by ssh or plink.exe.

As a result, if the Python installation on your remote host needs certain environment variables in order

to run, it may fail to start when Wing attempts to run the remote agent with it.

To work around this, create a shell script that sets the necessary environment and starts up Python. For

example, if your Python needs PYTHONHOME and PYTHONPATH to be set you might write

something like this:

Remote Development

236

https://wingware.com/doc/install/user-settings-dir

#!/bin/bash
export PYTHONHOME=/
export PYTHONPATH=/lib/python2.7
python "$@"

Then chmod +x the above script so it is executable and set the Python Executable in your remote

host configuration to its full path.

19.7. Manually Installing the Remote Agent
If for some reason you cannot use Wing's automated installation of the remote agent, for example if

Wing does not recognize the type of the remote system, you can install it manually as follows.

(1) Find the Debugger Package most closely matching your remote host at

https://wingware.com/downloads/wing-pro/8.3.3.0/debugger, copy it to the remote host, and unpack it.

The resulting directory can be renamed if desired.

You can unpack it with tar xf wing-debugger-* or tar xjf wing-debugger-*. Note that using tar xzf

does not work because the package is compressed with bzip2 and not gzip.

(2) Run chmod +x wingdb in the remote agent install directory to make that file executable

(3) Set Installation Directory under the Advanced tab in your remote host configuration to match the

remote agent install location (this should be the full path of the directory that contains remoteagent.py)

If you plan to use wingdbstub to initiate debug from outside of Wing, as described in Debugging

Externally Launched Remote Code you'll also need to:

(4) Copy wingdbstub.py from your Wing installation to the remote host and place it in the remote agent

install directory (same directory as remoteagent.py)

(5) Set WINGHOME in wingdbstub.py to the full path of the remote agent install directory

(6) Set kWingHostPort in wingdbstub.py to localhost:50050 (assuming default debug port settings)

Optionally, if want to preauthorize debug connections from the remote host:

(7) Copy the wingdebugpw file from the Settings Directory on the host where the IDE is running into

the remote agent install directory on the remote system.

Once this is done, Wing should be able to probe and use the remote host from Remote Hosts in the

Project menu.

Running on Unsupported OSes

These instructions should work on any system that has Python installed. If the remote host is not one

that Wing fully supports, you will still be able to edit, search, and manage files, run unit tests, execute

version control operations, and run OS commands.

Remote Development

237

https://wingware.com/downloads/wing-pro/8.3.3.0/debugger
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/install/user-settings-dir

However, debugging or running a remote Python Shell will not work on unsupported OSes unless you

compile the debugger core yourself (requires signed NDA). Or contact us to request support for your

device.

19.8. SSH Setup Details
This guide will help you set up secure access to remote hosts that you want to use with Wing Pro. If you

already know how to set up access to a remote system, the process is the same for Wing and you can

skip this section.

19.8.1. Working With OpenSSH

Use these detailed instructions to set up SSH access with OpenSSH from a host running Linux, macOS.

This instructions also can be used on Windows using Cygwin, Git Bash, or Windows 10's native

OpenSSH implementation.

The necessary tools for SSH access are already installed on Linux and macOS systems. They are also

included in Cygwin on Windows if the openssh package is selected at installation time, and they come

with Git Bash, which is actually a scaled down version of Cygwin. Newer versions of Windows 10 also

make OpenSSH available as an optional feature that can be enabled as described in Enabling Windows

10 OpenSSH Client.

Using Login Passwords

If you wish to authenticate using your password on the remote system, you can simply connect as

follows and enter your password when prompted:

ssh username@remotehost

In this case, you don't need any further configuration to prepare access to the remote host before using

it with Wing. Wing will prompt you for your password as needed.

Note

Important: On Windows, password authentication only works with PuTTY. If you are using

OpenSSH on Windows you must instead use an SSH key pair and SSH user agent. Password

authentication does work when using PuTTY on Windows, and with OpenSSH on Linux and

macOS.

Remote Development

238

https://wingware.com/pub/wingide/support/source-non-discl.pdf
mailto:support@wingware.com
https://wingware.com/doc/proj/ssh-win10-install
https://wingware.com/doc/proj/ssh-win10-install

If using passwords does not work because of the way that sshd is configured on the remote system,

because you are using OpenSSH on Windows, or if you wish to increase the security of your

connection, then you can instead generate and use an SSH key pair, as described below.

Generating an SSH Key Pair

If you do not already have an SSH key pair, you can generate one with ssh-keygen as follows on the

system where you will be running Wing Pro. On Linux or macOS or when using Cygwin or Git Bash on

Windows, you may first need to make sure that the directory .ssh exists in your home directory and that

its permissions are set in a way that will keep your private key safe:

mkdir ~/.ssh
chmod 700 ~/.ssh

Then you can generate your SSH key pair with the following command:

ssh-keygen

Use the default settings and enter a passphrase for encrypting the private key. This will produce id_rsa

(private key file) and id_rsa.pub` (public key file) in your .ssh directory, which is by default in your home

directory.

Moving the SSH Public Key to the Remote Host

A copy of the public key needs to be transferred to the remote host you want to connect to and added to

~/.ssh/authorized_keys. The following is one way to accomplish this:

ssh username@remotehost "mkdir .ssh; chmod 700 .ssh"
ssh username@remotehost "sed -i -e '$a\' .ssh/authorized_keys"
scp ~/.ssh/id_rsa.pub username@remotehost:.ssh/pub.tmp
ssh username@remotehost "cat .ssh/pub.tmp >> .ssh/authorized_keys; rm .ssh/pub.tmp"

The first line above is only needed if you do not already have the directory ~./ssh on the remote system.

The second line is only needed if you already have ~.ssh/authorized_keys on the remote system, to

ensure that it ends in a newline so your added key is on its own line. On some systems, the \ on this line

must be written \ so the local shell does not try to process it as an escape character.

The third and fourth lines transfer the public key to the remote host and add it as a key that is authorized

to log in without entering a password.

You should now be able to log into the remote system as follows:

ssh username@remotehost

Remote Development

239

If you did not use the default naming for your SSH key pair, you may instead need to point ssh to your

key as follows:

ssh -i /path/to/key username@remotehost

You will be prompted for the passphrase to unlock your private key before the connection can be made.

At this point you can start configuring your remote host inside Wing, and it will prompt you for the

passphrase as needed. However, this does not work if using OpenSSH on Windows. In that case, or if

you want to avoid Wing prompting you for the passphrase, then you can load your private key into an

SSH user agent, as described below.

Loading the SSH Private Key into the User Agent

Using the SSH user agent to store your private keys allows you to enter your passphrase to unlock the

key just once. After that ssh can access the key as needed without having to prompt you again each

time you connect.

To do this, run ssh-add on the host where the IDE is running. You will be prompted for the passphrase

to descrypt your private key, if it is encrypted, and then the key will be loaded into the user agent.

If your SSH key isn't the default id_rsa then you can add the path to the key to the command line as

follows:

ssh-add /path/to/key

On macOS Sierra, you will need to add the following to your ~/.ssh/config to tell ssh to communicate

with Keychain Access:

Host *
 UseKeychain yes
 AddKeysToAgent yes

Later versions of macOS seem to do this automatically. You may want to open Keychain Access to

inspect what keys it has loaded and optionally set usage restrictions for the key with Get Info from the

File menu. Depending on how your key is configured in Keychain Access you may need to unlock your

key again or run ssh-add on the command line each time you log in.

On Linux if ssh-agent is not running by default, , run ssh-agent bash followed by ssh-add and then

launch Wing from that command line with wing8 so it inherits the necessary environment. You will need

to redo this each time you log into your Linux system.

On Cygwin you will first need to run ssh-agent bash and then ssh-add because ssh-agent is not

running by default.

Now you should be able to connect to the remote host without having to enter a password as follows:

Remote Development

240

ssh username@remotehost

Trouble-Shooting

The most common cause of problems in making this work is misconfiguration of OpenSSH on the

remote host. OpenSSH will entirely ignore your .ssh directory if you do not chmod 700 .ssh to make its

contents accessible only by its owner.

The .ssh directory must be in the home directory of the account used to connect to the remote host, and

must be owned by that user. The home directory on the remote host is typically referred to as ~ and will

be printed by echo ~ on the remote host.

In addition, the authorized_keys file must contain \n line delimiters and not Windows style \r\n

newlines.

The commands for moving your public key to the remote system, given earlier above, take care of each

of these requirements. If you transfered the key to the authorized_keys file some other way (for

example, through a file share) then you will need to make sure that these requirements are met.

In some custom environments, Wing may not be able to gain access to the SSH user agent because its

environment does not contain the necessary environment variables. In this case, type set | grep SSH_,

copy the SSH_AGENT_PID and SSH_AUTH_SOCK lines, and paste them into the Environment in

Wing's Project Properties. You will need to redo this each time you restart the system where Wing is

running, or if you restart ssh-agent, since the contents of the environment variables will change.

For more detail on solving SSH configuration problems, see How to Troubleshoot SSH Authentication

Issues and How to Troubleshoot SSH Connectivity Issues.

Using a Non-Default SSH Port

If your remote server is running SSH on a non-default port, then you will also need to edit your SSH

configuration on the host where the IDE is running to set that port. This is done in ~/.ssh/config with an

entry that looks like this:

host myhost.mydomain.com
 port 8022

19.8.2. Working With PuTTY

Use the following instructions to set up SSH access from Windows using Putty.

If you don't already have it, download and install the complete suite of tools provided by PuTTY. You will

need putty.exe, plink.exe, pscp.exe, and puttygen.exe. We recommend using the MSI installer, so

you have all the necessary tools placed in a location where Wing can find them.

Remote Development

241

https://www.digitalocean.com/docs/droplets/resources/troubleshooting-ssh/authentication/
https://www.digitalocean.com/docs/droplets/resources/troubleshooting-ssh/authentication/
https://www.digitalocean.com/docs/droplets/resources/troubleshooting-ssh/connectivity/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Logging in with Passwords

If you wish to authenticate using your password on the remote system, you can simply connect as

follows and enter your password when prompted:

plink username@remotehost

In this case, you don't need any further configuration to prepare access to the remote host before using

it with Wing. Wing will prompt you for your password as needed.

If using passwords does not work because of the way that sshd is configured on the remote system, or

if you wish to increase the security of your connection, you may instead want to generate and use an

SSH key pair as described below.

Generating an SSH Key Pair

If you don't already have an SSH key set up, you will need to generate one by running puttygen.exe,

pressing the Generate button, providing the requested random input by moving your mouse over the

blank area, entering and confirming a passphrase, and then saving both the public and private key files.

The private key file is typically named id_rsa.ppk and the public key file is id_rsa.pub.

Moving the SSH Public Key to the Remote Host

Next paste the contents of the area labeled Public key for pasting into OpenSSH

authorized_keys file in the puttygen window into a file that you will transfer to the remote host to add it

to ~/.ssh/authorized_keys. If you didn't just generate a new key, you can instead start puttygen and

load your existing key with the Load button. Then you can right-click to select all and then copy from the

puttygen.exe window.

You may have to create the directory ~/.ssh on the remote system and/or the authorized_keys file

within it. Note that the directory ~/.ssh must be readable only by the login user and no one else.

Otherwise ssh refuses to use it. You can make sure it has the correct permissions with

chmod 700 ~/.ssh.

Once this is done you should be able to connect to your remote system with:

plink -i \path\to\ide_rsa.ppk username@remotehost

You will be prompted for the passphrase to unlock your private key before the connection can be made.

To avoid being prompted each time you connect, you can load your private key into PuTTY's SSH user

agent as described below. This is not, however, a requirement for you to be able to use your SSH key to

connect Wing to the remote host. Wing will prompt for the passphrase as needed.

Remote Development

242

Loading the SSH Private Key into the User Agent

Using the SSH user agent to store your private keys allows you to enter your passphrase to unlock the

key just once. After that ssh can access the key as needed without having to prompt you again each

time you connect.

To do this, run pageant.exe on Windows, right click on the small icon that appears in the lower right of

your screen, select Add Key, and select your id_rsa.ppk private key file. The private key file can also

be passed to pageant.exe on the command line. You will be prompted to enter the key's passphrase, if

it is encrypted.

Note that you may need to restart pageant and load your key into it each time you restart Windows or

log out and back in. Be sure to run pageant as the same user that is running Wing. For example, if run

in a console that is running as Administrator then Wing will not be able to connect to pageant.

Now you should be able to connect to the remote host without having to specify the private key or enter

a password as follows:

plink username@remotehost

Trouble-Shooting

The most common cause of problems in making this work is misconfiguration of OpenSSH on the

remote host. OpenSSH will entirely ignore your .ssh directory if you do not chmod 700 .ssh to make its

contents accessible only by its owner.

The .ssh directory must be in the home directory of the account used to connect to the remote host, and

must be owned by that user. The home directory on the remote host is typically referred to as ~ and will

be printed by echo ~ on the remote host.

In addition, the authorized_keys file must contain \n line delimiters and not Windows style \r\n

newlines.

For more detail on solving SSH configuration problems, see How to Troubleshoot SSH Authentication

Issues and How to Troubleshoot SSH Connectivity Issues.

Using a Non-Default SSH Port

If your remote server is running SSH on a non-default port, then you will also need to edit your SSH

configuration on the host where the IDE is running to set that port. This is done by running putty,

entering a host name or ip address and the port number to use, and saving that host name as a saved

session (all on the initial Session tab). Once this is done, any connection to that host name, also if

made from the command line or by Wing, will use the configured port.

Remote Development

243

https://www.digitalocean.com/docs/droplets/resources/troubleshooting-ssh/authentication/
https://www.digitalocean.com/docs/droplets/resources/troubleshooting-ssh/authentication/
https://www.digitalocean.com/docs/droplets/resources/troubleshooting-ssh/connectivity/

19.8.3. Working With Wing's Built-In SSH Implementation

If you don't have OpenSSH or PuTTY on your system, you can still set up remote access using Wing's

built-in SSH implementation. You will be able to authenticate using either SSH keys or login passwords.

SSH keys can be used by loading them into an SSH agent, by specifying a key in your remote host

configuration, or by letting Wing search for keys.

If you plan to use SSH public/private key pairs for authentication (rather than login passwords), then you

will need to generate those keys outside of Wing first. Wing does not provide a way to create new SSH

keys.

Configuration

If you do not have OpenSSH or PuTTY on your system, Wing should automatically fall back onto its

own SSH implementation. Otherwise, if you want to force Wing to use its built-in SSH implementation,

you will need to set Wing's Remote Development > SSH Implementation preference to Built In.

Then open the Remote Hosts dialog from the Project menu and create a new remote host

configuration. Give it a name in the Identifier field, enter the Hostname as either the ip address,

hostname, or host specification in username@remotehost form.

Using Login Passwords

If you wish to authenticate using your password on the remote system, you should now already be able

to connect to the remote system. When you save your remote configuration, Wing will attempt to

connect to the remote system, prompting you for the login password as needed. As part of this process,

Wing will install its remote agent on the remote host.

You can retry this connection from the Remote Hosts dialog by right-clicking on your remote host

configuration and selecting Probe Remote Agent.

Using SSH Key Pairs

Wing's built-in SSH implementation can also use SSH key pairs to authenticate with the remote host.

You'll be able to access keys stored in an SSH agent, specify a particular key to use, or allow Wing to

search for keys.

However you store and access your SSH private key, you will first need to move the corresponding

public key to the remote host, if you have not already done so. This is described in detail in

Moving the SSH Public Key to the Remote Host in Working with OpenSSH.

Once this is done, you should be able to save your remote host configuration in Wing and it will attempt

to connect to the remote system, prompting you for the private key passphrase, if is is encrypted. As

part of this process, Wing will install its remote agent onto the remote host.

You can retry this connection from the Remote Hosts dialog by right-clicking on your remote host

configuration and selecting Probe Remote Agent.

Remote Development

244

https://wingware.com/doc/proj/ssh-setup-details-openssh

Using an SSH Agent

Before trying any other keys, Wing will try to access OpenSSH's ssh-agent or PuTTY's pageant, if either

is running and has private keys loaded into it. This is done before trying to use a specific SSH private

key, before searching for keys, and and before falling back on password authentication.

You can prevent Wing from trying to use any SSH agent by unchecking the Remote

Development > Allow Access to SSH User Agent preference.

Specifying or Searching for Keys

You can specify a particular SSH key to use by setting Private Key under the Options tab of your

remote host configuration to the full path of the private key.

If no key is specified there, Wing looks for SSH keys in ~.ssh (and on Windows in ssh) in your home

directory. The following default key names are supported: id_rsa, id_dsa, id_ecdsa, and id_ed25519.

Wing tries to use all the private keys that it finds in that list.

Host Keys

Wing's builtin SSH implementation stores host keys in .ssh/known_hosts below your home directory.

The first time you connect to a host that is not the same host as where the IDE is running, you will be

prompted to accept its host key.

An exception is made for any IP address that belongs to the local host. For those, Wing stores the host

key automatically without prompting.

If the host key for any host (including local IP addresses) changes at a later date so that it no longer

matches the stored key, then Wing will warn and refuse to connect to that host until you remove the old

host key from .ssh/known_hosts. This is a security measure aimed at making "man in the middle"

network security attacks more difficult.

Note that Wing's builtin SSH implementation ignores any more permissive OpenSSH configuration you

may have with respect to host keys and instead always prompts to accept non-local keys and always

blocks connections when a host key fails to match.

Limitations

Wing's built-in SSH implementation has some limitations:

(1) There is no way to generate an SSH key pair from Wing. You will need to do this outside of Wing

using OpenSSH.

(2) Forwarding X11 is not supported. If you need to forward X11 connections from the remote host, you

will need to use OpenSSH or PuTTY as your SSH implementation.

If any of these are a problem for you, please email support@wingware.com.

Remote Development

245

mailto:support@wingware.com

19.8.4. Enabling Windows 10 OpenSSH Client

Newer versions of Windows 10 offer OpenSSH as an optional feature.

To enable Windows 10 OpenSSH, open the Settings application and go to the Apps > Apps &

features page. Click on Manage optional features and use Add a feature to add OpenSSH Client.

This installs OpenSSH into \Windows\System32\OpenSSH on your system drive. You may need to

restart Wing before it finds it the installation, and you may need to log out and back in again before you

can use it from the command line.

Once OpenSSH is installed, you will need to enable ssh-agent separately if you plan to use it. To do

that, open a Command Prompt as Administrator by typing cmd into Windows' search area and right

clicking on the Command Prompt result to select Run as Administrator. Then type the following at

the prompt:

sc config ssh-agent start= demand

After this is done you can close the Command Prompt that is running as Administrator and proceed

configuring SSH as described in Working with OpenSSH.

Remote Development

246

https://wingware.com/doc/proj/ssh-setup-details-openssh

Scripting and Extending Wing
Wing Pro and Wing Personal provide an API that can be used to extend the IDE's functionality with

scripts written in Python. Scripts add to the IDE's command set, which is accessible from menus, the

toolbar, and key bindings.

Wing finds and loads scripts at startup, and reloads them when they are edited within Wing and saved

to disk. The API allows scripts to access the editor, debugger, project manager, search tools, source

code analysis engine, asynchronous task manager, and a range of other functionality. The scripting API

also provides access to all of Wing's preferences and commands.

Simple scripts can be developed and debugged using error messages displayed in the Scripts channel

of the Messages tool. It is also possible to configure a project that supports auto-completion and

integrated documentation for the scripting API, and that allows debugging extension scripts within Wing.

More advanced scripting, including the ability to add new tools, is available as well.

20.1. Scripting Example Tutorial
Trying a simple example script is the best way to get started with Wing's scripting API. The following

quick tutorial will take you through the process.

Creating an Extension Script

User-defined scripts are usually placed inside a directory named scripts located inside the Settings

Directory. The scripts sub-directory needs to be created if it does not already exist.

Try adding a simple script now by pasting the following into a file called test.py inside the scripts

directory:

import wingapi
def test_script(test_str):
 app = wingapi.gApplication
 v = "Product info is: " + str(app.GetProductInfo())
 v += "\nAnd you typed: %s" % test_str
 wingapi.gApplication.ShowMessageDialog("Test Message", v)

Then select Reload All Scripts from the Edit menu. This is only needed the first time a new script file is

added, in order to get Wing to discover it. Afterward, Wing automatically reloads scripts whenever they

are saved to disk from the IDE.

Executing the Script

Try executing the script by selecting Command by Name in the Edit menu. This displays an entry area

at the bottom of the window, where you can type test-script and then press the Enter key. Since the

script has an argument without a default value, Wing will collect that in the same entry area at the

Scripting and Extending Wing

247

https://wingware.com/doc/preferences/index
https://wingware.com/doc/commands/index
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir

bottom of the IDE window. Type a string and then press Enter. The script will pop up a modal message

dialog containing the text that you typed.

Of course this is not how you will usually invoke a script. Instead, scripts be assigned to a key binding or

added to a menu, as described in the next section.

Try assigning a key binding now to the command test-script with the User Interface >

Keyboard > Custom Key Bindings preference. For details on adding key bindings in Wing, see Key

Bindings.

Editing the Script

In order to place your script in a new menu in the menu bar, add the following after the function

definition:

test_script.contexts = [wingapi.kContextNewMenu("Scripts")]

As soon as you save this change, a menu Scripts should appear in the menu bar with one item

Test Script. This illustrates how scripts are auto-reloaded as they are saved from Wing. For more

information on adding scripts to menus, see Adding Scripts to the GUI.

Next, make an edit to the script that introduces an error into it. For example, change import wingapi to

import wingapi2. Save the script and Wing will show a clickable traceback in the Scripts channel of

the Messages tool.

Auto-Completion and Integrated Documentation

With some additional configuration, it is possible to enable auto-completion, auto-invocation, integrated

documentation, and goto-definition for the scripting API. This is done as follows:

(1) First create a new project from the Project menu with the default settings.

(2) Next locate the src directory inside the Install Directory shown in Wing's About box. This is the

directory that contains wingapi.py.

(3) Finally, add the full path of the directory found in step (2) to the Python Path in Project Properties.

Once this is done auto-completion in the editor, documentation in the Source Assistant, and

goto-definition should all work when you import wingapi and work with its contents. In Wing Pro,

Find Uses and the auto-invocation auto-editing operation will also work for the API.

Debugging Extension Scripts

With some additional project setup, it is also possible to debug scripts using Wing. This is a much richer

way to develop extension scripts than clicking on tracebacks in the Messages tool. See Debugging

Extension Scripts for details.

Other Example Scripts

Scripting and Extending Wing

248

https://wingware.com/doc/custom/key-equivalents
https://wingware.com/doc/custom/key-equivalents
https://wingware.com/doc/scripting/gui-contexts
https://wingware.com/doc/edit/source-assistant
https://wingware.com/doc/edit/auto-editing
https://wingware.com/doc/scripting/debugging
https://wingware.com/doc/scripting/debugging

Wing ships with many other example scripts. These are in scripts inside the Install Directory listed in

Wing's About box. The most relevant examples for simple scripting can be found in

editor-extensions.py. This shows how to access and alter text in the current editor, among other

things.

Other extensions scripts are available in scripts in the contributed extensions repository.

20.2. Overview of the Scripting Framework
Scripts are Python modules or packages containing one or more Python functions which implement the

script's functionality. Any top-level function with a name that starts with a character other than

underscore _ is added to Wing's command set, so it becomes accessible from menus, key bindings,

and the toolbar. Scripts can also use the scripting API to hook into IDE functionality in other ways, for

example to perform an action every time an editor is saved to disk.

When Wing starts up, it will search for scripts in all directories in the path configured with the

IDE Extension Scripting > Search Path preference. By default this path contains a directory named

scripts within the Settings Directory. Scripts can also be placed in scripts inside the Install Directory

shown in Wing's About box, but this is not recommended since it is harder to manage across updates

of Wing.

Scripts can be modules named *.py and packages, which are directories that contain a file named

__init__.py file and any number of other *.py files or sub-packages. For packages, Wing loads only the

modules that are imported in the __init__.py file.

Script files within each directory are scanned in alphabetical order. When multiple script-defined

commands with the same name are found, the command that is loaded last overrides any loaded earlier

under the same name. However, scripts cannot replace internally defined commands, as detailed

below.

Naming Commands

Commands added by scripts can be referred to either by their short name or their fully qualified name

(FQN).

The short name of a command is the same as the function name, optionally with underscores replaced

by dashes (cmdname.replace('_', '-')).

The FQN of a command always starts with .user., followed by the module name, followed by the short

name.

For example, if a function named do_it is defined inside a module named xpext.py, then the short

name of the command created will be do-it and the FQN will be .user.xpext.do-it.

Overriding Internal Commands

Scripting and Extending Wing

249

https://github.com/wingware-dev/wing-contrib
https://wingware.com/doc/install/user-settings-dir

Wing will not allow a script to override any of the commands documented in the Command Reference. If

a script is named the same as a command in Wing, it can only be invoked using its fully qualified name.

This is a safeguard against breaking the IDE by adding a script.

One implication of this behavior is that a script may be broken if a future version of Wing ever adds a

command with the same name. This can generally be avoided by using appropriately descriptive and

unique names and/or by referencing the command from key bindings and menus using only its fully

qualified name.

Execution Context

Scripts are run in the same process space as the IDE, using Wing's private Python 2.7 interpreter.

Because they are in the same process space, scripts have the potential for breaking the IDE. For

example, a script entering into an infinite loop will lock up Wing.

To avoid this, script-provided functionality must be written within the framework for cooperative

asynchronous multi-tasking that Wing uses internally. In this approach, lengthy computations are split

into small units that are interleaved with the main event loop. This is supported in the scripting API by

InstallTimeout in CAPIApplication. This calls a given function periodically until it is removed with

RemoveTimeout, until it returns a value where bool(value) is False, or until the script that installed it is

reloaded.

This example implements a command that counts down from 10 in the status area at the bottom of the

screen:

import wingapi
def start_counting():
 counter = [10]
 def count():
 counter[0] -= 1
 wingapi.gApplication.SetStatusMessage("Time left: {}".format(counter[0]), timeout=1)
 return counter[0]
 wingapi.gApplication.InstallTimeout(1000, count)

To interact asynchronously with a sub-process, use this approach in combination with

AsyncExecuteCommandLine*. Here is an example that runs ping for ten seconds and shows status

messages at the bottom of the IDE window:

import wingapi
import sys
import time
def process_example():
 cmdline = ['ping', '-t', '9', 'wingware.com']
 handler = wingapi.gApplication.AsyncExecuteCommandLine(cmdline[0], None, *cmdline[1:])
 timeout = time.time() + 10
 def poll(timeout=timeout):
 kill = time.time() > timeout

Scripting and Extending Wing

250

https://wingware.com/doc/commands/index

 if kill or handler.Iterate():
 stdout, stderr, err, status = handler.Terminate(kill)
 if kill:
 msg = "Time out"
 elif err is not None:
 msg = "Process failed to start; exit_status={}, errno={}".format(status, err)
 else:
 msg = "Process exited; stdout len={}; stderr len={}".format(len(stdout), len(stderr))
 wingapi.gApplication.SetStatusMessage(msg)
 return False
 else:
 if handler.stdout:
 msg = "Last output line: {}".format(handler.stdout[-1].splitlines()[-1])
 else:
 msg = "No output yet"
 wingapi.gApplication.SetStatusMessage(msg)
 return True

 wingapi.gApplication.InstallTimeout(100, poll)

For additional examples, see the scripts folder inside the Install Directory listed in Wing's About box.

Signals

Another important concept in writing extension scripts is the use of signals to control when

script-provided functionality is implemented. Each of the classes in the scripting API provides signals

that notify of different events in the user interface. Signals may be connected to handlers that are called

when the signal is emitted with the defined set of parameters for that signal.

For example, CAPIApplication emits project-open(filename) when a new project has been opened.

The signal can be connected to a handler function as follows:

import wingapi
def _proj_open(filename):
 wingapi.gApplication.SetStatusMessage("Project opened: {}".format(filename))
gSignalID = wingapi.gApplication.Connect('project-open', _proj_open)

Once this script is loaded into Wing, _proj_open will be called every time a new project is opened. This

example displays message in the status area at the bottom of the IDE window. The message includes

the filename, which is the single parameter sent with this particular signal.

Disconnecting from the signal later would be accomplished as follows for the above example:

wingapi.gApplication.Disconnect(gSignalID)

Signals for each class are documented in wingapi.py. For additional examples, see the scripts folder

inside the Install Directory listed in Wing's About box.

Reloading Scripts

Scripting and Extending Wing

251

Wing watches script files and automatically reloads them when they are edited inside Wing and saved

to disk. The only exception to this occurs when a new script is added. In this case, Wing will not load the

new script until Reload All Scripts in the Edit menu is executed or the IDE is restarted.

Reloading will not work for any file that sets _ignore_scripts at the top level, or for modules outside of

the script path. For details on how reloading works, see Advanced Scripting.

20.3. Scripting API
Wing's formal scripting API consists of several parts:

1. The contents of the wingapi.py file in src inside the Install Directory listed in Wing's About box.

Scripts gain access to the API with import wingapi. See the API Reference for details or work

directly with wingapi.py as described under Auto-Completion and Integrated Documentation in the

Scripting Example Tutorial.

2. The portions of the wingutils.datatype and guiutils.formbuilder modules that are documented in

Argument Collection.

3. All of the documented commands which can be invoked using ExecuteCommand() in

wingapi.gApplication. Keyword arguments can be passed to commands that take them, for

example ExecuteCommand('replace-string', search_string="tset", replace_string="test")

4. All of the documented preferences which can be read and changed using GetPreference() and

SetPreference() in wingapi.gApplication.

5. The standard library modules from Python.

Advanced scripts may also "reach through" the API into Wing internals. However, this requires reading

Wing's source code and no guarantee is made that internals will remain unchanged or will change only

in a backward compatible manner.

20.4. Script Syntax
Scripts are syntactically valid Python with certain extra annotations and structure that are used by Wing

to determine which scripts to load and how to execute them.

20.4.1. Script Attributes

The scripting API uses function attributes as a way to annotate script functions that define a new

command for the IDE. These are used to define the type of arguments the command expects, command

availability, the display name and documentation for the command, and the contexts in which the

command should be made available in the GUI.

The following function attributes may be set. Each one can be a value or a callable object that returns

the value:

Scripting and Extending Wing

252

https://wingware.com/doc/scripting/advanced
https://wingware.com/doc/scripting/api-reference
https://wingware.com/doc/scripting/example
https://wingware.com/doc/scripting/arginfo
https://wingware.com/doc/commands/index
https://wingware.com/doc/preferences/index

arginfo defines the argument types for any arguments passed to the command. This is used by

Wing to drive automatic collection of argument values from the user. When this is missing, all

arguments are treated as strings. See Argument Collection for details.

available defines whether or not the command is available. If missing, the command is always

available. If set to a constant, bool(available) defines availability of the command. If set to a

callable object, it is invoked with the same arguments as the command and the return value

determines availability of the command.

label provides the label to use when referring to the command in menus and elsewhere. When

omitted, the label is derived from the command name by replacing underscores with a space and

capitalizing each word (cmdname.replace('_', ' ').title())

contexts lists the GUI contexts the which the command should appear. See Adding Scripts to the

GUI for details.

doc is the documentation for the command if for some reason a docstring in the function definition

can't be used.

flags is a dictionary of options that control behavior of the script. Currently the only option is

force_dialog_argentry which may be set to True to collect arguments for the script in a dialog,

rather than at the bottom of the IDE window.

plugin_override may be set in scripts that are designated as plugins, in order to indicate that the

command should be enabled even if the plugin is not.

The following example uses the above to add a script-defined command to the editor context menu, set

the label used in the menu, and indicate when the command is available:

import wingapi
def test_script():
 pass
test_script.contexts = [wingapi.kContextEditor()]
test_script.label = "Do Nothing"
def _test_script_available():
 return 1
test_script.available = _test_script_available

Script-Wide Default Attributes

Default values for some of the attributes defined above can be set at the top level of the script file:

_arginfo is the default argument information to use for scripts that don't have an arginfo attribute

of their own.

Scripting and Extending Wing

253

https://wingware.com/doc/scripting/arginfo
https://wingware.com/doc/scripting/gui-contexts
https://wingware.com/doc/scripting/gui-contexts

_available defines the default availability of scripts without an available attribute.

_contexts sets the default GUI contexts into which scripts should be added if they do not have their

own contexts attribute.

Some additional attributes are also supported, to control how Wing treats the script file as a whole:

_ignore_scripts can be set to True to completely ignore this script file.

_i18n_module names the gettext internationalized string database to use when translating

docstrings in this script. See Internationalization and Localization for details.

_plugin indicates that the script is a plugin that can be selectively enabled and disabled either

according to IDE state or by the user in preferences. See Plugins for details.

20.4.2. Adding Scripts to the GUI

Scripts that define a new command for the IDE may add that command to the user interface in various

ways. This is done by setting the contexts attribute on the function that implements the command.

The following example adds the script-provided command test-script to a new menu Scripts and the

editor's right-click context menu:

test_script.contexts = [
 wingapi.kContextNewMenu("Scripts"),
 wingapi.kContextEditor(),
]

These contexts are available for script-provided commands:

kContextNewMenu(title, group=0) adds an item to a menu in the menu bar. If multiple scripts use

the same context, they are all added to the same menu. The required argument title specifies the

title to use for the menu, and the optional argument group is a number that allows separating items

in the menu into groups. Groups are created as needed and items are listed in alphabetical order

within them.

kContextEditor() adds an item to the end of the editor's right-click context menu.

kContextProject() adds an item to the end of the project's right-click context menu.

kContextCommonMenu adds an item to the end of the common actions item in the top right of

Wing's window.

Scripting and Extending Wing

254

https://wingware.com/doc/scripting/i18n
https://wingware.com/doc/scripting/plugins

Regardless of whether script-provided command is added to any GUI context, it will always be listed

under both short and fully qualified name in the auto-completer for Command by Name in the Edit

menu, and in the User Interface > Keyboard > Custom Key Bindings preference.

20.4.3. Argument Collection

Commands that are defined in scripts can take arguments, optionally with a default value. Wing can

collect any missing arguments for a command invocation by interacting with the user in a dialog or, in

some keyboard personalities, in the status area at the bottom of the IDE window.

By default, Wing derives the labels to use for arguments from the argument name and assumes that the

argument being collected is a string. When this is not the case, argument type can be specified by

setting the arginfo function attribute on the script function that defines the command. This uses the

CArgInfo from wingapi.py and the datatype and formbuilder modules from Wing's internals, as

documented below.

Example

The following sets up two arguments, one that is a filename, and another that allows selecting from a

popup menu:

import wingapi
from wingutils import datatype
from guiutils import formbuilder

def test_arg_entry(filename, word):
 wingapi.gApplication.ShowMessageDialog('Choice {}'.format(word), "You chose: {}".format(filename))

_choices = [
 ("Default", None),
 None,
 ("One", 1),
 ("Two", 2),
 ("Three", 3)
]

test_arg_entry.arginfo = {
 'filename': wingapi.CArgInfo(
 "The filename to enter", # The tooltip shown to use over this field
 datatype.CType(''), # The data type is string
 formbuilder.CFileSelectorGui(), # Use a file selection field to collect the value
 "Filename:" # The field label
),
 'word': wingapi.CArgInfo(
 "The word to enter",
 datatype.CType(''),
 formbuilder.CPopupChoiceGui(_choices), # Use a popup menu to collect this value
 "Word:"
)
}

CArgInfo

The arguments used to instantiate a CArgInfo instance for the arginfo function attribute are:

Scripting and Extending Wing

255

https://wingware.com/doc/custom/keyboard-personalities

doc sets the documentation string for the argument.

type sets the data type, using one of the classes descended from wingutils.datatype.CTypeDef. See

below for the most commonly used ones.

formlet sets the type of GUI formlet to use to collect the argument from the user. This is one of the

classes descended from wingutils.formbuilder.CDataGui See below for the most commonly used

ones.

label sets the label to use for the argument when collected from the user. When this argument is

omitted, the label is built from the function name with cmdname.replace('_', ' ').title().

Commonly Used Types

The following classes in wingutils.datatype cover most cases needed for scripting:

CBoolean specifies a boolean. The constructor takes no arguments.

CType specifies the type matching one of the parameters sent to the constructor. For example,

CType("") is a string, CType(1) is an integer, and CType(1.0, 1) is a float or an integer.

CValue restricts a value to one of those passed to the constructor. For example

CValue("one", "two", "three") allows a value to be either "one", "two", or "three".

CRange specifies a numeric range between the first and second argument passed to the constructor.

For example, CRange(1, 10) allows a value between 1 and 10, inclusive.

Additional types are defined in src/wingutils/datatypes.py in the Wing source code, but these are not

usually needed in describing scripting arguments.

Commonly Used Interface

The following classes in guiutils.formbuilder cover most of the data collection fields needed for

scripting:

CSmallTextGui collects a short text string, with history, auto-completion, and other options. The

constructor takes the following keyword arguments, all of which are optional:

max_chars sets the maximum allowed text length. Set this to -1 to allow any length. Default: 80

history is a list of strings for the history, most recent first, that is accessed with the up and down

arrow keys. This may be the list or a callable that returns the list. Default: None

choices is a list of strings with all valid choices, to use in the auto-completer that is shown as the

user types. This may be a list or a callable that takes a fragment and returns all possible matches.

Default: None

Scripting and Extending Wing

256

partial_complete is set to True to only complete as far as the unique match when the

Tab``key is pressed for auto-completion. When set to ``False, all of the currently selected

auto-completion match will be entered instead. Default: True

stopchars is a string of characters that always stop partial completion. For example, '/' might be

used to prevent completion of an entire url. Default=``''``

allow_only is a list of characters allowed for input. All others are not processed. When this is set to

None, it allows all characters to be input. Default: None

auto_select_choice is set to True to automatically select all of the entry text when browsing on the

auto-completer. This is used so that the entry will be erased if any subsequent typing occurs.

Default: False

default is the default value to auto-enter initially. Default: ''

select_on_focus can be set to True to select any existing text when focus enters the field. Default:

False

editable can be set to False to display the field but to prevent editing it. Default: True

selection can be set to a (start, end) tuple to select a range of text in the auto-entered default

value. If omitted, nothing is selected. Default: None

CLargeTextGui is an multi-line entry area for longer text strings. The constructor takes no arguments.

CBooleanGui is a single checkbox for collecting a boolean value. The constructor takes no arguments.

CFileSelectorGui is a keyboard-driven file selector with auto-completion, history, and ability to browse

using a standard file dialog. The constructor takes the following optional keyword arguments:

name_type specifies what type of file or directory is being selected: 'existing-file', 'existing-dir',

'existing-executable-file', 'new-dir', or 'save-as-file'

default is the default value to pre-fill into the field. Default: ''

default_ext specifies the default file extension to use. Default: None

filters is a list of valid file name extensions. For example ['py', 'pyi'] to select either a *.py or *.pyi

file. Default: None

history can be set to a list of past choices, most recent first, to traverse with the up and down arrow

keys. Default: ()

Scripting and Extending Wing

257

tab_shows_completer indicates that pressing the Tab key should show the auto-completer.

Default: False

hostname (Wing Pro only) specifies the name of a remote host from which the file or directory

should be selected. Default: '', which indicates the local host.

CPopupChoiceGui is a popup menu to select from a range of values. The constructor takes a list of

items for the popup. Each item may be one of:

None to insert a divider into the menu

A string to insert that value into the menu. The label used in the menu is derived from the value:

label = str(value).replace('_', ' ').title()

(value, label) inserts the value into the menu using the given label.

(value, label, tooltip) inserts the value into the menu using the given label and displays the given

tooltip when the mouse hovers over the item in the menu.

CNumberGui is a small entry area for collecting a number. The constructor takes the following required

arguments:

min_value is the minimum allowable value.

max_value is the maximum allowable value.

page_size is the increment to use when the when scroller is used.

num_decimals is the number of decimal places to show. This is set to 0 to collect an integer.

Additional fields for collecting data are defined in src/guiutils/formbuilder.py in the Wing source code,

but these are not usually needed for scripting.

20.4.4. Importing Other Modules

Scripts can import other modules, including of course wingapi, but also Python's standard library, and

even modules from Wing's internals.

However, because of the way in which Wing loads scripts, users should generally avoid importing one

script module into another. If this is done, the module loaded by the import will not be the same as the

one loaded by the scripting manager, and two entries in sys.modules will result. This happens because

Wing uniquifies the module name internally to prevent conflicts between different like-named script

modules and/or Wing's internals.

Scripting and Extending Wing

258

In practice, this is only a problem if data at the top level of the script module is shared in some

significant way, so that two loaded copies of the module would be a problem. Be sure to completely

understand how modules and import work in Python before importing one script module into another.

20.4.5. Internationalization and Localization

String literals and docstrings defined in scripts can be flagged for translation using the gettext system.

To do this, the following code should be added before any string literals are used:

import gettext
_ = gettext.translation('scripts_example', fallback=1).gettext
_i18n_module = 'scripts_example'

The string 'scripts_example' should be replaced with the name of the .mo translation file that will be

added to the resources/locale localization directories inside the Wing installation.

Subsequently, all translatable strings should be passed to the _() function as in this code example:

kMenuName = _("Test Base")

The separate _i18n_module attribute is needed to tell Wing how to translate docstrings, which cannot

be passed to _().

The pygettext.py script included with Python can be used to extract and merge strings into a *.po file

and then convert that file into an *.mo file. See Python's documentation for gettext for details.

20.4.6. Plugin Extensions

When a script contains the _plugin attribute at the top level, it is treated as a plugin that can enable or

disable its extensions as a whole, usually in response to inspecting the current project to determine

whether the extensions are suitable for the project. Scripts that act as plugins in this way should not be

confused with IDE Plugins that extend specific sub-systems of functionality in the IDE in a more

structured way.

When _plugin is present, it contains (name, activator_cb) where name is the display name of the

plugin and activator_cb is a function minimally defined as follows for a plugin that is always enabled:

import wingapi
def _activator_cb(plugin_id):
 return True
_plugin = ('myplugin', _activator_cb)

EnablePlugin may also be called from any other script code, including signal handlers. For example, a

script might watch the current project using the project-open signal on CAPIApplication and enable or

disable the plugin based on which project is open:

Scripting and Extending Wing

259

https://docs.python.org/library/gettext.html
https://wingware.com/doc//plugins/index

import wingapi

Activator is needed to store the uniquified plugin_id; start out disabled
_plugin_id = [None]
def _activator_cb(plugin_id):
 _plugin_id[0] = plugin_id
 return False
_plugin = ('myplugin', _activator_cb)

Watch project and activate plugin based on project name
def _proj_open(filename):
 wingapi.gApplication.EnablePlugin(_plugin_id[0], 'ide' not in filename)
wingapi.gApplication.Connect('project-open', _proj_open)

When a plugin is inactive, its commands are undefined and any menus or menu items it added to the

GUI are removed. Plugins may denote particular commands as always available even when the plugin

is inactive by setting the _plugin_override function attribute to True.

If the user disables a plugin in the Edit menu, this completely prevents loading the plugin, which

overrides _activator_cb and any _plugin_override attributes for functions that define commands for

the plugin.

20.5. Debugging Extension Scripts
Wing can debug extension scripts that you develop for the IDE. To do this, you will need to create a new

project with New Project in Wing's Project menu. Select Use Existing Directory, enter the full path of

Wing's Install Directory, as listed in Wing's About box, and set Project Type to Custom. Then press

Next, select Use Existing Python, choose Command Line and enter the full path to Wing's Python,

which is located under the Install Directory as follows:

macOS: Contents/Resources/bin/__os__/osx/runtime-python3.9/bin/python3

Linux: bin/__os__/linux-x64/runtime-python3.9/bin/python3

Windows: bin__os__\win32\runtime-python3.9\bin\python.exe

Be sure to use the full path to the executable and not the above partial paths.

Press Create Project in the New Project dialog to create the project and save it to disk when prompted

or at any time with Save Project As in the Project menu.

Next navigate to bootstrap/wing.py in the Project tool, right click on it, and select

Set As Main Entry Point.

Then set up Wing to run Python in optimized mode, so it can load the precompiled code in your Wing

installation, by setting Python Options under the Debug/Execute tab of Project Properties to

Custom with a value of -u -O.

Scripting and Extending Wing

260

Finally, on macOS only, you will need to open Project Properties from the Project menu, select

Add To inherited environment under Environment, and paste in the following:

INSTALLDIR=/Applications/WingPro.app/Contents/Resources
RUNTIMES=${INSTALLDIR}/bin/__os__/osx
QTVERSION=qt5.15
QTRUNTIME=${RUNTIMES}/runtime-${QTVERSION}
SCIRUNTIME=${RUNTIMES}/runtime-scintillaedit-${QTVERSION}
DYLD_LIBRARY_PATH=${QTRUNTIME}/lib:${SCIRUNTIME}/lib
DYLD_FRAMEWORK_PATH=${DYLD_LIBRARY_PATH}

If you didn't install Wing in the /Applications folder then you will need to edit the first line to specify the

correct Install Dir. You may also need to adjust the value of QTVERSION for your Wing installation.

You should now be able to select Start/Continue from the Debug menu to start up a copy of Wing in

the debugger. Any breakpoints set in scripts that you have added in the scripts directory will be

reached as you work with the debugged copy of Wing. You will see and can navigate the entire stack,

but Wing will not be able to show files for most of Wing's code. If you need to see the source code of

Wing itself, you will have to obtain the source code as described in Advanced Scripting.

20.6. Advanced Scripting
While Wing's API will remain stable across future releases of the IDE, not all functionality is exposed by

the API. Scripts can also be written to reach through Wing's API into internal functionality that may

change from release to release, but in most cases stays the same. The most common reason to reach

through the API is to add a new tool panel to Wing.

An example of this can be seen in the disabled pylintpanel.py script, which is located in the scripts

directory inside the Install Directory listed in Wing's About box.

Working with Wing's Source Code

More advanced scripts like those that define a new tool are be easier to develop if Wing is run from its

source code, usually as a debug process that is controlled by another copy of Wing.

To obtain Wing's source code, you must have a valid license to Wing Pro and must fill out and submit a

non-disclosure agreement. Once this is done, you will be provided with access to the source code and

further instructions.

Scripting and Extending Wing

261

https://wingware.com/doc/scripting/advanced
https://wingware.com/pub/wingide/support/source-non-discl.pdf

How Script Reloading Works

Advanced scripters working outside of the API defined in wingapi.py should note that Wing only clears

code objects registered through the API. For example, a script-added timeout (using

CAPIApplication.InstallTimeout() method) will be removed and re-added automatically during reload,

but a tool panel added using Wing internals will need to be removed and re-added before it updates to

run on altered script code. In some cases, when object references from a script file are installed into

Wing's internals, it will be necessary to restart Wing.

Script files that define _no_reload_scripts at the top level of the module will never be reloaded or

unloaded. Files that define _ignore_scripts or that exist outside of the script path are also never

reloaded.

Here is how reloading works:

1. All currently loaded script files are watched so that saving the file from an editor will cause Wing to

initiate reload after it has been saved.

2. When a file changes, all scripts in its directory will be reloaded.

3. Wing removes all old scripts from the command registry, unregisters any timeouts set with

CAPIApplication.InstallTimeout(), and removes any connections to preferences, attributes, and

signals in the API.

4. Next imp.find_module is used to locate the module by name.

5. Then the module is removed from sys.modules and reloaded using imp.find_module and a

module name that prepends internal_script_ to the module name, in order to avoid conflicting

with other modules loaded by the IDE.

6. Wing executes the top level of the module as normal when importing a module in Python. This may

cause signal connections and other calls to the API to occur.

7. If module load fails due to an error in the code, any timeouts or other connections registered by the

module during partial load are removed and the module is removed from sys.modules.

8. If the module contains _ignore_scripts, then any timeouts or other connections are removed and

scripts in the file are ignored.

9. Otherwise, Wing adds all the script-defined commands in the module to the command registry and

loads any sub-modules in the same way, if the module is a package with __init__.py.

Note that reloading is by design slightly different than Python's builtin reload() function: Any old

top-level symbols are blown away rather than being retained. This places some limits on what can be

done with global data: For example, storing a database connection will require re-establishing the

connection each time the script is reloaded.

20.7. API Reference
This chapter documents the scripting API available in src/wingapi.py inside the Install Directory listed

in Wing's About box. To use the API, add import wingapi to the top of your script.

Scripting and Extending Wing

262

Note

This documentation is also available interactively in the Source Assistant if a project is set up

as described as described in Auto-Completion and Integrated Documentation in the Scripting

Example Tutorial.

See also the examples scripts directory in the Install Directory.

20.7.1. API Reference - Utilities

A Note on Filenames

File names in the API may either be the name of a local file on disk or a URL for untitled or remote files.

IsUrl(filename)

Tests whether the given filename is a URL. Use this on filenames obtained from the API to determine

how to treat them.

When this returns False, the filename is a local file name.

Otherwise, the filename is a URL in the one of the following forms:

• Untitled buffers use filenames starting with unknown: For example, unknown:untitled-1.py and

unknown:Scratch both refer to an unsaved file.

• Remote files and directories use filenames in the form ssh://hostname/path/to/item where

hostname is the Identifier in a Remote Host.

20.7.2. API Reference - Application

Class CAPIApplication

API for the top-level of IDE functionality. This should be accessed through wingapi.gApplication.

Signals

A callback can be connected to the following signals using Connect(signal, cb):

destroy: The application is closing. Calls cb(app:CAPIApplication)

editor-open: An editor was opened. Calls cb(editor: CAPIEditor)

document-open: A document was opened. Note that several editors may share a document. Calls

cb(doc:CAPIDocument)

Scripting and Extending Wing

263

https://wingware.com/doc/scripting/example
https://wingware.com/doc/scripting/example
https://wingware.com/doc/proj/remote-hosts

project-open: A project was opened. Calls cb(filename:str)

project-close: A project was closed. Calls cb(filename:str)

active-editor-changed: Active editor has changed. Calls cb(editor:CAPIEditor)

active-window-changed: Active window has changed. The window is None if Wing is no longer at

front. Calls cb(window_name:str)

perspective-changed: Current perspective has been changed. Calls cb(perspective_name:str)

python-runtime-changed: The effective Python version or installation being used by the currently

open project has changed. Calls cb().

Use Disconnect(signal_id) to preemptively disconnect a signal handler, where signal_id is the signal

ID previously returned from Connect.

Top-level Settings and Environment

CAPIApplication.GetProductInfo()

Returns the current Wing version, update, product code, product name, and release date.

If the full version of Wing is 1.2.3.4 then version will be '1.2.3' and update will be '4'. If the current

version is a pre-release then update may be prepended with one letter as follows:

'a': alpha release
'b': beta release
'c': release candidate

The valid product codes and names are:

0x00000001 'Personal'
0x00000002 'Professional'
0x00000008 '101'

Example return values:

('5.1.3', '2', 0x00000002, 'Professional', 'Mar 17, 2014')
('7.0.0', 'a1', 0x00000001, 'Personal', 'Aug 1, 2018')

CAPIApplication.GetWingHome()

Returns the Install Directory from which Wing is running.

CAPIApplication.GetUserSettingsDir()

Scripting and Extending Wing

264

Returns the active User Settings directory.

CAPIApplication.GetStartingDirectory(force_local=True)

Get the most logical starting directory to use when browsing for files or directories. This varies based on

the focus and selection on the user interface. When force_local is True, only a local starting directory is

returned. Otherwise a starting directory on a remote host may be returned as a URL in the form

ssh://hostname/path/to/dirname, where hostname is the Identifier of a Remote Host. Use IsUrl to

distinguish urls from directory names.

CAPIApplication.FindPython()

Find the default Python interpreter that Wing will use if none is specified with Python Executable in

Project Properties. Wing tries looking for it as follows:

On Linux:

• Try python in the current environment

• Search PATH for python* (such as python2.7 or python3.7)

• As a last resort, use the last known working Python if there was one

On macOS:

• Use /Library/Frameworks/Python.framework/Versions/Current/bin/python if is exists and is

valid

• Search as for Linux

On Windows:

• Try python in the current environment

• Look for the latest version in the registry using the keys

HKEY_CURRENT_USER\SOFTWARE\PYTHON\PYTHONCORE\#.#\INSTALLPATH and

HKEY_LOCAL_MACHINE\SOFTWARE\PYTHON\PYTHONCORE\#.#\INSTALLPATH

• As a last resort, use the last known working Python if there was one

Return Value: the full path to the interpreter. The value is validated in that the interpreter is actually

executed and sys.executable is returned.

NOTE: This call will ignore versions of Python that Wing does not support.

Command Execution

These methods are used to execute IDE commands that are documented in the Command Reference.

CAPIApplication.CommandAvailable(cmd, **args)

Check whether a command is available for execution.

Scripting and Extending Wing

265

https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/commands/index

The cmd can be the name of a command in Wing's Command Reference, or the name of a command

added by an extension script.

Any arguments are passed as keyword arguments using the documented argument names for the

command being invoked. In most cases the value of optional arguments won't affect command

availability, so they may usually be omitted.

CAPIApplication.ExecuteCommand(cmd, **args)

Execute a command with the given keyword arguments.

The cmd can be the name of a command in Wing's Command Reference, or the name of a command

added by an extension script.

Any arguments are passed as keyword arguments using the documented argument names for the

command being invoked.

To execute an external command or command line, use ExecuteCommandLine,

AsyncExecuteCommandLine*, or ExecuteOSCommand instead.

Asynchronous Timeouts

CAPIApplication.InstallTimeout(timeout, fct)

Install a function to be called as a timeout after a given number of milliseconds. The function is called

repeatedly at the given interval until its return value evaluates to False or None.

Returns a timeout_id that may be sent to RemoveTimeout to remove the timeout prematurely.

Note that the timeout will be removed if its script module is reloaded, in order to avoid calling old byte

code. For this reason, script modules must reinstall timeouts during initialization.

CAPIApplication.RemoveTimeout(timeout_id)

Remove a timeout previously installed with InstallTimeout.

Access to Key Objects

CAPIApplication.GetActiveWindow()

Get the internal name of the currently active window. This is None if no window in Wing has the focus.

CAPIApplication.GetActiveEditor()

Get the currently active CAPIEditor or None if no editor has the focus.

CAPIApplication.GetActiveDocument()

Get the CAPIDocument for the currently active editor, or None if no editor has the focus.

CAPIApplication.GetCurrentFiles()

Scripting and Extending Wing

266

https://wingware.com/doc/commands/index
https://wingware.com/doc/commands/index

Get a list of the the currently selected files. The list returned depends on the current focus and selection

in the user interface. Files may be selected in the current editor, or in the Project, Source Browser,

and other tools.

Returns a list of full path filenames for the file or files, or None if none are selected.

For untitled or scratch buffers, the file name is prefixed with unknown:. For remote files, the file name

will be a URL. Use IsUrl to distinguish between file names and URLs.

CAPIApplication.GetCurrentSourceScopes()

Get the current source scopes, including file name, line number, and Python scope name. The value

returned depends on the current focus and selection in the user interface. Source scopes may be

selected in the current editor, or in the Project, Source Browser, or other tools.

Returns None if nothing is selected or a list of scopes, each of which is a list that contains a filename, a

line number (0=first), and zero or more source symbol names indicating the nested scope that the user

has selected.

For example, if Class1.Method1 on line 120 of the file /x/y/z.py is selected, the return value would be:

[["/x/y/z.py", 120, "Class1", "Method1"],]

Line 1 is used without any source symbols to indicate the whole file is selected. The following would be

returned if multiple items in the Project or Open Files tools are selected:

[["/x/y/a.py", 1], ["/a/b/z.py", 1]]

For untitled or scratch buffers, the file name is prefixed with unknown:. For remote files, the file name

will be a URL. Use IsUrl to distinguish between file names and URLs.

CAPIApplication.GetAnalysis(filename)

Get a CAPIStaticAnalysis object for the given Python file.

CAPIApplication.GetAllFiles(visible_only=False, sticky_only=False)

Get a list of the full path names of all currently open files, whether or not a CAPIDocument object or

editor has been created for them.

Optionally filter the result to omit non-visible files or those that are opened in non-sticky transient mode.

See Transient Non-Sticky Editors for details.

For untitled or scratch buffers, the file name is prefixed with unknown:. For remote files, the file name

will be a URL. Use IsUrl to distinguish between file names and URLs.

CAPIApplication.GetOpenDocuments()

Scripting and Extending Wing

267

https://wingware.com/doc/edit/transient

Get all currently open CAPIDocument objects. This includes only those documents that have already

been shown in an editor, since documents are not created until they need to be shown.

Note that this may also include documents active for searching or source analysis, for which no editor is

open.

CAPIApplication.InspectFiles(filenames, result_cb, force=False)

Inspect all the given files, where filenames is a list of full path filenames or ssh:// urls for remote files.

When all inspections are complete, result_cb(exc, result) is called where exc is True if inspection failed

and otherwise result is a dictionary from each filename/url to a named tuple containing:

modtime -- modification time or None if it does not exist readable -- True if disk permissions allow

reading the file directory writable -- True if disk permisions allow writing to the file or directory bytecount

-- For files, the size of the file files -- For directories, the names of any files in the directory dirs -- For

directories, the name of any child directories

Set force=True to force inspection without using cached values.

CAPIApplication.ReadFile(filename, result_cb, encoding=None)

Read from the given filename, which may either be a full path for a local file or an ssh:// url for a remote

file.

Calls result_cb(err, content, encoding) with the result of the read where err is an error if one occurred

or None otherwise, content is the contents of the file, and encoding is the encoding that was used

when reading the file.

The encoding may optionally be set explicitly; otherwise it is inferred from the contents of the file,

previously made user settings, and the default encoding for the host where the file resides.

To read a binary file, set encoding='binary'. In that case the content passed to result_cb is bytes and

not str.

CAPIApplication.WriteFile(filename, data, result_cb, encoding='utf-8', ensure_dir=False)

Write to the given filename, which may either be a full path for a local file or an ssh:// url for a remote

file.

Calls result_cb(err) with the result of the operation, where err is None on success or otherwise a string

describing the error.

The encoding may be set explicitly; otherwise it is inferred from the contents of the file, previously

made user settings, and the default encoding for the host where the file resides.

To write a binary file, set encoding='binary' and pass data as bytes and not str.

Set ensure_dir=True to case creation of the enclosing directories before write the file, if they do not yet

exist.

Scripting and Extending Wing

268

CAPIApplication.GetProject()

Get the currently open CAPIProject. Returns None if no project is open.

CAPIApplication.NewProject(completed_cb, failure_cb=None)

Create a new project. complete_cb is called with no arguments when the new project has been created

and opened and failure_cb is called with no arguments if the user cancels closing the current project.

CAPIApplication.GetDebugger()

Get the CAPIDebugger singleton, for access to debugger functionality.

CAPIApplication.ShowTool(name, flash=True, grab_focus=True)

Show the given tool in the user interface. The most recently used instance of the tools is shown, or a

new instance is created at its default location.

The name can be one of:

'project', 'browser', 'batch-search', 'interactive-search', source-assistant', 'debug-data', 'debug-stack',

'debug-io', debug-exceptions', 'debug-breakpoints', 'debug-console', 'debug-watch', debug-modules',

'python-shell', 'about', 'messages', 'help', 'indent', bookmarks', 'testing', 'open-files', os-command',

'snippets', diff', 'uses', 'refactoring', 'code-warnings'

The tool title is flashed if flash is True and focus is moved to the tool if grab_focus is True.

CAPIApplication.OpenURL(url)

Open the given URL with an external viewer.

Manage Windows

CAPIApplication.CreateWindow(name)

Create a new window with given internal name. The window is initially blank. Use OpenEditor() with the

given name to fill it.

CAPIApplication.CloseWindow(name, allow_cancel=True)

Close the window with given internal name, and all the editors in it. When allow_cancel is False, the

window is closed without prompting to save any changes made there.

Manage Editors

CAPIApplication.OpenEditor(filename, window_name=None, raise_window=False, sticky=True)

Open the given file into an editor.

If the window_name is given, the editor opens into the window with that internal name. Otherwise the

most recently visited window is used. If window_name is not the name of an existing window, a new

window is created with that name.

Scripting and Extending Wing

269

The window is not brought to the front unless raise_window is True.

Set sticky to False to cause Wing to auto-close the editor when hidden and more than the configured

number of non-sticky editors is open. See Transient Non-Sticky Editors for details.

Returns the CAPIEditor or None if opening the file failed.

Note that the file may open under a different name if symbolic links exist.

CAPIApplication.ScratchEditor(title='Scratch', mime_type='text/plain', raise_window=False,

raise_view=True, sticky=True, window_name=None)

Create a scratch editor with the given title and mime type. The document can be edited but will never be

marked as changed or requiring a save to disk. However, it can be saved with Save As if desired.

If title contains %d, a sequence number will be inserted automatically.

mime_type sets the file type to use. Use text/x-python for Python.

The window is raised only if raise_window is True.

The view is brought to front within the window only if raise_view is True.

Set sticky to False to cause Wing to auto-close the editor when hidden and more than the configured

number of non-sticky editors is open. See Transient Non-Sticky Editors for details.

If the window_name is given, the editor opens into the window with that internal name. Otherwise the

most recently visited window is used. If window_name is not the name of an existing window, a new

window is created with that name.

Returns the CAPIEditor or None if the scratch buffer failed to create.

CAPIApplication.GetMimeType(filename)

Get the mime type Wing is using for the given filename, based on the file name, contents, and

Files > File Types > Extra File Types preference.

Clipboard

CAPIApplication.SetClipboard(txt)

Store the given text to the clipboard. The text should be a utf-8 string or unicode object.

CAPIApplication.GetClipboard()

Get the text currently on the clipboard, as a unicode string.

Application State

CAPIApplication.GetVisualState(errs=[], style='all')

Get the application's visual state.

Scripting and Extending Wing

270

https://wingware.com/doc/edit/transient
https://wingware.com/doc/edit/transient

The style of the state may be one of:

'all' to capture all of the application visual state

'tools-and-editors' to capture which tools are visible, the overall layout of the windows, and which

editors are open (but not details like scroll positions, selection, or current search string)

'tools-only' to capture only which tools are visible and the overall layout of the windows (but not

which editors are open).

Returns an opaque dictionary with the state, for later use with SetVisualState.

Any errors encountered are added to errs as strings.

CAPIApplication.SetVisualState(state, errs=[])

Restore saved application state, as previously obtained from GetVisualState. Any errors encountered

are added to errs as strings.

Preferences

CAPIApplication.GetPreference(pref)

Get the value of the given preference.

The pref argument should be the fully qualified name of the preference, as given in the Preferences

Reference.

CAPIApplication.SetPreference(pref, value)

Set value for the given preference.

The pref argument should be the fully qualified name of the preference, as given in the Preferences

Reference.

The value must conform to the documentation for the preference.

CAPIApplication.ConnectToPreference(pref, cb)

Connect to the given preference so that the given callback is called whenever the value of the

preference changes.

The pref argument should be the fully qualified name of the preference, as given in the Preferences

Reference.

cb is called with no arguments. It may obtain the new value of the preference with GetPreference.

The callback will be uninstalled automatically if the caller's script is reloaded.

Returns a signal id that can be used with later DisconnectFromPreference.

CAPIApplication.DisconnectFromPreference(pref, id)

Scripting and Extending Wing

271

https://wingware.com/doc/preferences/index
https://wingware.com/doc/preferences/index
https://wingware.com/doc/preferences/index
https://wingware.com/doc/preferences/index
https://wingware.com/doc/preferences/index
https://wingware.com/doc/preferences/index

Disconnect a preference value callback.

The pref argument should be the fully qualified name of the preference, as given in the Preferences

Reference.

id is the signal id that was returned from ConnectToPreference.

CAPIApplication.ShowPreference(prefname)

Show the given preference by name in the preference manager dialog.

prefname should be the fully qualified name of the preference, as given in the Preferences Reference.

Messages and Status

CAPIApplication.ShowMessageDialog(title, text, checks=[], buttons=[('OK', None)], modal=True)

Display a message dialog to the user with the given title and text.

If checks is non-empty it contains a list of (label, default, callback) tuples for extra check boxes to add

below the message and above the buttons. The callback is called with the label and check state

immediately when the checkbox is used.

Set buttons to a list of (label, action) pairs to override the default of a single OK button. The button

action can be None to simply close the dialog or it can be a callable taking no arguments that returns

True to prevent closing of the dialog or False to allow it to close when the button is pressed.

The dialog is modal unless modal is set to False.

CAPIApplication.SetStatusMessage(text, timeout=5)

Display a transient status message in the status area at the bottom of the IDE window. The message

persists for the given timeout (in seconds) or until another status message is shown.

CAPIApplication.ClearStatusMessage()

Clear the status message area at the bottom of the IDE window to blank.

Sub-Process Control

CAPIApplication.ExecuteCommandLine(cmd, dirname, input, timeout, env=None,

bufsize=100000, return_stderr=False, encoding=...)

Run a command line synchronously until it completes.

cmd can either be a command line (as a string) or a list containing the executable and any arguments.

The command is run in the directory specified by dirname.

input is any text to send to the sub-process, or None to send nothing.

timeout sets the maximum number of seconds to wait for the command to complete.

Scripting and Extending Wing

272

https://wingware.com/doc/preferences/index
https://wingware.com/doc/preferences/index
https://wingware.com/doc/preferences/index

Unless env is given, the command is run in the environment configured in the current project.

Otherwise, env should be in the same form as os.environ.

The bufsize is used for the I/O buffer to the sub-process, as follows: If < 0, system default is used; if 0,

I/O is unbuffered; if 1, line buffering is used if the OS supports it; if >1, the buffer is set to that number of

bytes.

When return_stderr is True, both stderr and stdout are returned. Otherwise only stdout is returned.

The encoding is the encoding used to encode / decode text sent / received from the child command. It

defaults to the default OS Commands encoding; use encoding=None to disable encoding / decoding

and return bytes instances with the command output.

Returns (err, output_txt) where err is one of:

0 -- Success
1 -- Command could not be launched
2 -- Command timed out

And output_txt is either a string containing stdout or, a tuple (stdout, stderr) (when return_stderr

was set to True).

Use AsyncExecuteCommandLine to avoid locking up Wing while the command runs, or to access

process exit status.

CAPIApplication.AsyncExecuteCommandLine(cmd, dirname, *args, encoding=...)

Run the given command asynchronously in the given directory.

cmd contains the executable to run, either the full path or the name on the PATH.

Additional command line arguments are passed as extra parameters via args.

The encoding is the encoding used to encode/decode text sent or received from the child command. It

defaults to the default OS Commands encoding; use encoding=None to disable encoding/decoding

and return bytes instances with the command output.

Returns a handler instance that is used asynchronously to monitor the progress of the command and to

obtain its output and exit status. This can be placed into a timeout function installed with

InstallTimeout. For example:

handler = wingapi.AsyncExecuteCommandLine('ls', '/path/to/dir', '-al')
def watch():
 if handler.Iterate():
 stdout, stderr, err, exit_status = handler.Terminate()
 print "Done"
 print stdout
 return False

Scripting and Extending Wing

273

 else:
 print "Start time (relative to time.time()):", handler.time
 print "Iteration #", handler.count
 print "Output so far: %i characters", len(handler.stdout)
 return True
wingapi.InstallTimeout(500, watch)

Be sure that the timeout function returns True until the handler has completed, so that the timeout is

called again and Terminate is eventually called.

The return values from Terminate are as follows:

stdout -- The text received from child process stdout
stderr -- The text received from child process stderr
err -- Error code if execution failed, or ``None`` on success
exit_status -- Exit status of the child process, or ``None`` if it was
 never launched or could not be determined

The environment specified in the project is used for the sub-process. Use

AsyncExecuteCommandLineE to specify a different environment.

To send input to the sub-process, use the handler.SendToChild() method. The signature of the

method is WriteToChild(self, s, flush=True, close_after=False): and the flush and close_after

arguments control whether to stream to the child will be flushed and closed after writing. The string

passed will be encoded unless it is a bytes instance. Some processes wait for the pipe to be closed

before continuing.

CAPIApplication.AsyncExecuteCommandLineE(cmd, dirname, env, *args, encoding=...)

Same as AsyncExecuteCommandLine but accepts also the environment to send into the debug

process.

CAPIApplication.AsyncExecuteCommandLineEB(cmd, dirname, env, bufsize, *args,

encoding=...)

Same as AsyncExecuteCommandLineE but accepts also the I/O buffer size: if < 0, system default is

used; if 0, I/O is unbuffered; if 1, line buffering is used if the OS supports it; if >1, the buffer is set to that

number of bytes. To pass the project-defined environment to this call, use

CAPIProject.GetEnvironment.

CAPIApplication.GetExecutionTarget()

Get the default execution target for commands run by the IDE with CreateChildProcess(). This is

determined by the Python Executable setting in Project Properties. Returns one of:

('host', host_id) -- Runs the command on the remote host configuration with given host_id or the

local host when host_id is ''

Scripting and Extending Wing

274

('container', container_id) -- Runs the command on the given container configuration.

('cluster, cluster_id, service, in_cluster) -- Runs the command on the given cluster service,

either in-cluster or in a synthesized out-of-cluster instance of the given cluster service.

Note that remote hosts, containers, and clusters are only available in Wing Pro.

CAPIApplication.CreateChildProcess(args, terminated_cb, io_cb=None, target=None, env=None,

dirname=None, separate_stderr=True, timeout=None, encoding='utf-8')

Create a child process that runs asynchronously and communicates with the caller through the given

callbacks.

CreateChildProcess() is a more flexible replacement for the AsyncExecute* and Execute* API calls,

with support for executing commands on a remote host, container, or cluster service, as well as the

local host.

Arguments

args is a list that contains all the arguments for the child process, including the executable name or path

as the first list item.

terminated_cb(timeout, exc, exit_code) is called when the process exits. If the process timed out

then timeout is set to True. When the process failed to start, exc is set to a string describing the reason

for failure. Otherwise, exc is None and exit_code contains the exit code given by the child process

(usually 0 indicates success and other codes indicate failure, but this is defined by the implementation

of the child process)

io_cb(stdout, stderr) is called (if given) with any output from the child process. If output to stderr and

stdout is not being kept separate, all output will be reported through the first argument. The output is a

string or bytes, depending on the value for encoding (see below).

target indicates where the command should be run. When this is None, it is the host or container used

by the current project's Python Executable. Otherwise, see GetExecutionTarget() for allowable values.

env is a dictionary containing the environment to use, or None for the default environment on the

selected target.

dirname is the starting directory for the process, or None to use the default for the selected target.

seperate_stderr is True when stderr output should be kept separate from stdout.

timeout is the time in seconds after which the command should automatically be terminated, or None

not to terminate. The encoding is the encoding used to encode/decode text sent or received from the

child command. Use None to disable encoding/decoding. When an encoding is given, output returned

from the process will be in str instances. When None is used, output is instead returned as bytes.

Return Value

Scripting and Extending Wing

275

GetChildProcess returns a process control instance with the following available methods:

GetOutput() -- returns all the output seen so far from the child process. The output is a string

unless an output encoding was given using the encoding argument to CreateChildProcess().

GetStdErrOutput() -- like GetOutput() but returns all the stderr output seen so far from the child

process. This should only be called when separate_stderr was set to True when calling

CreateChildProcess().

_SendInputToChild(text, close) -- Sends the given text to the child process, optionally closing the

socket after doing so.

GetExitCode() -- Gets the child process exit code, or None if the process is still running.

Kill() -- Terminates the child process.

These methods can only be called before terminate_cb exits. After that the process control instance is

destroyed and may no longer be used.

Sub-Process Control with OS Commands

CAPIApplication.AddOSCommand(cmd, dirname, env, flags, *args)

Add the given command line to the OS Commands tool. The cmd can be the whole command line as a

list, or just the executable if its arguments are passed through args.

dirname can be None to indicate using the project-defined default starting directory.

env can be None to use the project defaults, or a dictionary to add values to the project-defined

environment.

flags is a dictionary containing zero or more of the following:

title: The display title for the command Default: same as cmd argument.

hostname: The name of the configured remote host to run on, or '' to indicate local host. Default:

None which indicates that project settings will be used.

io-encoding: Encoding name for I/O (such as utf-8). Default: None

key-binding: Textual representation of key binding to assign (such as "Ctrl-X Ctrl-Shift-T"). Default:

None

raise-panel: True to raise the OS Commands tool when this command is executed. Default: True

auto-save: True to auto-save files before executing the command. Default: False

Scripting and Extending Wing

276

pseudo-tty: True to use a Pseudo TTY for the command. Default: False

line-mode: True to set buffering to line mode. Default: False

Returns the internal command ID for the added command.

This adds a Command Line style OS Command. Adding Python File and Named Entry Point style

OS Commands is not supported by the API.

CAPIApplication.RemoveOSCommand(cmd_id)

Remove an OS Command.

cmd_id is the internal command ID returned from AddOSCommand.

The command is terminated first if it is currently running.

CAPIApplication.ExecuteOSCommand(cmd_id, show=True)

Execute the given command in the OS Commands tool, using the internal command ID returned from

previous call to AddOSCommand.

If show is True then the OS Commands tool will be shown. Otherwise, the tool is shown only if the

command was configured to always show the tool when executed.

CAPIApplication.TerminateOSCommand(cmd_id)

Terminate an OS Command if it is currently running.

cmd_id is the internal command ID returned from AddOSCommand.

Scripting Framework Utilities

CAPIApplication.ReloadScript(module)

Reload the script file(s) associated with the given module or filename.

CAPIApplication.EnablePlugin(plugin_id, enable)

Enable to disable a plugin.

This may be called from plugins that auto-enable in response to signals, to indicate whether the plugin

should be active or not.

Note that the user can override the plugin-determined state to either set a plugin as always enabled or

never enabled, either in preferences or in project properties.

Returns True if the plugin was enabled, False if not.

20.7.3. API Reference - Editor

API support for the editor has two parts:

Scripting and Extending Wing

277

(1) CAPIDocument is used to access the buffer that contains the text for one or more editors. Multiple

editors may share a single buffer, and buffers are also used for search or source analysis operations.

(2) CAPIEditor is used to access a single editor in the user interface, with a single file open in it. Each

editor tab in Wing is a separate editor.

Class CAPIDocument

API to access an open editor document. This class should not be instantiated directly. Use the methods

on CAPIApplication and CAPIEditor instead.

A single document may be shared by multiple open editors, and/or search and static code analysis

tasks.

The document uses an internal utf-8 encoded buffer and positions returned from methods or used as

arguments are positions in that utf-8 buffer. However, text is returned as a str instance, which is not

utf-8 encoded just like all other Python 3 str instances. Because of this, the len() of the str instances

returned may not be equal to the len() of the internal utf-8 buffer.

Signals

A callback can be connected to the following signals using Connect(signal, cb):

destroy: The document is closing. Calls cb(doc:CAPIDocument).

modified: The document's text has been modified. Calls cb(insert:bool,

pos:int, length:int, text:str, lines_added:int) where:

insert is True if text was inserted and False if text was deleted.

pos is the position of the change.

length is the length of text affected.

text is the text that was inserted or deleted.

lines_added is the number of lines added.

presave: The document is about to be saved to disk. Calls cb(filename:str, encoding:str) where

filename and encoding are None if the document-specified location and encoding will be used.

The callback may make changes to the buffer if desired, though this is best avoided if filename is

not None.

save-point: The document has entered or left a save point, where it matches the copy that was

read from or written to disk. Calls cb(save_point:bool) where save_point is True if a save point

was reached and False if leaving the save point.

Scripting and Extending Wing

278

filename-changed: The filename for this document has changed. Calls

cb(old_name:str, new_name:str) where old_name and new_name are full paths.

Use Disconnect(signal_id) to preemptively disconnect a signal handler, where signal_id is the signal

ID previously returned from Connect.

General Access

CAPIDocument.GetMimeType()

Get the mime type for this document, as determined by file name, contents, and

Files > File Types > Extra File Types preference.

CAPIDocument.GetFilename()

Get the file name this document. For untitled or scratch buffers, the file name is prefixed with

unknown:. For remote files, the file name will be a URL. Use IsUrl to distinguish between file names

and URLs.

CAPIDocument.GetEditors()

Get all existing editors for this document. This may be an empty list if the document is only open for

searching or static analysis.

Buffer Access

CAPIDocument.GetText()

Get the document's contents as a string

CAPIDocument.SetText(txt)

Set the document contents, replacing any existing content. The txt must be either a unicode string or

utf-8 encoded text.

CAPIDocument.DeleteChars(start, end)

Delete characters in given range, including the character starting at the end offset. The offsets are utf-8

offsets.

CAPIDocument.InsertChars(pos, txt)

Insert characters at the given position. The txt must either be an unicode string or utf-8 encoded bytes

instance. The pos is the offset in the internal utf-8 encoded buffer.

CAPIDocument.GetLength()

Get the total length of document's utf-8 buffer.

CAPIDocument.GetLineCount()

Get the total number of lines in the document.

Scripting and Extending Wing

279

CAPIDocument.GetCharRange(start, end)

Get the text in the given range as a string. The offsets are relative to the utf-8 encoded buffer. Note that

the string returned will be a str instance and its len() may not equal end - start

CAPIDocument.GetLineNumberFromPosition(pos)

Get the line number (0=first) at the given position in the utf-8 encoded buffer

CAPIDocument.GetLineStart(lineno)

Get the character position for the start of the given line number (0=first). The offset is relative to the utf-8

encoded buffer.

CAPIDocument.GetLineEnd(lineno)

Get the character position for the end of given line number (0=first). The offset is relative to the utf-8

encoded buffer.

CAPIDocument.GetAsFileObject()

Get the document's contents in a file-like object with read() and readline() methods. Both methods

return str instances

Undo/Redo

CAPIDocument.BeginUndoAction()

Mark the start of an undoable action group. All edits between this call and EndUndoAction will be

undone in a single undo operation.

It is critical to call EndUndoAction at the end of the action or the user will experience undos that span

many more edits than intended. Use try/finally to guarantee this a follows:

doc.BeginUndoAction()
try:
 # edits here
finally:
 doc.EndUndoAction()

CAPIDocument.EndUndoAction()

Mark the end of an undoable action group.

CAPIDocument.CanUndo()

Check whether undo is available.

CAPIDocument.CanRedo()

Check whether redo is available.

Scripting and Extending Wing

280

CAPIDocument.Undo()

Undo one edit action in the document.

CAPIDocument.Redo()

Redo edits previously undone with Undo.

Saving

CAPIDocument.Save(filename=None)

Save the document to disk. If a file name is given, a copy is saved there without altering the document's

primary file.

CAPIDocument.IsSavePoint()

Check whether the buffer matches its file on disk. Returns True if it does.

Class CAPIEditor

API to access an editor. This class should not be instantiated directly. Use the methods on

CAPIApplication instead.

Signals

A callback can be connected to the following signals using Connect(signal, cb):

destroy: The editor has been destroyed. Calls cb(editor:CAPIEditor).

selection-changed: The current selection has changed. Calls cb(start:int, end:int) with the new

selection, relative to the utf-8 contents of the CAPIDocument.

selection-lines-changed: The starting and/or ending line for the selection has changed. In Python

files this is not emitted when the selection moves to a new physical line within the same logical line

of code. Calls cb(first_line, last_line) with the new first and last lines (0=first line in file).

scrolled: The editor view has scrolled. Calls cb(top_line) with the new first visible line (0=first line

in file).

visible-lines-changed: The range of visible lines has changed. Calls cb(top_line, bottom_line)

with the new top and bottom lines (0=first line in file).

readonly-edit-attempt: An edit was attempted and rejected on a readonly file. Calls cb() without

arguments.

data-entry-stopped: Data entry mode has stopped. Calls cb(data_entry_id) where data_entry_id

is the ID returned from StartDataEntry.

Scripting and Extending Wing

281

Use Disconnect(signal_id) to preemptively disconnect a signal handler, where signal_id is the signal

ID previously returned from Connect.

General Access

CAPIEditor.IsReadOnly()

Check whether the editor is readonly. Returns True or False.

CAPIEditor.SetReadOnly(readonly)

Set whether or not the editor is read-only. readonly should be True or False.

CAPIEditor.GetDocument()

Get the CAPIDocument object being shown in this view.

Selections

CAPIEditor.GetSelection()

Get (start, end) for the selection on the editor. start is always less than end. The offsets are relative to

the utf-8 encoded text in the editor's CAPIDocument.

CAPIEditor.GetSelectedDottedName()

Get (dotted_name, lineno) for the current selection on the editor. The dotted_name may be a simple

symbol like 'text', an expression like 'modname.classname.attrib', or None if no dotted name is found at

the current selection position.

CAPIEditor.GetAnchorAndCaret()

Get the current selection anchor and caret position. The anchor may come after the caret position if the

user has selected backwards in the text. The offsets are relative to the utf-8 encoded text in the editor's

CAPIDocument.

CAPIEditor.SetSelection(start, end, expand=1)

Set the selection on the editor, optionally expanding any folded parts to show the selection. start is the

selection anchor and end is the caret position. The anchor can be before or after the caret. Does not

alter scroll position. Offsets are relative to the utf-8 encoded text in the editor's CAPIDocument.

CAPIEditor.GetClickLocation()

Get the offset in the utf-8 encoded text buffer for the last mouse click on the editor.

CAPIEditor.GetSourceScope()

Get the current source scope, based on position of selection or insertion caret.

Returns None if nothing is selected or a list that contains a filename, a line number (0=first), and zero or

more source symbol names indicating the nested scope that the user has selected.

Scripting and Extending Wing

282

For example:

["/x/y/z.py", 120, "Class1", "Method1"]

For untitled or scratch buffers, the file name is prefixed with unknown:. For remote files, the file name

will be a URL. Use IsUrl to distinguish between file names and URLs.

Scrolling and Visual State

CAPIEditor.GetFirstVisibleLine()

Get the line number of the first visible line (0=first in file) on screen in this editor.

CAPIEditor.GetNumberOfVisibleLines()

Get the number of visible lines on screen for this editor.

CAPIEditor.ScrollToLine(lineno, select=0, pos='slop', store_history=1, callout=0)

Scroll so that given line (0=first) or selection is visible in the editor.

select can be one of:

0 to make no changes in selection.

1 to select the whole line.

2 to place the caret at the start of the line.

(start, end) to select the given character range, relative to the utf-8 buffer for the editor. In this

case, lineno may be set to -1 to compute the line number from the selection.

pos can be one of:

slop to ensure visibility without a specific position.

center to always center the line on the display.

top to always position the line at the top of the display.

Only center and top will work if the editor has not yet been shown.

Set store_history to False to avoid remembering the current editor position in the visit history.

Set callout to True to briefly display a callout to highlight the given text selection.

CAPIEditor.GetVisualState(errs=[], style='all')

Get the current visual state of the editor, including scroll position, selection, and so forth.

Scripting and Extending Wing

283

The style of the state may be one of:

'all' to capture all of the application visual state

'tools-and-editors' to capture which tools are visible, the overall layout of the windows, and which

editors are open (but not details like scroll positions, selection, or current search string)

'tools-only' to capture only which tools are visible and the overall layout of the windows (but not

which editors are open).

Returns an opaque dictionary with the state, for later use with SetVisualState.

Any errors encountered are added to errs as strings.

CAPIEditor.SetVisualState(state)

Restore a visual state previously obtained with GetVisualState.

Folding

CAPIEditor.FoldingAvailable()

Check whether folding is available and enabled on this editor.

CAPIEditor.FoldUnfold(fold_check_cb)

Folds or unfolds all the fold points, as determined by the given call back, which returns 1 to expand, 0 to

collapse, and -1 to leave a fold point untouched. If the callback is not a callable, all the folds are either

expanded or collapsed according to the value of bool(fold_check_cb).

Returns a list of lineno's that were folded and a list of line numbers (0=first) that were expanded.

Indentation

CAPIEditor.GetTabSize()

Get the effective tab size for this editor, as determined by the contents of the file and indentation

preferences.

CAPIEditor.GetIndentSize()

Get the indent size for this editor, as determined by the contents of the file and indentation preferences.

CAPIEditor.GetIndentStyle()

Get the predominant indent style used in this file. Returns one of:: 1 -- spaces only 2 -- tabs only 3 --

mixed tabs and spaces

CAPIEditor.SetIndentStyle(style)

Scripting and Extending Wing

284

Set the indent style to use in this editor. This should only be used on an empty file or to force indent

style regardless of existing file content (not a good idea with Python files).

CAPIEditor.GetEol()

Get one end-of-line that matches the content of this editor. Returns one of: "\n", "\r", or "\r\n".

Command Execution

These methods execute editor commands documented in the Active Editor Commands section of the

Editor Commands reference."""

CAPIEditor.CommandAvailable(cmd_name, **args)

Check the whether an editor command is available for execution with the given arguments. Arguments

may be omitted if they don't affect command availability, which most don't.

The available commands for an editor are documented in the Active Editor Commands section of the

Editor Commands reference.

CAPIEditor.ExecuteCommand(cmd_name, **args)

Execute the given command in the editor. Any command arguments are passed on the command line

via args. This is used to execute commands in an editor even if it does not have focus.

The available commands for an editor are documented in the Active Editor Commands section of the

Editor Commands reference.

Snippets and Data Entry mode

Class CAPIEditor.CAPIFieldMetaData

Stores meta data for fields used with the meta_data argument for StartDataEntry and PasteSnippet,

in order to control how fields are filled and visited.

Available keywords arguments for the constructor are:

auto_enter_from specifies the field index (0=first) from which data for this field should be

auto-entered, rather than allowing the user to type into the field. This is used for fields that appear

several times. Default: -1, which indicates no auto-entering for the field.

force_tab_stop may be set to True to force including the field as a tab stop even if it is

auto-entered from another field. This allows the user to change the auto-entered value. Default:

False

skip_tab_stop is set to True to skip this field when traversing fields. This is useful for placing a

marker that is tracked during editing but not visited as a tab stop. Default: False

For example to auto-enter a value from field 3:

Scripting and Extending Wing

285

https://wingware.com/doc/commands/edit
https://wingware.com/doc/commands/edit
https://wingware.com/doc/commands/edit

meta = CAPIFieldMetaData(auto_enter_from=3, force_tab_stop=True)

CAPIEditor.PasteSnippet(txt, fields, auto_terminate=False, meta_data={})

Paste a utf-8 text snippet into the editor and place the editor into inline data entry mode. Snippet syntax

is documented in Snippet Syntax.

The txt is the text to paste.

fields provides the (start, end) offsets within that text for fields the user can enter or alter.

Set auto_terminate to stop data entry mode when the last field is reached.

To control behavior of the fields, set meta_data to a dictionary from field index (0=first) to

CAPIEditor._CAPIFieldMetaData.

CAPIEditor.StartDataEntry(fields, active_range=(0, -1), goto_first=True, auto_terminate=False,

meta_data={})

Start inline data entry mode so the user can use the Tab and Shift-Tab keys to move between data

fields inline in the editor.

fields is a list of (start, end) positions where the fields are located, in tab traversal order.

active_range indicates the range of text within which the data mode will exist. Data entry terminates if

the caret moves outside of this range or if the user presses Esc. The default range of (0, -1) indicates

the entire document.

When goto_first is set, the first field in the tab sequence will become the current selection.

Set auto_terminate to stop data entry mode when the last field is reached.

To control behavior of the fields, set meta_data to a dictionary from field index (0=first) to

CAPIEditor._CAPIFieldMetaData.

Returns None if data entry failed to start or otherwise a unique ID for the data entry action.

This may be invoked recursively so that another data entry action is used to fill in a field of a previously

created data entry action.

CAPIEditor.StopDataEntry()

Exit inline data entry mode. If StartDataEntry was recursively invoked then the innermost data entry

action is exited.

CAPIEditor.ActiveDataEntry()

Get the id of the active data entry action, or None if there is none.

Scripting and Extending Wing

286

https://wingware.com/doc/edit/snippet-syntax

Utilities

CAPIEditor.GrabFocus()

Set keyboard focus on this editor.

CAPIEditor.SendKeys(keys)

Send a string of one or more keys to the editor so they are processed as if they were typed by the user.

Key processing includes any auto-editing, auto-indentation, etc.

20.7.4. API Reference - Project

Class CAPIProject

API to access the project. This class should not be instantiated directly. Use

CAPIApplication.GetProject() instead.

Signals

A callback can be connected to the following signals using Connect(signal, cb):

destroy: The project is closing. Calls cb(proj:CAPIProject).

files-added: Files have been added. Calls cb(filenames) where filenames is a list of full paths.

File names starting with ssh: are on a remote host. Use IsUrl to distinguish between urls and local

file names.

files-removed: Files have been removed. Calls cb(filenames) where filenames is the same as for

the files-added signal above.

Use Disconnect(signal_id) to preemptively disconnect a signal handler, where signal_id is the signal

ID previously returned from Connect.

Project Contents

CAPIProject.GetAllFiles()

Returns a list of all the full path filenames in this project.

File names starting with ssh: are on a remote host. Use IsUrl to distinguish between urls and local file

names.

CAPIProject.GetAllDirectories(top_only=False)

Get list of full path names for all directories in this project.

If top_only is True, only top-level directories are returned.

Scripting and Extending Wing

287

Directory names starting with ssh: are on a remote host. Use IsUrl to distinguish between urls and local

file names.

CAPIProject.AddFiles(files)

Add the files with given full path filenames to the project.

CAPIProject.RemoveFiles(files)

Remove the given full path filenames from the project.

CAPIProject.AddDirectory(dirname, recursive=True, filter='*', include_hidden=False,

watch_disk=True, excludes=())

Add the given directory to the project, given its full path name.

When recursive is True, all children, grand-children, etc, are also added.

The filter specifies which files to display.

Set include_hidden to True to show also hidden files like .name, *pyc, and *~.

Set watch_disk to watch the disk for changes and update the Project tool accordingly.

Set excludes to a list of relative path names from dirname for files to explicitly exclude from the

display.

If the directory is already in the project this call will replace it properties according to the arguments.

CAPIProject.RemoveDirectory(dirname)

Remove the given directory, and any recursively added sub-directories, from the project.

Project Properties

CAPIProject.GetEnvironment(filename=None, set_pypath=True, overrides_only=False)

Get the runtime environment for the given debug file in the context of this project. This is determined by

overriding the environment inherited at startup with any values set in Project Properties and

File Properties.

If the given filename is None, only the project-wide settings are used.

If a Python Path is set in Project Properties and set_pypath is True, it is added to the environment as

PYTHONPATH, overwriting any PYTHONPATH in the inherited environment.

When overrides_only is True, this call only returns the environment that is configured for the given file

(or project-wide if filename is None) and not inherited environment values. This result can be used as

the basis for calling SetEnvironment.

CAPIProject.ExpandEnvVars(txt, filename=None)

Scripting and Extending Wing

288

Expand $(envname) and ${envname} style environment variables within the given text in the context of

the environment returned by GetEnvironment(filename, set_pypath=False).

CAPIProject.SetEnvironment(filename, base, env={})

Set the runtime environment for debugging or executing the given file or for the project as a whole if

filename is None.

The argument base indicates which base environment the given environment should modify:

'startup': Modify startup environment

'project': Modify the project environment (not a valid value when filename is None)

In either case, the given env is applied to the selected base environment by removing any keys with

empty values and adding/updating any keys with non-empty values. If the order of the environment keys

is important, use collections.OrderedDict for the value of this argument.

If PYTHONPATH is included in the environment, it is stored in (or cleared from) the Python Path

property in Project Properties or File Properties and not the Environment property.

Using SetFileLaunchConfig and related API is preferable when filename is not None.

CAPIProject.GetPythonExecutable(filename)

Get the Python executable set for the given file or the project as a whole if the filename is None.

Returns None if using the inherited value, which is the project-wide value for a file, and the default

found Python for a project (when filename is None). The default Python can be determined with

CAPIApplication.FindPython.

GetFileLaunchConfig and related API is preferable when filename is not None.

The executable can be on a remote host, in which case this function returns a value in the form

ssh://hostname/ where hostname is the Identifier of the Remote Host that specifies which Python to

use.

The executable may be a command that activates a virtualenv or other environment. In this case, the

value returned is in the form env://command_line.

If executable includes arguments, spaces within arguments are managed by escaping them with or by

delimiting arguments with quotes.

CAPIProject.SetPythonExecutable(filename, executable)

Set the Python executable to use when debugging or executing the given file. The filename may be

None to set the project-wide Python Executable. The executable may be None to use the project-wide

value or default found Python.

Scripting and Extending Wing

289

https://wingware.com/doc/proj/remote-hosts

The executable can be a url in the form ssh://hostname/ (without any additional url path) to use the

Python specified by the Remote Host for hostname. In this case, if a non-None filename is given it

must also be a file on that remote host, using a url in the form ssh://hostname/path/to/file.py.

The executable may be a command that activates a virtualenv or other environment, in which case it is

in the form env://command_line.

If the executable includes arguments, spaces within the command line must be managed by escaping

them with or delimiting arguments with quotes.

Using SetFileLaunchConfig() and related API is preferable when filename is not None.

CAPIProject.GetPythonExecutableProperties(executable=None)

Get information about the default Python executable or a given Python executable. If the executable

argument is None, the default executable for the project will be used; otherwise the argument is a str in

the same format as for SetPythonExecutable.

On success, the return value is a dictionary containing the following values:

fullpath : The full path to the interpreter's 'python.exe' or 'python' version : The Python version in

#.#.# form prefix : The value of sys.prefix baseprefix : The value of sys.base_prefix pypath : The

builtin Python Path (an item set to None indicates current directory) keywords : The keywords in

this Python version builtins : The builtins in this Python version

Each of these values is None if the executable was not found or is invalid.

If the interpreter has not yet been inspected then None is returned instead of a dictionary. In this case,

an inspection is launched and this method may be called again later to obtain the values.

CAPIProject.GetInitialDirectory(filename)

Get the initial directory for debugging the given file. The filename may be None to set the project-wide

setting. Returns None when using the startup directory.

Using GetFileLaunchConfig and related API is preferable when filename is not None.

CAPIProject.SetInitialDirectory(filename, dirname)

Set the initial directory to use when debugging the given file. The filename may be None to set the

project-wide setting. The dirname may be None to use the startup directory.

Using SetFileLaunchConfig and related API is preferable when filename is not None.

CAPIProject.GetMainEntryPoint()

Get the full path for the main entry point for this project. This returns a string in the form "entry:name" if

the main entry point is a Named Entry Point, or None if there is none, in which case debugging and

execution start with the current editor file.

Scripting and Extending Wing

290

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/named-entry-points

CAPIProject.SetMainEntryPoint(filename)

Set the main entry point for this project. Pass in a full path, a string in the form "entry:name" to use a

Named Entry Point, or None to unset the main entry point so that debugging and execution start with

the current editor file.

CAPIProject.SetDebugChildProcesses(enable=True)

Enable or disable child process debugging in this project. Set enable to True to always debug child

processes, False to never debug child processes, and None to refer to the

Debugger > Processes > Debug Child Processes preference.

Launch Configurations

CAPIProject.GetLaunchConfigs()

Get a list of the internal IDs for all the defined Launch Configurations in the project.

CAPIProject.CreateLaunchConfig()

Create a new Launch Configuration. Returns the launch configuration's internal ID.

CAPIProject.GetLaunchAttrib(launch_id, attrib, include_hostname=False)

Get a Launch Configuration attribute.

launch_id is the internal launch configuration ID.

attrib is the attribute to get, which may be one of the following. The return value varies in type,

according to which attribute was retrieved:

name: The display name of the launch configuration.

runargs: The run arguments as a string.

rundir: (which, value) where which is one of 'project' to use the project-defined value, 'default' to

use the directory of the file being launched, or 'custom' to use the specified string value.

env: (which, env) where which is one of 'project' to use the project-defined value, 'merge' to use

env to add/remove from the project-defined value, 'default' to use the startup environment, or

'custom' to use env to add/remove from the startup environment. env is a list of var=value strings

where value can be blank to remove the named var from the modified environment.

buildcmd: (which, value) where which is one of 'project' to use the project-defined value,

'default' to use no build command, or 'custom' to use the specified value, which is the OS

Command internal ID for a build command defined with CAPIApplication.AddOSCommand or by

the user in the OS Commands tool.

Scripting and Extending Wing

291

https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/launch-configs

pyexec: (which, pyexec) where which is one of 'default' to use the project-defined value, or

'custom' to use given pyexec string. When arg include_hostname is True, this is instead in the

form (which, (hostname, pyexec)) where hostname is '' to indicate localhost.

pypath: (which, value) where which is one of 'project' to use the project-defined value, 'default'

to use the startup value, or 'custom' to use the specified value, which is a list of strings.

pyrunargs: (which, value) where which is one of 'project' to use the project-defined value,

'default' to use '-u', or 'custom' to use the specified string value

shared: True or False, to indicate whether the launch configuration is shared between all projects.

Any string value can contain environment variable references in the form ${ENVNAME} or

$(ENVNAME).

Raises KeyError if the specified launch configuration does not exist.

Compatibility note:

In Wing 6+ the pyexec attribute stored by Wing internally changed from (which, pyexec) to

(which, (hostname, pyexec)) where hostname is '' for localhost. Set include_hostname=True to

receive that form in the return value.

In Wing 6+ the pypath attribute stored by Wing internally changed from a string with os.pathsep

delimiter to a list of strings.

CAPIProject.SetLaunchAttrib(launch_id, attrib, value)

Set a single Launch Configuration attribute.

launch_id is the internal launch configuration ID to modify.

See GetLaunchAttrib for the valid attribute names and values. It is up to the caller to validate the

values specified.

Raises KeyError if the specified launch configuration does not exist.

CAPIProject.DeleteLaunchConfig(launch_id)

Delete the given Launch Configuration. Any files or Named Entry Points that reference the configuration

will revert to using the project-defined environment.

CAPIProject.GetFileLaunchConfig(filename)

Get the internal ID of the Launch Configuration used by default with the given filename. Returns None if

the project-wide configuration is being used.

CAPIProject.SetFileLaunchConfig(filename, launch_id)

Set the default Launch Configuration to use with the given file.

Scripting and Extending Wing

292

https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/launch-configs

filename is the full path of the file or a URL in form ssh://hostname/path/to/file.py for remote files,

where hostname is the Identifier of a Remote Host.

launch_id is the internal launch configuration ID.

CAPIProject.ClearFileLaunchConfig(filename, runargs)

Clear the default Launch Configuration for the given file so that launching the file will use the

project-defined environment and the given runargs.

filename is the full path of the file or a URL in form ssh://hostname/path/to/file.py for remote files,

where hostname is the Identifier of a Remote Host.

runargs are the run arguments to use, as a string.

Named Entry Points

CAPIProject.GetNamedEntryPoints()

Get a list of names for all the defined Named Entry Points in the project.

CAPIProject.CreateNamedEntryPoint(name)

Create a new Named Entry Point. Raises KeyError if the name already exists.

CAPIProject.GetNamedEntryPointAttrib(name, attrib)

Get an attribute for the given Named Entry Point. The valid attribute names are as follows. The return

value varies in type, according to which attribute is being retrieved:

filename: The Python file to launch. This is the full path or a URL in the form

ssh://hostname/path/to/file.py for remote files where hostname is the Identifier of a Remote

Host.

runargs: The command line arguments to use when the named entry point's launch-id is None.

This valuecan contain environment variable references in the form ${ENVNAME} or ``

$(ENVNAME)``.

launch-id: The internal ID of the Launch Configuration to use, or None to use the project-defined

environment with the command line arguments in the runargs attribute.

key-binding-debug: The key binding for debugging the Launch Configuration. See Key Names for

details on valid key names.

key-binding-execute: The key binding for executing the Launch Configuration.

auto-show: True when the named entry point dialog should be shown automatically before

launching.

Scripting and Extending Wing

293

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/custom/key-names

Raises KeyError if the named entry point does not exist.

CAPIProject.SetNamedEntryPointAttrib(name, attrib, value)

Set a Named Entry Point attribute. name is the entry point's name.

See GetNamedEntryPointAttrib for the valid attribute names and values. It is up to the caller to

validate the values specified.

Raises KeyError if the named entry point does not exist.

CAPIProject.DeleteNamedEntryPoint(name)

Delete the given Named Entry Point.

Attributes

Use these to store information in a project file.

CAPIProject.GetAttribute(attrib_name, filename=None)

Get the value for given named attribute previously set with SetAttribute.

If filename is not None, the attribute is a per-file attribute for the given file. Otherwise, it's a project-wide

attribute.

Raises KeyError if the attribute is not defined.

CAPIProject.SetAttribute(attrib_name, value, filename=None)

Set value for the given attribute. This is used to store data in the project file. Attributes may either be

associated with the project as a whole or with a particular file.

attrib_name is the attribute name, which can be any string containing letters, numbers, and dashes.

The attrib_name is uniquified internally to avoid conflicts between scripts. If this is not desired, so that

other scripts can also access the attribute, prefix the attrib_name with '.'.

If filename is not None, the attribute is a per-file attribute. Otherwise, it's a project-wide attribute.

Utilities

CAPIProject.GetFilename()

Gets the filename where the project is stored, as a full path. Returns the *.wpr file's name. If the project

is a shared project, a file *.wpu in the same directory will also exist and contain user-specific project

state.

For untitled or scratch buffers, the file name is prefixed with unknown:. For remote files, the file name

will be a URL. Use IsUrl to distinguish between file names and URLs.

CAPIProject.GetSelectedFile()

Scripting and Extending Wing

294

https://wingware.com/doc/debug/named-entry-points
https://wingware.com/doc/debug/named-entry-points

Returns the full path filename of the currently selected file on the Project tool, or None if there is no

selection.

File names starting with ssh: are on a remote host. Use IsUrl to distinguish between urls and local file

names.

Run Arguments

CAPIProject.GetRunArguments(filename)

Get the run arguments for debugging the given file, or '' if there are none. The filename should not be

None.

The value returned may come from the file's launch configuration, if one is being used, or otherwise

from the file properties.

CAPIProject.SetRunArguments(filename, args, add_recent=True)

Set the run arguments (as a string) for debugging the given file. Use None for no arguments.

The value is set into the file's launch configuration, if one is being used, or otherwise into the file

properties.

See add_recent to False to prevent adding the arguments to the recent arguments list.

20.7.5. API Reference - Debugger

The debugger API consists of two parts:

(1) CAPIDebugger is the debug manager, which is used to manage multiple debug processes.

(2) CAPIDebugRunState is used to start, control, inspect, and terminate a single debug process.

Class CAPIDebugger

API for the debugger as a whole. This class should not be instantiated directly. Use

wingapi.gApplication.GetDebugger() instead.

Signals

A callback can be connected to the following signals using Connect(signal, cb):

new-runstate: A new runstate has been created. Calls cb(runstate:CAPIDebugRunState).

current-runstate-changed: A new runstate has been selected as the current runstate. Calls

cb(runstate:CAPIDebugRunState).

Use Disconnect(signal_id) to preemptively disconnect a signal handler, where signal_id is the signal

ID previously returned from Connect.

Scripting and Extending Wing

295

CAPIDebugger.GetRunStates()

Get the list of all CAPIDebugRunState objects that currently exist in the debugger.

CAPIDebugger.GetCurrentRunState()

Get the currently active CAPIDebugRunState.

CAPIDebugger.SetCurrentRunState(rs)

Set the currently active CAPIDebugRunState.

Class CAPIDebugRunState

API to access an individual debug process. This class should not be instantiated directly. Use the

methods on CAPIDebugger instead.

Each run state is associated with a single debug process. It is created before any debug process is

started, takes care of starting and controlling individual debug sessions, and outlives individual debug

process termination in order to support subsequent inspection or launch of a new debug process.

Signals

A callback can be connected to the following signals using Connect(signal, cb):

debug-started: A debug session has been started. Calls cb().

debug-terminated: The debug session has ended. Calls cb().

exception: The debug process has encountered an exception. Calls cb().

paused: The debug process has paused or reached a breakpoint. Calls cb().

running: The debug process has started running again. Calls cb().

Use Disconnect(signal_id) to preemptively disconnect a signal handler, where signal_id is the signal

ID previously returned from Connect.

Starting and Stopping Debug

CAPIDebugRunState.Run(filename, stop_on_first=0, launch_id=None)

Start debug, using the given file as the main entry point.

filename is the full path of the file to debug. For remote files, filename is in the form

ssh://hostname/path/to/file.py where hostname is the Identifier of a Remote Host.

Set stop_on_first to stop immediately on the first line of code. Otherwise debugging continues until it

reaches a breakpoint, exception, or program termination.

Scripting and Extending Wing

296

https://wingware.com/doc/proj/remote-hosts

Set launch_id to the internal ID of a Launch Configuration to use for the debug environment, or to

None to use the file's default environment configured in Project Properties or File Properties.

CAPIDebugRunState.RunNamedEntryPoint(name, stop_on_first=0)

Run the given Named Entry Point with its configured launch environment.

Set stop_on_first to stop immediately on the first line of code. Otherwise debugging continues until it

reaches a breakpoint, exception, or program termination.

CAPIDebugRunState.Kill()

Stop debugging by terminating the debug process. If the debug process was launched by Wing, all its

child processes are also terminated.

Flow Control

CAPIDebugRunState.Step(over=1, out=0)

Step in the code, either into, over, or out of the current execution point, as follows:

• If out is True then step out

• If over is CAPIDebugRunState.kStepOverInstruction step over the current instruction

• If over is CAPIDebugRunState.kStepOverLine step over the current physical line

• If over is CAPIDebugRunState.kStepOverStatement step over the current statement

• If over is CAPIDebugRunState.kStepOverBlock step over or finish the current block

• If over is a (start_line, end_line) tuple, step until debugging leaves that range of lines (0=first line)

• In all other cases, step in

CAPIDebugRunState.RunToCursor()

Run until the current editor caret location is reached, or to the next breakpoint, exception, or program

termination if the caret's location is not reached first.

CAPIDebugRunState.Continue()

Contine running the debug process to the next breakpoint, exception, or termination.

Threads and Stacks

CAPIDebugRunState.GetThreads()

Get a list of (thread_id, name, running) for the active debug process, where thread_id is the thread

ID, name is the thread function name, and running is True if the thread is running or False if the thread

is paused a breakpoint or exception.

Returns None if no thread in the process is paused at a breakpoint or exception.

The currently selected thread can be determined by calling GetStackFrame.

Scripting and Extending Wing

297

https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/debug/named-entry-points

CAPIDebugRunState.GetStackIndex()

Get (thread_id, stack_index) where thread_id is the currently selected thread id and stack_index is

(stack_no, frame_idx) where stack_no is the stack number (0=primary stack) and frame_idx is the

frame index (0=outermost frame).

If the thread is still running then thread_id and stack_index will both me None.

Stacks 1+ are PEP 3134 chained exception stacks, in order of the chain.

CAPIDebugRunState.SetStackFrame(thread_id, idx)

Set the currently selected thread ID (None to use current thread) and stack index. The stack index is in

the form (stack_no, frame_idx) to allow access to chained exception stacks. Set stack_no to 0 for the

primary stack and frame_idx to 0 for the outermost frame.

Returns (thread_id, stack_index) where thread_id is the actual thread ID and stack_index is the

stack index that was actually set. If the thread is still running then thread_id and stack_index will both

me None.

Compatibility note:

This call changed in Wing 7.0 to support PEP 3134 chained exceptions. However, it still accepts idx set

to an integer to indicate a frame in the primary stack. When idx is passed as an integer, the return

value's stack index is also an integer.

CAPIDebugRunState.GetStack()

Get the stack for the currently selected debug thread as a list of frames, each of which is a tuple

containing (filename, lineno, line_text, scope, local_varnames) where:

filename is the full path of the file, or for remote files a URL in the form ssh://hostname/path/to/file.py

where hostname is the Identifier of a Remote Host.

lineno is the line number (0=first line) or a tuple (start, end) to indicate the position of the current

statement in template files.

line_text is the text of the line or statement.

scope is the name of the scope for this frame (for example, MyClass.MethodName)

local_varnames is a list of the local variable names for the frame.

Returns None instead if the currently selected thread is not paused, at a breakpoint, or at an exception.

The currently selected thread is changed by calling SetStackFrame.

Breakpoints

CAPIDebugRunState.SetBreak(filename, lineno, temp=0, cond=None, enable=1, ignore=0)

Set a new breakpoint at the given position.

Scripting and Extending Wing

298

https://wingware.com/doc/proj/remote-hosts

filename is the full path of the file, or for remote files a URL in the form ssh://hostname/path/to/file.py

where hostname is the Identifier of a Remote Host.

lineno is the line number at which to set the breakpoint (0=first line)

temp is True to set a temporary breakpoint that will be removed the first time it is reached.

cond is a conditional string that must evaluate to True in the context of the breakpoint's stack frame for

the breakpoint to stop, or None to always stop on this breakpoint.

enable can be set to False to disable stopping on the breakpoint.

ignore is set to a value above 0 to ignore hitting the breakpoint that number of times before stopping on

it.

If a breakpoint already exists here, it is replaced.

Returns (lineno, err) where lineno is the actual line the breakpoint was placed at and err is either

None or an error string.

CAPIDebugRunState.ClearBreak(filename, lineno)

Clear a breakpoint.

filename is the full path of the file, or for remote files a URL in the form ssh://hostname/path/to/file.py

where hostname is the Identifier of a Remote Host.

lineno is the breakpoint's line numbert (0=first line)

CAPIDebugRunState.ClearAllBreaks()

Clear all breakpoints.

Utilities

CAPIDebugRunState.GetProcessID()

Get the process ID of the active debug process. Returns None if there is no active process.

CAPIDebugRunState.GetStatus()

Get the status of the debug process. Returns an integer, as follows:

0 -- disconnected (no debug process)
1 -- listening for a connection from an IDE-launched debug process
2 -- connected to a debug process
3 -- the debug process is running
4 -- the debug process is stopped at a breakpoint or paused
5 -- the debug process is stopped on an exception
6 -- listening for a connection from a externally launched debug process

Scripting and Extending Wing

299

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts

20.7.6. API Reference - Search

Class CAPISearch

API for searching files and directories. One instance of this class should be instantiated for each search.

The arguments to the constructor are:

txt -- The text to search for (required)

match_case -- True for case-sensitive search (default=True)

whole_words -- True to match only whole words (default=False)

omit_binary -- True to omit files that appear to be binary files (default=True)

search_styles -- One of 'text' for plain text search, 'wildcard' for wild card matches (unix glob style

matching), and 'regex' for regular expression matching (default='text')

include_linenos -- True to include line numbers in the results (when False, line numbers are not

computed, which makes for faster searching) (default=False)

use_buffer_content -- True to use the content of edited buffers instead of the disk file when

unsaved edits exist (default=True)

regex_flags -- For regex searches: the regex flags from the re module (default=0)

After an instance of is created, use one of the following to start searching:

SearchDirectory()
SearchFile()
SearchFiles()

Signals

Search results and status are reported through the following signals called asynchronously until the

search completes. The can be connected to a callback with Connect(signal, cb):

start -- A new search was started. Calls cb().

end -- The search completed or aborted. Calls cb().

match -- One or more matches have been found. Calls cb(filename, matches) where filename is

the full path of the file, and matches is list of (lineno, linestart, line_text, positions) where lineno

is the line number in the file (0=first), linestart is the position in the file where the line begins,

line_text is the text for the line, and positions is a list of (start, end) tuples. The match

Scripting and Extending Wing

300

signal may occur more than once per file or line, to report additional matches found. Line numbers

are zero unless include_lineos was True. All positions are from the start of the file.

dir -- Scanning a new directory. Calls cb(dirname:str).

scanning -- Scanning a new file. Calls cb(filename).

file-done -- Done scanning a file. Calls cb(filename).

File and directory names passed to signal handlers are full paths or for remote files and directories, in

the form ssh://hostname/path/to/item where hostname is the Identifier of a Remote Host.

Use Disconnect(signal_id) to preemptively disconnect a signal handler, where signal_id is the signal

ID previously returned from Connect.

Example

s = CAPISearch("test", match_case=False)
def match(filename, matches):
 print(filename, matches)
def end():
 print("done")
s.Connect('match', match)
s.Connect('end', end)
s.SearchFile('/path/to/myfile.txt')

CAPISearch.SearchDirectory(dirname, file_set, recursive)

Start searching the given directory for all files that match the file set, optionally recursively.

The dirname is the full path of the directory name or for remote directories in the form

ssh://hostname/path/to/dir where hostname is the Identifier of a Remote Host.

The file_set can either be a name of a configured file filter stored in the 'main.file-sets' preference or

(includes, excludes) where includes and excludes are lists of tuples (spec_type, text) in which

spec_type is one of 'wildcard-filename', 'mime-type', or 'wildcard-directory' and text is the pattern to

apply to the file name, mime type, or directory name in order to filter which files are searched.

For example, to search only Python files use 'Python Files' as the filespec. Or to search *.py files other

than those within a directory named 'test', use the following:

[(('wildcard-filename', '*.py'),), (('wildcard-directory', 'test'),)]

If the file filter in file_set is a string, an exception will be raised if it is not a valid file filter name.

CAPISearch.SearchFiles(files)

Scripting and Extending Wing

301

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts

Start searching all the given files, which is a list of full path filenames or URLs in the form

ssh://hostname/path/to/file.py where hostname is the Identifier of a Remote Host.

This accepts only filenames and not directories. Use SearchDirectory to search a directory.

CAPISearch.SearchFile(filename, start_pos=0)

Search a single file for search matches, optionally starting at a given point. The filename should be a

full path or URL in the form ssh://hostname/path/to/file.py where hostname is the Identifier of a

Remote Host.

This can also be used to re-search a file previously searched through SearchDirectory if the file

changes.

CAPISearch.Stop()

Terminate searching, if a search is active.

CAPISearch.Pause()

Pause the search process.

CAPISearch.Continue()

Continue the search process after it was previously paused with Pause.

20.7.7. API Reference - Analysis

The static analysis API is used to inspect the structure and contents of Python files. It consists of two

parts:

(1) CAPISymbolInfo is used to describe a particular source symbol.

(2) CAPIStaticAnalysis is used to inspect a particular Python file.

Class CAPISymbolInfo

API to describe the inferred type for a particular source symbol. This class should not be instantiated

directly. Instances of this class are returned from CAPIStaticAnalysis.GetSymbolInfo.

Type information is accessed with the following instance attributes:

generalType: General type of the symbol: One of 'class', 'method', 'function', 'instance', 'keyword',

'literal', or 'module'.

typeName: The full name of the type.

fileName: The file where the type is defined.

lineStart: The first line of the type definition (0=first line in file).

lineCount: The number of lines taken up by the type definition.

Scripting and Extending Wing

302

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-hosts

pos: The position of the type definition within the first line.

isCallable: True when the symbol is a callable.

args: A list of argument names, if isCallable is True.

docString: The docstring for the type.

Class CAPIStaticAnalysis

API for inspecting the contents of a Python file, based on Wing's static analysis of that file. This class

should not be instantiated directly. Use CAPIApplication.GetAnalysis instead.

CAPIStaticAnalysis.GetScopeContents(scope, timeout=0.5)

Get a list of all the symbols defined in the given scope.

scope is the name of the scope to inspect. For example, MyClass.MyMethod is the method

MyMethod in class MyClass and MyClass.MyMethod.nested is a nested function nested within that

method.

Use '' for the top level of the module.

To obtain attributes for an instance, append ':' to the class name. For example, 'MyClass:' provides the

attributes for an instance of MyClass.

Set timeout to specify the maximum computation time in seconds.

Returns a dictionary mapping symbol names to a sequence of one or more strings describing the

symbol. The descriptors may be:

imported -- The symbol is imported from another module
class -- The symbol is a class or class attrib when 'attrib' is also present
method -- The symbol is a method
function -- The symbol is a function
argument -- The symbol is a function or method argument
module -- The symbol is a module
package -- The symbol is a package
attrib -- The symbol is an instance attribute

Use GetSymbolInfo to obtain additional information about a symbol, including its inferred type and

point of definition.

CAPIStaticAnalysis.FindScopeContainingLine(lineno)

Find the scope containing the given line number. Note that a class line or a def line is in its parent's

scope.

CAPIStaticAnalysis.GetSymbolInfo(scope, symbol)

Scripting and Extending Wing

303

Get extended information for the given symbol within the named scope. A scope of '' and symbol of ''

obtains type information for the module as a whole. Returns a sequence of CAPISymbolInfo instances.

Scripting and Extending Wing

304

IDE Plugins
Wing Pro contains some pluggable sub-systems that may be extended by the user, by writing Python

code to provide specific defined functionality for that sub-system.

Plugins are written as classes that override abstract methods in a base class for each type of plugin.

They are placed into the directory plugins, either within the Wing installation directory (inside

Contents/Resources in the macOS bundle) or in the user settings directory. A plugin found within the

user settings directory will override a like-named plugin in the installation directory.

The plugins directories area is organized by type of plugin, with one sub-directory for each type. The

files that define the API for each plugin type are named api.py and found in subdirectories of

src/plugins in the Wing installation directory. A plugin implementation can import the API with

from plugins.<type> import api where <type> is the plugin type.

This is a new capability in Wing 8 and limited to the sub-systems documented in the following

sub-sections.

21.1. Container Plugins
Container plugins can be used to add support for a new type of container system to Wing Pro's support

for containers. Wing Pro comes with support for Docker and LXC, which are implemented in

plugins/container in the Wing installation directory. Other container systems may be supported by

adding a similar support for each container system.

Requirements

In order to work with Wing, container systems must satisfy the following requirements:

1. The container system must allow starting a container and running a specifed command within the

container instance

2. The container system must support running additional commands in an already-running container

instance, using a specified starting directory and environment. This must be achievable by running

a command line on the host system.

3. The container system must be able to map or copy files on the host system into the container

(including a mapping specified by Wing Pro)

4. The container must be able to connect to the host system via TCP/IP

5. To fully implement a plugin, the container system must be able to map TCP ports from the host

system to the container. However, this is optional and only needed for some types of development.

API

Container plugins need to implement the following two classes:

CContainerInstance represents a running instance of a container. Wing creates an instance of this

class to manage all the tasks it needs to run on the container, including (a) those used to inspect the

IDE Plugins

305

https://wingware.com/doc/install/user-settings-dir

Python installation and Python code found only on the container, (b) processes started to debug or

execute code, (c) processes started for running unit tests, (d) commands run from the OS Commands

tool, and (d) other processes for code reformatting and inspection.

ContainerSupport provides some top-level meta data and control for the supported container system,

including enumerating and shutting down all running containers.

The details of the API are documented in the file src/plugins/container/api.py in the Wing installation

directory. Reference implementations for Docker and XLC are provided in plugins/container.

21.2. Cluster Plugins
Cluster plugins can be used to add support for a new type of container orchestration system to Wing

Pro's support for containers. Wing Pro comes with support for Docker Compose, which is implemented

by the file plugins/cluster/dockercompose.py in the Wing installation directory. Other container

orchestration systems may be supported by adding a similar file for each container orchestration

system.

Requirements

In order to work with Wing, container orchestration systems must satisfy the following requirements:

1. The cluster configuration used by the container orchestration system must allow adding

environment variables and host->container file mappings to specific services in the cluster

2. Containers in a cluster that are to host debugged parts of the application must be able to connect

to Wing on the host system using TCP/IP

3. Plugins must exist for the container system(s) used by the orchestration system and it must be

possible to start instances of individual containers using the container system plugins.

API

Container plugins need to implement the following two classes:

Cluster represents the cluster defined by the container orchestration system. Wing uses an instance of

this class to start (with or without debug) and stop the cluster as a whole.

ClusterSystemSupport provides some top-level meta data and control for the supported container

orchestration system, including parsing configuration files and tracking cluster runtime status.

The details of the API are documented in the file src/plugins/cluster/api.py in the Wing installation

directory. A reference implementation for Docker Compose is provided in

plugins/cluster/dockercompose.py.

IDE Plugins

306

Trouble-shooting Guide
This chapter describes what to do if you are having trouble installing or using Wing.

Note

We welcome feedback and bug reports, both of which can be submitted directly from Wing using

Submit Feedback and Submit Bug Report in the Help menu, or by emailing us at support at

wingware.com.

22.1. Trouble-shooting Failure to Start
If you are having trouble getting Wing to start at all, you can diagnose the problem as follows:

Rule out problems caused by a corrupted project file or preferences by renaming your Settings

Directory. If this works, you can copy over items from the renamed directory one at a time to isolate the

problem. The most likely files to cause problems are default.wpr, preferences, and recent-projects.

Note, however, that Wing may automatically copy over files from the settings directory for an older

version of Wing. You may have to move those aside also, to prevent reintroducing problem files.

Check whether anti-virus or security software is blocking Wing from starting. Some anti-virus

solutions like Constant Guard have been known to do this, without showing any warnings or messages.

On macOS, check the Security & Privacy system control panel for messages.

On Windows, check if the user's temporary directory is full, which prevents Wing from starting. In

this case, the directory will contain more than 65,000 files.

On Linux or macOS, check if the cache directory is on a remote file server, which can prevent

Wing from starting. This happens if the ~/.cache directory or the cache directory set by the

$XDG_CACHE_DIR is located on NFS or other remote file server. In that case, Wing can't obtain a lock

on the source analysis database. To use slower dotfile locking, run Wing with the

--use-sqlite-dotfile-locking command line argument. Note that all Wing processes that use the same

cache directory need to either use or not use dotfile locking.

In other cases, refer to Obtaining Diagnostic Output.

22.2. Speeding up Wing
Wing should present a snappy, responsive user interface even on relatively slow hardware. If Wing

appears sluggish, you can diagnose the problem as follows:

Wait for source analysis to complete, which may be necessary just after creating a new project,

adding files to an existing project, or if many files on disk have changed or moved. In this case, the

Trouble-shooting Guide

307

mailto:support@wingware.com
mailto:support@wingware.com
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/install/trouble-diagnostic

status area in the lower left of the IDE window will indicate that analysis is running. Wing stores the

results of this process in a cache so the problem should not reoccur often.

Increase the source analysis cache allocation with the Source Analysis > Max Cache Size

preference if the Cache Directory in Wing's About box exceeds that size. You may also want to press

the Clear Cache button next to the preference to rule out problems caused by a corrupted source

analysis cache.

Try disabling external change checking by setting the Files > Reloading > External Check Freq

preference to 0.

On a multi-core virtual machine, set processor affinity if Wing runs slowly. This is done with

schedtool -a 0x1 -e wing8 on Linux (the schedtool package needs to be installed if not already

present) and with START /AFFINITY 01 "Wing Pro" "C:\Program Files (x86)\Wing Pro

8\bin\wing.exe" on Windows.

In other cases, collect a profile as follows:

• Select Command by Name from the Edit menu, type internal-profile-start, and press Enter

• Do something that is slow, or just wait for a while

• Select Command by Name again, type internal-profile-stop, and press Enter

The profile is written to the end of ide.log in the Settings Directory. This can be submitted in a bug

report from the Help menu or by email to support@wingware.com.

22.3. Trouble-shooting Failure to Debug
If you are having trouble debugging with Wing, select whichever of the following most closely describes

the problem you are seeing.

22.3.1. Failure to Start Debug

Use the following steps to diagnose failure to start debugging:

Try a simple test case using the following code in a new Python file and Step Into in the Debug menu:

print("test1")
print("test2")

This rules out unexpectedly running to completion or running into a fatal error after debug has started

successfully.

Set WINGDB_PRINT_ALL_TRACEBACKS=1 in the Environment in Project Properties and try

restarting the Python Shell from its Options menu. This is often a simple way to obtain a traceback

that shows why Python is failing to start.

Trouble-shooting Guide

308

https://wingware.com/doc/install/user-settings-dir
mailto:support@wingware.com
https://wingware.com/doc/proj/project-properties

Verify that your Python version is supported according to Supported Python Versions. If not, you

may need a different version of Wing.

Check that Python Path is valid with Show Python Environment in the Source menu. If this

contains directories inside a Python version that doesn't match the interpreter being run for the debug

process, then Python will fail to start. You can set Python Path and Python Executable in Project

Properties.

Check for environment conflicts, which may occur if you set the PYTHONHOME or PYTHONPATH

environment variables and they do not match the particular Python interpreter that Wing is launching.

Completely remove and reinstall Python if you have installed a newer version over and older one on

disk, in the same directory. This may cause debugging to fail even if other Python programs appear to

work with the Python installation because the debugger used functionality that isn't used by most other

code.

Confirm that TCP/IP is working on your machine since Wing's debugger uses TCP/IP to

communicate with the IDE.

Disable PyGame full-screen mode and use window mode instead, since full-screen mode does not

work with Python debuggers.

In other cases, collect diagnostics as described in Diagnostic Output.

22.3.2. Failure to Stop on Breakpoints or Show Source Code

There are several reasons why Wing may fail to stop on breakpoints or fail to show the Python source

code when an exception is reached:

Not saving before you run in the debugger causes the debugger to run with the copy of the file that is

on disk, while breakpoints are set using the edited copy of the file in the editor. If lines don't match up,

then breakpoints will be missed. To avoid this problem, enable the

File > Auto-Save Files Before Debug or Execute preference.

Debugging multi-process code can be a problem if child processes are started and not automatically

debugged. This is commonly a problem when using Flask, Django, and other frameworks that

implement auto-reload by managing and restarting a child process. Debugging child processes is only

possible in Wing Pro, and is off by default. To enabled it, set Debug Child Process under the

Debug/Execute tab in Project Properties to Always Debug Child Processes.

Importing a module before debug has started will appear to miss breakpoints at the top level of the

module when it is imported again after debug has started, because the top level of the module is

evaluated only during the first import. This occurs with some Python standard library modules that the

debugger loads before starting user code, and may occur with any modules loaded before debug is

started with wingdbstub.

Trouble-shooting Guide

309

https://wingware.com/doc/install/supported-python-versions
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/install/trouble-diagnostic

Storing incorrect file names in ``*.pyc`` files prevents the debugger from identifying which

breakpoints are relevant. This can be caused by using partial path names on the Python Path or when

invoking a script from the command line, moving around the *.pyc file after they are created, or using

compileall.py to create *.pyc files from source. The easiest way to solve this is to use only full paths on

Python Path and remove any problematic *.pyc files so they can be regenerated.

Failing to send file names to compile() results in code objecs with co_filename set to <string>,

which makes it impossible to determine which breakpoints are relevant. This is seen fairly often in

embedded Python implementations, where Python acts as a scripting language in a larger application.

A work-around is to set __file__ in the module to the correct full path to the source code, although it's

better to fix how compile() is being used.

Too many debug processes may cause Wing to fail to stop on breakpoints because it can only debug

a finite number of processes at a time. The number of processes that Wing can debug concurrently is 1

in Wing 101 and Wing Personal and set with the Debugger > Processes > Maximum Process Count

preference in Wing Pro.

Other less common problems include running Python with psyco or other optimizer, overriding the

Python __import__ routine, adding breakpoints after you've started debugging an application that

spends much of its time in non-Python code, and using symbolic links on Windows.

For more information, see Debugger Limitations.

22.3.3. Failure to Stop on Exceptions

Failure to stop on exceptions is most commonly caused by the same factors that cause failure to stop

on breakpoints, although in this case the debugger may stop but fail to show the source code.

Another factor in debugging exceptions is that they may be handled by a catch-all exception handler.

Wing doesn't stop on these unless they also print the exception.

The simple work-around for this is to set a breakpoint in the exception handler.

An alternative is to recode your app by adding the following code to catch-all exception handlers:

import os, sys
if 'WINGDB_ACTIVE' in os.environ:
 sys.excepthook(*sys.exc_info())

The above only works with When Printed exception handling mode, as set by the

Debugger > Exceptions > Report Exceptions preference).

The following variant can be used with other exception handling modes:

import os

Trouble-shooting Guide

310

https://wingware.com/doc/debug/debugger-limitations
https://wingware.com/doc/install/trouble-debug-nostop-breakpoints
https://wingware.com/doc/install/trouble-debug-nostop-breakpoints

No handler when running in Wing's debugger
if 'WINGDB_ACTIVE' in os.environ:
 dosomething()

Handle unexpected exceptions gracefully at other times
else:
 try:
 dosomething()
 except:
 # handler here

Note that environments such as wxPython, PyGTK, and others include catch-all handlers for

unexpected exceptions raised in the main loop, but those handlers cause the exception traceback to be

printed and thus will be reported correctly by Wing without any modification to the handler.

22.3.4. Extra Debugger Exceptions

Wing always stops on AssertionError, even if the exception is handled because these are intended to

indicate an error in code.

However, since not all programmers use exceptions in the same way, you may find Wing stopping in

places that you don't want it to.

To avoid this, you can train Wing to ignore unwanted exception reports with the checkbox in the

Exceptions tool. Or remove AssertionError from the Debugger > Exceptions > Always Report

preference.

For more information, see Managing Exceptions.

22.4. Trouble-shooting Other Known Problems
Other known problems that can affect some of Wing's functionality include:

Copy/Paste Fails on Windows

Webroot Secure Anywhere v8.0.4.66 blocks Wing and Python's access to the clipboard by default so

Copy/Paste will not work. The solution is to remove Wing and Python from the list of applications that

Webroot is denying access to the clipboard.

Windows Won't Open File Names with Spaces

File Explorer on some versions of Windows fails to open Python files with Wing if the full path of the file

has spaces in it. This is because Windows has set up the wrong command line for opening the file. You

can fix this using regedt32.exe, regedit.exe, or similar tool to edit the following registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Applications\wing.exe\shell\open\command

Trouble-shooting Guide

311

https://wingware.com/doc/debug/managing-exceptions

The problem is that the association stored there is missing quotes around the %1 argument. It should

instead be in a form similar to the following, although the actual path will vary according to your

installation location for Wing:

"C:\Program Files (x86)\Wing Pro 8\bin\wing.exe" "%1" %*

Failure to Detect HTTP Proxy and Connect to wingware.com

Wing tries to open an http connection to wingware.com when you activate a license, check for product

updates, or submit a bug report or feedback from the Help menu. If you are running in an environment

with an http proxy, Wing tries to auto-detect your proxy settings. If this fails you will need to configure

your proxy manually using Wing's Network > HTTP Proxy Server preference. To determine the correct

settings to use, ask your network administrator or see how to determine proxy settings.

Poor Mouse Wheel Scrolling on Linux

If the mouse wheel does not work right on Linux, the utility imwheel may solve it, as described here

Failure to Find Python

Wing scans for Python at startup and in rare cases may report that it could not be found even if it is on

your machine.

If this happens all the time, point Python Executable in Project Properties (accessed from the Project

menu) to your Python interpreter (python, python2.7, python.exe, etc) or the command that activates

your virtualenv or Anaconda environment. Wing remembers this and the message should go away,

even with new projects.

If this happens only intermittently, it may be caused by high load on your machine. Try restarting Wing

after load goes down. In some cases anti-virus software can cause this during periods of intensive

scanning.

22.5. Obtaining Diagnostic Output
Wing and your debug code run in separate processes, each of which can independently be configured

to collect additional diagnostic log information.

Diagnosing IDE Problems

Submit Bug Report in the Help menu is a quick way to diagnose problems seen while working with

Wing. Please include a description of the problem, your email address so we can follow up, and leave

the Include error log checkbox checked so we have the information needed to diagnose and fix the

problem. The error log is the file ide.log in your Settings Directory .

To diagnose failure to start, or if you can't submit a bug report directly from Wing, run

console_wing.exe (on Windows) or wing8 --verbose (on Linux and macOS) from the command line to

Trouble-shooting Guide

312

http://superuser.com/questions/346372/how-do-i-know-what-proxy-server-im-using
https://mintguide.org/other/643-setup-the-mouse-scroll-wheel-speed.html
https://wingware.com/doc/install/user-settings-dir

obtain diagnostic output that you can email to support at wingware.com along with your system type and

version, version of Wing, version of Python, and a description of the problem you are running into.

If Wing is crashing please provide the file segfault.log from the User Settings Directory with any bug

reports.

Diagnosing Debugger Problems

To diagnose debugger problems, set the Debugger > Diagnostics > Debug Internals Log File

preference to the full path of a file that the debugger will be able to create. Then try debugging again.

If the file does not appear, instead set the Debugger > Diagnostics > Debug Internals Log File

preference to Log to sys.stderr and enable the Debugger > I/O > Use External Console and

Debugger > I/O > External Console Waits on Exit preferences. When you try again, Wing should

display a debug console with diagnostics.

If you are using wingdbstub to start debug, instead set WINGDB_LOGFILE environment variable to

<stderr> (or alter kLogFile inside wingdbstub.py), and try launching the following script from the

command line:

import wingdbstub
print("test1")
x = not_defined
print("test2")

Never check the Extremely Verbose Internal Log preference unless Wingware Technical Support

asks you to. When this is enabled, it will drastically slow down the debugger.

Debugger diagnostic logs can be emailed to support at wingware.com together with the file ide.log in

your User Settings Directory , your system version, version of Wing, version of Python, and a

description of the problem you are seeing.

You will want to turn off diagnostic logging again after submitting your report since it slows down

debugging considerably.

Diagnosing Debug Process Crashing

If your debug process is crashing entirely while Wing is interacting with it, it may be that Wing is

exercising buggy code when it inspects data in the debug process. In this case, it can be useful to

capture the Python stack at the moment of the crash. You can do this by installing faulthandler into the

Python that runs your debug process, and then adding the following to code that is executed before the

crash:

import faulthandler
faulthandler.enable()

After that is done, the Python stack for each thread is written to stderr if the process crashes.

Trouble-shooting Guide

313

mailto:support@wingware.com
https://wingware.com/doc/install/user-settings-dir
mailto:support@wingware.com
https://wingware.com/doc/install/user-settings-dir
https://faulthandler.readthedocs.io/

If you can't access output sent to stderr, you can send the stack to a file instead, as follows:

import faulthandler
segfault_fn = '/path/to/segfault.log' # Change this to a valid path
f = open(segfault_fn, 'a')
faulthandler.enable(f)
IMPORTANT: Leave f open!!!

It is very important that you leave the file f open for the life of the process. Otherwise faulthandler may

corrupt another file opened later under the same file descriptor, by writing the stack there instead. This

is a design limitation imposed by the nature of post-segfault processing.

Please send details of debugger crashes, including the Python stacks obtained by this method, to

support@wingware.com. We will try to change Wing's data inspection to avoid the crash that you are

seeing, and we may be able to offer a work-around.

See also Problems Handling Values.

Trouble-shooting Guide

314

mailto:support@wingware.com
https://wingware.com/doc/debug/problems-handling-values

Preferences Reference
This chapter documents the entire set of available preferences for Wing Pro. Note that this includes

preferences that are ignored and unused in Wing Personal and Wing 101.

Most preferences can be set from the Preferences GUI but some users may wish to build preference

files manually to control different instances of Wing (see details in Preferences Customization).

User Interface
Display Language

The language to use for the user interface. Either the default for this system, or set to a specific

supported language.

Internal Name: main.display-language

Data Specification: [None, en, de, fr, ru]

Default Value: None

Display Theme

The display theme for Wing's user interface, either the native display style for the OS or a selected color

palette. All color preferences default to using colors from the palette, but can be overridden individually.

Additional palettes can be defined and added to the 'palettes' sub-directory of the User Settings

directory.

Internal Name: gui.display-theme

Data Specification: [None or <type str>]

Default Value: None

Editor Theme

The display theme for Wing's editor, either the same as the Display Theme or a selected color palette.

Internal Name: gui.editor-theme

Data Specification: [None or <type str>]

Default Value: None

Enable Tooltips

Controls whether or not tooltips containing help are shown when the mouse hovers over areas of the

user interface.

Internal Name: gui.enable-tooltips

Data Specification: <boolean: 0 or 1>

Preferences Reference

315

https://wingware.com/doc/custom/preferences

Default Value: 1

Tooltip Delay

The time in seconds to wait after the mouse cursor stops moving before any tooltips are displayed.

Internal Name: gui.tooltips-delay

Data Specification: <type int>

Default Value: 0.5

• Layout

Windowing Policy

Policy to use for window creation: Combined Toolbox and Editor mode places toolboxes into editor

windows, and Separate Toolbox mode creates separate toolbox windows.

Internal Name: gui.windowing-policy

Data Specification: [combined-window, separate-toolbox-window]

Default Value: combined-window

Show Editor Tabs

Controls whether or not Wing shows tabs for switching between editors. When false, a popup menu is

used instead.

Internal Name: gui.use-notebook-editors

Data Specification: <boolean: 0 or 1>

Default Value: 1

Presentation Mode

Controls whether Wing runs in presentation mode, which magnifies the user interface. Wing must be

restarted before this value takes effect.

Internal Name: main.presentation-mode

Data Specification: <boolean: 0 or 1>

Default Value: False

Presentation Mode Scale Factor

The amount by which to increase UI size when presentation mode is enabled. Wing must be restarted

before this value takes effect.

Internal Name: main.presentation-scale-factor

Preferences Reference

316

Data Specification: <type float>

Default Value: 2.0

• Toolbar

Show Toolbar

Whether toolbar is shown in any window.

Internal Name: gui.show-toolbar

Data Specification: <boolean: 0 or 1>

Default Value: 1

Toolbar Size

Sets size of the toolbar icons. By default, adjusts according to available space.

Internal Name: gui.toolbar-icon-size

Data Specification: [small, medium, large, xlarge, text-height, default]

Default Value: auto

Toolbar Style

Select style of toolbar icons to use. By default, adjusts according to available space.

Internal Name: gui.toolbar-icon-style

Data Specification: [auto, icon-only, text-only, text-below, text-right, default]

Default Value: auto

Groups Shown

Controls which groups of tools will be shown in the toolbar.

Internal Name: guimgr.toolbar-groups

Data Specification:

[list of: [file, clip, select, batch-search, search, diff, bookmark, indent, test, vcs, proj, debug]]

Default Value: ['file', 'clip', 'select', 'search', 'diff', 'indent', 'proj', 'debug']

Custom Items

Extra items to add to the tool bar.

Internal Name: guimgr.toolbar-custom-items

Data Specification: [tuple of: [tuple length 3 of: <icon spec>, <type str>, <type str>]]

Default Value: ()

Preferences Reference

317

Primary Icon Color

Primary color for icons

Internal Name: gui.icon-color-primary

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Secondary Icon Color

Secondary color for icons

Internal Name: gui.icon-color-secondary

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Tertiary Icon Color

Tertiary color for icons

Internal Name: gui.icon-color-tertiary

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Quaternary Icon Color

Quaternary color for icons

Internal Name: gui.icon-color-quaternary

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Quinary Icon Color

Quinary color for icons

Internal Name: gui.icon-color-quinary

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Senary Icon Color

Senary color for icons

Internal Name: gui.icon-color-senary

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Preferences Reference

318

Default Value: None

• Fonts

Display Font/Size

The base font and size to use for the user interface's menus and labels

Internal Name: gui.qt-display-font

Data Specification: [None or <type str>]

Default Value: None

Editor Font/Size

The base font and size to use for source code shown in the editor, Python Shell, Debug Console,

Source Assistant, and other tools that display source code.

Internal Name: edit.qt-display-font

Data Specification: [None or <type str>]

Default Value: None

• Keyboard

Personality

Selects the overall editor personality, optionally to emulate another commonly used editor.

Internal Name: edit.personality

Data Specification: [normal, brief, eclipse, emacs, osx, matlab, vi, visualstudio, xcode]

Default Value: osx

Tab Key Action

Defines the action of the Tab key, one of: "Default for Personality" to emulate the selected Keyboard

Personality. "Indent To Match" to indent the current line or selected line(s) to match the context, "Move

to Next Tab Stop" to enter indentation characters so the caret reaches the next tab stop, "Indent

Region" to increase the indentation of the selected line(s) by one level, or "Insert Tab Character" to

insert a Tab character (chr(9)). For Python files, "Smart Tab" is an option that varies the tab key action

according to the location of the caret within the line.

Internal Name: edit.tab-key-action

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {'*': '--default--', 'text/x-python': '--default--'}

Smart Tab End of Line Indents

Preferences Reference

319

Select type of indentation that Smart Tab will place at the end of a line.

Internal Name: edit.smart-tab-eol-indents

Data Specification: [None, 1, 2, 3, 4]

Default Value: 4

Alt Key

Selects the key to use as the Alt- modifier in key bindings. Note that the Option key is also used to enter

characters, such as ® on US keyboards or] on German keyboards. When the Option key is used for the

Alt key, Alt-key bindings take precedence and thus may block entering of characters with the Option

key. If both functions are needed, use the left Option key for the Alt-key and enter characters with the

right Option key. If the Command keys are used for the Alt key, any Alt-key bindings will override

Command-key bindings for the same key.

Internal Name: gui.qt-osx-key-for-alt

Data Specification: [both-option-keys, left-option-key, command-keys, none]

Default Value: left-option-key

Fallback to Mac OS key bindings

Use key bindings from macOS keymap for keys not defined in currently selected keymap

Internal Name: guimgr.fallback-to-macos-keymap

Data Specification: <boolean: 0 or 1>

Default Value: True

Use Alt for Accelerators

Specifies whether plain Alt keystrokes should be used only for accelerators. When enabled, Alt-key

presses that could be for an accelerator will be used only for accelerators and never for key bindings.

When disabled, Alt-key bindings take precedence over accelerators. This preference is ignored when

Wing is running with native macOS display style, since in that case accelerators do not exist.

Internal Name: gui.qt-os-alt-for-accelerators

Data Specification: <boolean: 0 or 1>

Default Value: False

Custom Key Bindings

Override key bindings in the keymap. To enter the key, place focus on the entry area and type the key

combination desired. The command is one of those documented in the user manual's Command

Reference, or the name of any user scripts that have been loaded into the IDE. Leave the command

Preferences Reference

320

name blank to remove the default binding for a key (this is useful when adding multi-key bindings that

conflict with a default).

Internal Name: gui.keymap-override

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {}

Typing Group Timeout

Sets the timeout in seconds to use for typing, after which keys pressed are considered a separate group

of characters. This is used for typing-to-select on lists and in other GUI areas. Before the timeout

subsequent keys are added to previous ones to refine the selection during keyboard navigation.

Internal Name: gui.typing-group-timeout

Data Specification: <type float>, <type int>

Default Value: 1

VI Mode Ctrl-C/X/V

Controls the behavior of the Ctrl-X/C/V key bindings in vi mode. Either always use these for

cut/copy/paste, use them for vi native actions such as initiate-numeric-repeat and start-select-rectangle,

or use the default by system (clipboard on win32 and other commands elsewhere).

Internal Name: vi-mode.clipboard-bindings

Data Specification: [system-default, clipboard, other]

Default Value: system-default

• Perspectives

Auto-save Perspectives

Selects whether to auto-save perspectives when switching to another perspective. Can always

auto-save, never auto-save, prompt each time a perspective is left, or auto-save as configured on a

per-perspective basis.

Internal Name: main.perspective-auto-save

Data Specification: [tuple length 2 of: [always, never, prompt, choose], <type str>]

Default Value: always

Shared Perspective File

Selects the file to use for storing and retrieving shared perspectives. By default (when value is None)

the file 'perspectives' in the user settings directory is used.

Internal Name: main.perspective-shared-file

Preferences Reference

321

Data Specification: [one of: <type NoneType>, <type str>]

Default Value: None

• Other

Show Splash Screen

Controls whether or not the splash screen is shown at startup.

Internal Name: main.show-splash-screen

Data Specification: <boolean: 0 or 1>

Default Value: 1

When Launching Wing

Controls whether Wing tries to reuse an existing running instance of the IDE when it is launched again.

Internal Name: main.instance-reuse-policy

Data Specification: [None, reuse, new]

Default Value: None

Quit Application When Last Window Closes

Quit application when last document window closes

Internal Name: guimgr.quit-on-last-window-close-osx

Data Specification: <boolean: 0 or 1>

Default Value: False

Auto-Focus Tools

Controls whether to automatically move keyboard focus from the editor to tools when they are revealed.

Internal Name: gui.auto-focus-tools

Data Specification: <boolean: 0 or 1>

Default Value: 1

Case Sensitive Sorting

Controls whether names are sorted case sensitively (with all caps preceding small letters) or case

insensitively

Internal Name: gui.sort-case-sensitive

Data Specification: <boolean: 0 or 1>

Default Value: 0

Preferences Reference

322

Always Use Full Path in Tooltips

Enable to always show the full path of a file name in the tooltips shown from the editor tabs and file

selection menus. When disabled, the configured Source Title Style is used instead.

Internal Name: gui.full-path-in-tooltips

Data Specification: <boolean: 0 or 1>

Default Value: True

• Advanced

Max Error Log Size

The number of bytes at which the IDE log file (USER_SETTINGS_DIR/ide.log) is truncated. This file can

be sent to technical support to help diagnose problems with the IDE.

Internal Name: main.max-error-log-size

Data Specification: [from 10000 to 10000000]

Default Value: 500000

Shared File Sets Repository

Selects the file to use for storing and retrieving shared named files sets. By default (when value is None)

the file 'filesets' in the user settings directory is used.

Internal Name: main.fileset-shared-file

Data Specification: [one of: <type NoneType>, <type str>]

Default Value: None

Key Map File

Defines location of the keymap override file. Use None for default according to configured editor

personality. See the Wing Manual for details on building your keymap override file -- in general this is

used only in development or debugging keymaps; use the keymap-override preference instead for

better tracking across Wing versions.

Internal Name: gui.keymap

Data Specification: [None or <type str>]

Default Value: None

Auto-check for Product Updates

Automatically check for updates at startup by connecting to wingware.com. Updates are checked every

three days, or more often for prerelease versions.

Preferences Reference

323

Internal Name: main.auto-check-updates

Data Specification: <boolean: 0 or 1>

Default Value: 1

Submit Usage Stats

Allow submitting a log of which features you use to Wingware. This is done periodically at startup and

also when you submit bug reports, feedback, or check for updates. The data provided is held

confidential, used only for technical support and planning future development, and can be seen in the

file USER_SETTINGS_DIR/stats.log

Internal Name: main.submit-usage-stats

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show Support+Upgrades Reminders

Show a reminder when Support+Upgrades for the active license is expired or will expire soon.

Internal Name: main.monitor-support-upgrades

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show Discount Offers

Controls whether Wing will periodically show discount offers.

Internal Name: main.show-offers

Data Specification: <boolean: 0 or 1>

Default Value: 1

Projects
Auto-reopen Last Project

Controls whether most recent project is reopened at startup, in the absence of any other project on the

command line.

Internal Name: main.auto-reopen-last-project

Data Specification: <boolean: 0 or 1>

Default Value: 1

Close Files with Project

Controls whether any files open in an editor are also closed when a project file is closed

Preferences Reference

324

Internal Name: proj.close-also-windows

Data Specification: <boolean: 0 or 1>

Default Value: 1

Open Projects as Text

Controls whether project files are opened as project or as text when opened from the File menu. This

does not affect opening from the Project menu.

Internal Name: gui.open-projects-as-text

Data Specification: <boolean: 0 or 1>

Default Value: 0

Confirm Drag Copy/Move

Controls whether or not the IDE will confirm file copy/move operations initiated by dragging items

around on the Project view.

Internal Name: proj.confirm-file-drags

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Context Menu

Groups Shown

Controls which groups of menu items will be shown in the Project tool's context menu.

Internal Name: proj.context-menu-groups

Data Specification: [tuple of: [clip, nav, debug, vcs, proj, file, script]]

Default Value: ['clip', 'nav', 'debug', 'vcs', 'proj', 'file', 'script']

Custom Items

Extra menu items to add to the Project tool context menu.

Internal Name: proj.context-menu-custom-items

Data Specification: [tuple of: [tuple length 2 of: <type str>, <type str>]]

Default Value: ()

• Containers

Warn Before Container Configuration

Preferences Reference

325

Controls whether to show a warning before editing a container configuration or stopping a container that

is currently in use.

Internal Name: main.show-container-config-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

Notify Container Configuration Change

Controls whether to show a notice after a change in Project Properties results in a change to the

effective container configuration.

Internal Name: main.show-container-config-changed-notice

Data Specification: <boolean: 0 or 1>

Default Value: True

When Container Image Changes

Controls what action to take if the container image for a running container instance is rebuilt or changes.

Auto-restarting instances will terminate all debug, test, OS Command, Python Shell processes on the

container without confirmation.

Internal Name: main.container-image-changed-policy

Data Specification: [auto-restart, leave-running, prompt]

Default Value: None

Warn Before Cluster Configuration

Controls whether to show a warning before editing a cluster configuration or stopping a cluster that is

currently in use.

Internal Name: main.show-cluster-config-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

Notify Cluster Configuration Change

Controls whether to show a notice when a cluster configuration is changed, causing the cluster to be

terminated and restarted.

Internal Name: main.show-cluster-config-changed-notice

Data Specification: <boolean: 0 or 1>

Default Value: True

Preferences Reference

326

When Cluster Image Changes

Controls what action to take if container images used in a running cluster are rebuilt or change.

Auto-restarting the cluster will terminate without confirmation all in-cluster debug, unit test, OS

Command, Python Shell processes.

Internal Name: main.cluster-image-changed-policy

Data Specification: [auto-restart, leave-running, prompt]

Default Value: None

Show Environment Warning

Controls whether to show a warning when a project that uses a container or cluster specifies a

non-default environment.

Internal Name: main.show-container-env-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

Files
Auto-Save Files Before Debug or Execute

Controls whether or not all edited files are saved without asking before a debug run, before starting unit

tests, or before a file or build process is executed.

Internal Name: gui.auto-save-before-action

Data Specification: <boolean: 0 or 1>

Default Value: 0

Default Directory Policy

Defines how Wing determines the starting directory to use when prompting for a file name: Either based

on location of the resource at current focus, location of the current project home directory, the last

directory visited for file selection, the current directory at startup (or selected since), or always the

specific fixed directory entered here.

Internal Name: main.start-dir-policy

Data Specification: [tuple length 2 of: [current-focus, current-project, recent-directory, current-dir

ectory, selected-directory], <type str>]

Default Value: ('current-focus', '')

Title Style

Preferences Reference

327

Format used for titles of source files: Use Base Name Only to display just the file name, Prepend

Relative Path to use partial relative path from the project file location or configured Project Home

Directory, Append Relative Path to instead append the relative path after the file namePrepend Full

Path to use full path, or Append Full Path to instead append the fullpath after the file name.

Internal Name: gui.source-title-style

Data Specification:

[basename, prepend-relative, append-relative, prepend-fullpath, append-fullpath]

Default Value: append-relative

Show Hostname in Titles

Show the remote host name in all basename-only filenames used in titles.

Internal Name: gui.include-host-in-titles

Data Specification: <boolean: 0 or 1>

Default Value: True

Default Encoding

The default encoding to use for text files opened in the source editor and other tools, when an encoding

for that file cannot be determined by reading the file. Other encodings may also be tried. This also sets

the encoding to use for newly created files.

Internal Name: edit.default-encoding

Data Specification: [None or [None, ascii, utf_16, utf_16_be, utf_16_le, utf_7, utf_8, iso8859_15, lat

in_1, mac_roman, iso8859_6, iso8859_13, iso8859_4, iso8859_14, iso8859_2, mac_latin2, iso885

9_5, mac_cyrillic, iso8859_3, iso8859_7, mac_greek, iso8859_8, mac_iceland, iso8859_10, iso88

59_9, mac_turkish, cp1140, cp1252, cp850, cp1256, cp864, cp1257, cp775, cp863, cp1250, cp852,

 big5hkscs, gb18030, gb2312, gbk, hz, big5, cp950, cp1251, cp855, cp865, cp1253, cp737, cp869,

cp875, cp1255, cp424, cp856, cp862, cp861, cp932, euc_jis_2004, euc_jisx0213, euc_jp, iso_2022

_jp, iso_2022_jp_1, iso_2022_jp_2, iso_2022_jp_2004, iso_2022_jp_3, iso_2022_jp_ext, shift_jis,

shift_jis_2004, shift_jisx0213, cp949, iso_2022_kr, johab, cp860, koi8_r, cp874, cp1026, cp1254,

cp857, cp437, cp037, koi8_u, cp1006, cp1258, cp500]]

Default Value: None

New File EOL

Default end-of-line to use. Wing matches existing line endings in non-blank files and uses this

preference only when a file contains no end-of-line characters.

Internal Name: edit.new-file-eol-style

Data Specification: [lf, cr, crlf]

Preferences Reference

328

Default Value: lf

New File Extension

Default file extension for newly created files

Internal Name: edit.new-file-extension

Data Specification: <type str>

Default Value: .py

Max Recent Items

Maximum number of items to display in the Recent menus.

Internal Name: gui.max-recent-files

Data Specification: [from 3 to 200]

Default Value: 20

Maximum File Size (MB)

Maximum size of files that Wing will try to open, in MB.

Internal Name: gui.max-file-size

Data Specification: [from 1 to 100000]

Default Value: 50

• File Types

Extra File Types

This is a map from file extension or wildcard to mime type. It adds additional file type mappings to those

built into Wing. File extensions can be specified alone without dot or wildcard, for example "xcf" or using

wildcards containing "*" and/or "?", for example "Makefile*". The mime type to use for Python files is

"text/x-python".

Internal Name: main.extra-mime-types

Data Specification: [dict; keys: <type str>, values: [text/x-asn1, text/x-abaqus, text/x-ada, text/x-co

nf, text/x-ave, text/x-baan, text/x-bash, text/x-bullant, text/x-c-source, text/x-cpp-source, text/x-ca

ml, text/x-cmake, text/x-idl, text/css, text/x-coffee, text/x-cython, text/x-d, text/x-diff, text/x-djang

o, text/x-docbook, text/x-dos-batch, text/x-escript, text/x-eiffel, text/x-erlang, text/x-errorlist, text/

x-forth, text/x-fortran, text/x-po, text/x-hss, text/html, text/x-haskell, text/x-inno-setup, applicatio

n/json, text/x-java-source, text/x-javascript, application/x-tex, text/x-lot, text/x-less, text/x-lisp, te

xt/x-lout, text/x-lua-source, text/x-mmixal, text/x-ms-idl, text/x-ms-makefile, text/x-makefile, text/x

-mako, text/x-markdown, text/x-asm, text/x-matlab, text/x-metaport, text/x-mysql, text/x-nncronta

Preferences Reference

329

b, text/x-nsis, text/x-octave, text/x-php-source, text/x-pl-sql, text/x-pov, text/x-pascal, text/x-perl,

text/plain, text/postscript, text/x-properties, text/x-python, text/x-python-interface, text/x-qss, tex

t/x-r, text/x-rc, text/x-ruby, text/x-scss, text/x-sql, text/x-scriptol, text/x-smalltalk, text/x-spice, tex

t/x-tcl, text/x-vhdl, text/x-vxml, text/x-verilog, text/x-vb-source, text/x-xcode, text/xml, text/x-yaml

, text/x-zope-pt]]

Default Value: {}

File Filters

Defines file filters to apply to file names for inclusion and exclusion from a larger set (such as scanned

disk files or all project files).

Each filter is named and contains one list of inclusion patterns and one list of exclusion patterns. The

patterns can be a wildcard on the file name, wildcard on a directory name, or a mime type name.

Only a single pattern needs to be matched for inclusion or exclusion. Exclusion patterns take

precedence over inclusion patterns, so any match on an exclusion pattern will always exclude a file

from the selected set. Filters are used in constraining search, adding project files, and for other

operations on collections of files.

Internal Name: main.file-filters

Data Specification: [file filters]

Default Value: {'Python Files': ({('mime-type', 'text/x-python'), ('mime-type', 'text/x-cython')}, {('wil

dcard-directory', 'CVS'), ('wildcard-filename', '*.swp'), ('wildcard-directory', '_svn'), ('wildcard-file

name', '*.orig'), ('wildcard-directory', '.vscode'), ('wildcard-directory', '.bzr'), ('wildcard-directory',

'.hg'), ('wildcard-filename', '.DS_Store'), ('wildcard-filename', '.#*'), ('wildcard-filename', '.hgtags'),

 ('wildcard-filename', '*~'), ('wildcard-directory', '.hgcheck'), ('wildcard-directory', '.*cache'), ('wild

card-filename', '#*#'), ('wildcard-directory', '__pycache__'), ('wildcard-filename', '/.coverage'), ('wil

dcard-directory', '.svn'), ('wildcard-filename', '*.svn-base'), ('wildcard-directory', '.xvpics'), ('wildc

ard-directory', '.git')}), 'C/C++ Files': ({('mime-type', 'text/x-cpp-source'), ('mime-type', 'text/x-c-so

urce')}, {('wildcard-directory', 'CVS'), ('wildcard-filename', '*.swp'), ('wildcard-directory', '_svn'), ('

wildcard-filename', '*.orig'), ('wildcard-directory', '.vscode'), ('wildcard-directory', '.bzr'), ('wildcar

d-directory', '.hg'), ('wildcard-filename', '.DS_Store'), ('wildcard-filename', '.#*'), ('wildcard-filenam

e', '.hgtags'), ('wildcard-filename', '*~'), ('wildcard-directory', '.hgcheck'), ('wildcard-directory', '.*c

ache'), ('wildcard-filename', '#*#'), ('wildcard-directory', '__pycache__'), ('wildcard-filename', '/.co

verage'), ('wildcard-directory', '.svn'), ('wildcard-filename', '*.svn-base'), ('wildcard-directory', '.xv

pics'), ('wildcard-directory', '.git')}), 'HTML and XML Files': ({('mime-type', 'text/html'), ('mime-type

', 'text/xml'), ('mime-type', 'text/x-zope-pt')}, {('wildcard-directory', 'CVS'), ('wildcard-filename', '*.s

wp'), ('wildcard-directory', '_svn'), ('wildcard-filename', '*.orig'), ('wildcard-directory', '.vscode'), ('

wildcard-directory', '.bzr'), ('wildcard-directory', '.hg'), ('wildcard-filename', '.DS_Store'), ('wildcar

d-filename', '.#*'), ('wildcard-filename', '.hgtags'), ('wildcard-filename', '*~'), ('wildcard-directory', '.

Preferences Reference

330

hgcheck'), ('wildcard-directory', '.*cache'), ('wildcard-filename', '#*#'), ('wildcard-directory', '__py

cache__'), ('wildcard-filename', '/.coverage'), ('wildcard-directory', '.svn'), ('wildcard-filename', '*.

svn-base'), ('wildcard-directory', '.xvpics'), ('wildcard-directory', '.git')}), 'All Source Files': (set(),

{('wildcard-filename', '*$py.class'), ('wildcard-directory', 'CVS'), ('wildcard-filename', '*.pdb'), ('wil

dcard-filename', '*.swp'), ('wildcard-filename', '*.lib'), ('wildcard-filename', '*.tgz'), ('wildcard-direc

tory', '_svn'), ('wildcard-filename', '*.dsp'), ('wildcard-filename', '*.orig'), ('wildcard-directory', '.vs

code'), ('wildcard-filename', '*.pyd'), ('wildcard-filename', '*.zip'), ('wildcard-filename', '*.exe'), ('wil

dcard-filename', '*.o'), ('wildcard-filename', '*.a'), ('wildcard-directory', '.bzr'), ('wildcard-directory'

, '.hg'), ('wildcard-filename', '*.pyc'), ('wildcard-filename', '.DS_Store'), ('wildcard-filename', '/core'

), ('wildcard-filename', '.#*'), ('wildcard-filename', '*.sln'), ('wildcard-filename', '*.so'), ('wildcard-fil

ename', '*.dsw'), ('wildcard-filename', '*.tar.gz'), ('wildcard-filename', '*~'), ('wildcard-filename', '*.

manifest'), ('wildcard-filename', '.hgtags'), ('wildcard-filename', '#*#'), ('wildcard-filename', '*.bak')

, ('wildcard-directory', '.hgcheck'), ('wildcard-directory', '.*cache'), ('wildcard-filename', '*.user'), ('

wildcard-filename', '*.obj'), ('wildcard-filename', '*.vcproj'), ('wildcard-filename', '/.coverage'), ('wil

dcard-directory', '__pycache__'), ('wildcard-directory', '.svn'), ('wildcard-filename', '*.pyo'), ('wildc

ard-filename', '*.bsc'), ('wildcard-filename', '*.svn-base'), ('wildcard-filename', '*.wpr'), ('wildcard-f

ilename', '*.sbr'), ('wildcard-filename', '*.ncb'), ('wildcard-filename', '*.tmp'), ('wildcard-filename', '

.suo'), ('wildcard-filename', '-old'), ('wildcard-directory', '.xvpics'), ('wildcard-filename', '*.old'), ('

wildcard-directory', '.git'), ('wildcard-filename', '*.log'), ('wildcard-filename', '*.ilk'), ('wildcard-filen

ame', '*.dll'), ('wildcard-filename', '*.temp'), ('wildcard-filename', '*.wpu')}), 'Hidden & Temporary F

iles': ({('wildcard-filename', '*$py.class'), ('wildcard-directory', 'CVS'), ('wildcard-filename', '*.pdb'

), ('wildcard-filename', '*.swp'), ('wildcard-filename', '*.lib'), ('wildcard-filename', '*.tgz'), ('wildcard

-directory', '_svn'), ('wildcard-filename', '*.orig'), ('wildcard-directory', '.vscode'), ('wildcard-filena

me', '*.pyd'), ('wildcard-filename', '*.zip'), ('wildcard-filename', '*.exe'), ('wildcard-filename', '*.o'), ('

wildcard-filename', '*.a'), ('wildcard-directory', '.bzr'), ('wildcard-directory', '.hg'), ('wildcard-filena

me', '*.pyc'), ('wildcard-filename', '.DS_Store'), ('wildcard-filename', '/core'), ('wildcard-filename', '

.#*'), ('wildcard-filename', '*.so'), ('wildcard-filename', '*~'), ('wildcard-filename', '*.tar.gz'), ('wildca

rd-filename', '.hgtags'), ('wildcard-directory', '.hgcheck'), ('wildcard-filename', '#*#'), ('wildcard-fil

ename', '*.bak'), ('wildcard-directory', '.*cache'), ('wildcard-filename', '*.obj'), ('wildcard-filename',

'/.coverage'), ('wildcard-directory', '__pycache__'), ('wildcard-directory', '.svn'), ('wildcard-filenam

e', '*.pyo'), ('wildcard-filename', '*.bsc'), ('wildcard-filename', '*.svn-base'), ('wildcard-filename', '*.

wpr'), ('wildcard-filename', '*.sbr'), ('wildcard-filename', '*.ncb'), ('wildcard-filename', '*.tmp'), ('wil

dcard-filename', '*-old'), ('wildcard-directory', '.xvpics'), ('wildcard-filename', '*.old'), ('wildcard-di

rectory', '.git'), ('wildcard-filename', '*.ilk'), ('wildcard-filename', '*.dll'), ('wildcard-filename', '*.tem

p'), ('wildcard-filename', '*.wpu')}, set())}

• Reloading

Reload when Unchanged

Preferences Reference

331

Selects action to perform on files found to be externally changed but unaltered within the IDE. Use Auto

Reload to automatically reload these files, Immediately Request Reload to ask via a dialog box upon

detection, Request Reload on Edit to ask only if the unchanged file is edited within the IDE

subsequently, or Never Reload to ignore external changes (although you will still be warned if you try to

save over an externally changed file)

Internal Name: cache.unchanged-reload-policy

Data Specification: [auto-reload, request-reload, edit-reload, never-reload]

Default Value: auto-reload

Reload when Changed

Selects action to perform on files found to be externally changed and that also have been altered in the

IDE. One of Immediately Request Reload to ask via a dialog box upon detection, Request Reload on

Edit to ask if the file is edited further, or Never Reload to ignore external changes (although you will

always be warned if you try to save over an externally changed file)

Internal Name: cache.changed-reload-policy

Data Specification: [request-reload, edit-reload, never-reload]

Default Value: request-reload

Reloading Deleted Disk Files

Specifies the behavior of reload when a file that is open in an editor disappears on disk. The default

Closes Editor is recommended if using revision control. Otherwise, retaining the current editor content

reduces the chances of entirely losing a file if it is accidentally deleted on disk.

Internal Name: guimgr.deleted-disk-file-policy

Data Specification: [list of: [close, blank, prompt]]

Default Value: close

External Check Freq

Time in seconds indicating the frequency with which the IDE should check the disk for files that have

changed externally. Set to 0 to disable entirely.

Internal Name: cache.external-check-freq

Data Specification: <type float>, <type int>

Default Value: 5

Check Hash Before Reloading

Don't reload files if size has not changed and a hash of the contents matches the hash when it was last

read. This check is skipped if file is larger than 5 MB.

Preferences Reference

332

Internal Name: cache.check-hash-before-reload

Data Specification: <boolean: 0 or 1>

Default Value: True

• External Display

File Display Commands

Posix only: The commands used to display or edit local disk files selected from the Help menu or project

files selected for external display. This is a map from mime type to a list of display commands; each

display command is tried in order of the list until one works. The mime type "*" can be used to set a

generic viewer, such as a web browser. Use %s to place the file name on the command lines. If

unspecified then Wing will use the configured URL viewer in the environment (specified by BROWSER

environment variable or by searching the path for common browsers). On Windows, the default viewer

for the file type is used instead so this preference is ignored. On macOS, files are opened with "open"

by default so this preference is rarely needed.

Internal Name: gui.file-display-cmds

Data Specification: [dict; keys: <type str>, values: [list of: <type str>]]

Default Value: {}

Url Display Commands

Posix only: The commands used to display URLs. This is a map from protocol type to a list of display

commands; each display command is tried in order of the list until one works. The protocol "*" can be

used to set a generic viewer, such as a multi-protocol web browser. Use %s to place the URL on the

command lines. If unspecified then Wing will use the configured URL viewer in the environment

(specified by BROWSER environment variable or by searching the path for common browsers). On

Windows, the default web browser is used instead so this preference is ignored. On macOS, URLs are

opened with "open" by default so this preference is rarely needed.

Internal Name: gui.url-display-cmds

Data Specification: [dict; keys: <type str>, values: [list of: <type str>]]

Default Value: {}

Editor
Show Line Numbers

Shows or hides line numbers on the editor.

Internal Name: edit.show-line-numbers

Data Specification: <boolean: 0 or 1>

Preferences Reference

333

Default Value: 0

Show Whitespace

Set to true to show whitespace with visible characters by default

Internal Name: edit.show-whitespace

Data Specification: <boolean: 0 or 1>

Default Value: 0

Space Indicator Size

Sets the size of the indicator to use for a space character when white space is being shown on the

editor. This may be set to zero to show only tab characters.

Internal Name: edit.space-indicator-size

Data Specification: <type int>

Default Value: 1

Show EOL

Set to true to show end-of-line with visible characters by default

Internal Name: edit.show-eol

Data Specification: <boolean: 0 or 1>

Default Value: 0

Split Reuse Policy

Policy for reusing splits in editors when new files are opened: Either always open in current split, reuse

already visible editor falling back on current split, reuse already visible editor falling back on adjacent

split, or always open in an adjacent split. This only has an effect when more than one editor split is

visible.

Internal Name: gui.split-reuse-policy

Data Specification: [current, reuse-current, reuse-adjacent, adjacent]

Default Value: current

Other Split Type

The type of split to create with commands that display in other split. The default is to split horizontally if

the window width is greater than the height and to split vertically otherwise.

Internal Name: edit.other-split-type

Data Specification: [default, vertical, horizontal]

Preferences Reference

334

Default Value: default

Show All Files in All Splits

Whether to show all open editors in a window in every split.

Internal Name: gui.all-editors-in-all-splits

Data Specification: <boolean: 0 or 1>

Default Value: True

Strip Trailing White Space

Controls whether to automatically strip trailing white space in the editor. May be enabled for any file or

only files that are part of the current project.

Internal Name: main.auto-rstrip-on-save

Data Specification: [tuple length 2 of: [disabled, on-save, on-save-project], <type str>]

Default Value: disabled

Block Comment Style

Style of commenting to use when commenting out blocks of Python code.

Internal Name: gui.block-comment-style

Data Specification: [block, block-pep8, indented, indented-pep8]

Default Value: indented

Scroll Past End

Set this to allow scrolling the editor past the last line.

Internal Name: edit.scroll-past-end

Data Specification: <boolean: 0 or 1>

Default Value: True

Ensure File Ends With EOL When Saving

Whether to add an eol at the end of the file when it is saved

Internal Name: edit.ensure-ending-eol-on-save

Data Specification: <boolean: 0 or 1>

Default Value: False

Enable Font Size Zooming

Preferences Reference

335

Whether to allow font size zooming in the editor, using the mouse wheel, track pad, or zoom-in and

zoom-out commands.

Internal Name: edit.enable-font-zoom

Data Specification: <boolean: 0 or 1>

Default Value: False

• Selection/Caret

Selection Color

The color used to indicate the current text selection on editable text.

Internal Name: gui.qt-text-selection-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Caret Color

Selects the color to use for the editor caret.

Internal Name: edit.caret-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Caret Width

Width of the blinking insertion caret on the editor, in pixels. Currently limited to a value between 1 and 3.

Internal Name: edit.caret-width

Data Specification: [from 1 to 3]

Default Value: 1

Caret Flash Rate (ms)

Sets the time in milliseconds between showing and hiding the caret when it is flashing; use 0 to disable

flashing entirely

Internal Name: edit.caret-flash-rate

Data Specification: [from 0 to 2000]

Default Value: 500

Caret Line Highlight

Preferences Reference

336

Selects whether to highlight the line the caret is currently on. When enabled, a highlight color and alpha

(to control transparency) can be set.

Internal Name: edit.caret-line-highlight

Data Specification: [None or [tuple length 2 of: [None or [tuple length 3 of: [from 0 to 255], [from 0

 to 255], [from 0 to 255]]], <type int>]]

Default Value: None

Scrolling Context Lines

The number of lines of context to show above or below the caret when auto-scrolling the editor to a new

position

Internal Name: edit.scroll-context-lines

Data Specification: <type int>

Default Value: 5

Display Selections Popup

When to display multiple selections popup window

Internal Name: edit.display-selection-popup

Data Specification: [always, multiple, never]

Default Value: multiple

• Occurrences

Highlight Occurrences

Selects when to automatically highlight other occurrences of the current selection on the editor

Internal Name: edit.highlight-occurrences

Data Specification: [always, words, never]

Default Value: words

Match Case

Disable to allow occurrences highlighting also where case does not match.

Internal Name: edit.match-case-occurrences

Data Specification: <boolean: 0 or 1>

Default Value: True

Occurrences Indicator Style

Preferences Reference

337

The style of indicator to use for highlighting other occurrences of the current selection on the editor.

Internal Name: edit.occurrence-indicator-style

Data Specification: [box, block]

Default Value: block

Occurrences Color

The color used to indicate the current text selection on editable text.

Internal Name: edit.occurrence-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Callouts

Enable Callouts

Whether to enable display of callouts that are briefly displayed to indicate textvisited in the editor by

search, goto-definition, and other navigation features.

Internal Name: edit.callout-enable

Data Specification: <boolean: 0 or 1>

Default Value: True

Callout Color

The color used for callouts on the editor.

Internal Name: edit.callout-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Persistence Time (ms)

The time in milliseconds that callouts persist after display on the editor.

Internal Name: .edit.callout-persistence

Data Specification: <type int>

Default Value: 500

• Indentation

Use Indent Analysis

Preferences Reference

338

Select when to use indent analysis (examination of current file contents) in order to determine

indentation type and size. Either always in all files, only in Python files, or never. When disabled, the

Preferred Indent Style from Project Properties and Default Indent Size and Default Tab Size from

preferences will be used.

Internal Name: edit.use-indent-analysis

Data Specification: [always, python-only, never]

Default Value: always

Default Tab Size

Set size of tabs, in spaces, used in new files. Note that in Python files that contain mixed space and tab

indentation, tab size is always forced to 8 spaces. Use the Indentation Manager to alter indentation in

existing files.

Internal Name: edit.tab-size

Data Specification: [from 1 to 80]

Default Value: 8

Default Indent Size

Sets size of an indent, in spaces, used in new files. This is overridden in non-empty files, according to

the actual contents of the file. In files with tab-only indentation, this value may be modified so it is a

multiple of the configured tab size. Use the Indentation Manager to alter indentation in existing files.

Internal Name: edit.indent-size

Data Specification: [from 1 to 80]

Default Value: 4

Default Indent Style

Set the style of indentation used in new files. This is overridden in non-empty files, according to the

actual contents of the file. Use the Indentation Manager to alter indentation in existing files.

Internal Name: edit.indent-style

Data Specification: [spaces-only, tabs-only, mixed]

Default Value: spaces-only

Auto Indent

Controls when Wing automatically indents when return or enter is typed.

Internal Name: edit.auto-indent

Data Specification: [1, blank-only, 0]

Preferences Reference

339

Default Value: 1

Show Indent Guides

Set to true to show indent guides by default

Internal Name: edit.show-indent-guides

Data Specification: <boolean: 0 or 1>

Default Value: 0

Show Python Indent Warning Dialog

Set to show a warning dialog when opening a Python file that contains potentially problematic

indentation: Either inconsistent and possibly confusing indentation, a mix of indent styles in a single file,

or mixed tab and space indentation (which is not recommended for Python).

Internal Name: edit.show-python-indent-warnings

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show Override Warning Dialog

Show indent mismatch warning dialog when user selects an indent style that is incompatible with

existing file content. This only applies to non-Python files since Wing disallows overriding the indent

style in all Python files.

Internal Name: edit.show-non-py-indent-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

• Line Wrapping

Wrap Long Lines

Enable to wrap long source lines on the editor display.

Internal Name: edit.wrap-lines

Data Specification: <boolean: 0 or 1>

Default Value: 0

Edge Markers

Control whether and how edge markers are shown in the editor.

Internal Name: edit.qt-show-edge-markers

Preferences Reference

340

Data Specification: [tuple length 3 of: [0, 1, 2], [from 0 to 10000], [None or [tuple length 3 of: [from

0 to 255], [from 0 to 255], [from 0 to 255]]]]

Default Value: (0, 80, None)

Reformatting Wrap Column

Column at which text should be wrapped by commands that automatically rearrange text

Internal Name: edit.text-wrap-column

Data Specification: <type int>

Default Value: 77

• Clipboard

On Empty Selection

Controls whether or not to copy or cut the whole current line when there is no selection on the editor.

Internal Name: edit.smart-clipboard

Data Specification: [disabled, copy, copy-cut]

Default Value: copy

Middle Mouse Paste

Paste text into the editor from the clipboard when the middle mouse button is pressed. Disabling this is

mainly useful for wheel mice with a soft wheel that causes pasting of text before wheel scrolling starts.

Internal Name: edit.middle-mouse-paste

Data Specification: <boolean: 0 or 1>

Default Value: True

Convert Indent Style On Paste

Controls whether Wing automatically converts indent style and size on text that is pasted into an editor.

Internal Name: edit.convert-indents-on-paste

Data Specification: <boolean: 0 or 1>

Default Value: True

Adjust Indent After Paste

Controls whether Wing automatically adjusts indents after multi-line text is pasted. When enabled, a

single undo will remove any alterations in indentation.

Internal Name: edit.adjust-indent-after-paste

Preferences Reference

341

Data Specification: <boolean: 0 or 1>

Default Value: True

• Syntax Coloring

Syntax Formatting

Formatting options for syntax coloring in editors. Colors are relative to a white background and will be

transformed if the background color is set to a color other than white.

Internal Name: .edit.syntax-formatting

Data Specification: [dict; keys: <type str>, values: [dict; keys: <type str>, values: [dict; keys: [fore

, back, bold, italic], values: [one of: None, <type str>, <boolean: 0 or 1>]]]]

Default Value: {}

Highlight Builtins

Highlight Python builtins

Internal Name: edit.highlight-builtins

Data Specification: <boolean: 0 or 1>

Default Value: True

• Brace Matching

Brace Highlighting

Enabled to automatically highlight the matching braces next to the cursor or as they are typed.

Internal Name: edit.auto-brace-match

Data Specification: <boolean: 0 or 1>

Default Value: 1

Brace Highlight Color

The color used to highlight matching braces.

Internal Name: edit.brace-highlight-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Brace Highlight Background Color

The background color used to highlight matching braces.

Preferences Reference

342

Internal Name: edit.brace-highlight-backcolor

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Brace Badlight Color

The color used to highlight bad braces.

Internal Name: edit.brace-badlight-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Brace Badlight Background Color

The background color used to highlight bad braces.

Internal Name: edit.brace-badlight-backcolor

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Code Warnings

Enable Code Warnings

Whether to enable the code warnings system as a whole. When this is disabled, no code warnings are

displayed and external code warnings systems will not be launched even if enabled.

Internal Name: codewarnings.enable

Data Specification: <boolean: 0 or 1>

Default Value: True

Indicators

Controls whether Wing will show error and/or warning indicators on the editor as red and yellow

underlines. When shown, hovering the mouse over the indicator shows the error or warning detail in a

tooltip.

Internal Name: edit.error-display

Data Specification: [show-all, show-errors, show-none]

Default Value: show-all

Indicator Style

Visual display style to use for code errors and warnings shown on the editor.

Preferences Reference

343

Internal Name: edit.indicator-style

Data Specification: [underline, thick-underline, squiggle, plain-box, filled-box]

Default Value: squiggle

Error Color

Color to use to indicate code errors in the editor.

Internal Name: edit.code-error-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Warning Color

Color to use to indicate code warnings in the editor.

Internal Name: edit.code-warning-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Bookmarks

Bookmark Color

Color to use on the source editor to indicate the location of user-defined bookmarks.

Internal Name: edit.qt-bookmark-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Bookmark Style

Visual display style to use for bookmarks: Either an underline, a background color change, or no visible

marker.

Internal Name: edit.bookmark-style

Data Specification: [None, underline, background]

Default Value: background

Confirm Deletion

Show a confirmation dialog when deleting bookmarks

Internal Name: edit.bookmark-confirm-delete

Data Specification: <boolean: 0 or 1>

Preferences Reference

344

Default Value: True

• Folding

Enable Folding

Whether to enable folding source code.

Internal Name: edit.enable-folding

Data Specification: <boolean: 0 or 1>

Default Value: 1

Line Mode

Whether and how to show a line at a collapsed fold point. Controls the position of the line and whether it

is shown for collapsed or expanded fold points.

Internal Name: edit.fold-line-mode

Data Specification: [above-expanded, below-expanded, above-collapsed, below-collapsed, none]

Default Value: below-collapsed

Indicator Style

Selects the type of indicators to draw at fold points.

Internal Name: edit.fold-indicator-style

Data Specification: [from 0 to 3]

Default Value: 1

Fold Trailing White Space

Controls whether or not trailing white space after a block of code is folded up along with the block, for a

more compact folded display.

Internal Name: edit.fold-trailing-whitespace

Data Specification: <boolean: 0 or 1>

Default Value: 1

Foreground Color

Color to use for the foreground of the fold indicators.

Internal Name: edit.fold-mark-foreground-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Preferences Reference

345

Background Color

Color to use for the background of the fold indicators.

Internal Name: edit.fold-mark-background-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Auto-completion

Auto-show Completer

Controls whether or not the completer is always shown automatically during typing, never auto-shown,

or shown only after a certain number of characters are in the completion fragment. When auto-show is

disabled, the auto-completer can still be shown on demand with the Show Completer item in the Source

menu.

Internal Name: edit.autocomplete-autoshow-option

Data Specification: [never, always]

Default Value: always

Python Turbo Mode

When enabled, the Python auto-completer enters the completion automatically whenever a key other

than a valid symbol name key is pressed. Press a modifier key (Shift, Alt, or Ctrl) by itself to exit the

completer without entering a completion. When disabled, only the configured completion keys enter the

completion into the editor.

Internal Name: edit.autocomplete-turbo-mode

Data Specification: <boolean: 0 or 1>

Default Value: 0

Completion Keys

Controls which keys will enter selected completion value into the editor.

Internal Name: edit.autocomplete-keys

Data Specification: [list of: [tab, return, space, f1, f3, f10, f12, period, parenleft, bracketleft, colon]]

Default Value: ['tab']

Auto-completer Height

The maximum number of lines to show in the auto-completer at once.

Internal Name: edit.autocompleter-height

Preferences Reference

346

Data Specification: <type int>

Default Value: 10

Auto-complete Delay (sec)

Delay in seconds from last key press to wait before the auto-completer is shown. If 0.0, the

auto-completer is shown immediately.

Internal Name: edit.autocomplete-delay

Data Specification: <type int>, <type float>

Default Value: 0.0

Auto-complete Timeout

Timeout in seconds from last key press after which the auto-completer is automatically hidden. If 0.0,

the auto-completer does not time out.

Internal Name: edit.autocomplete-timeout

Data Specification: <type int>, <type float>

Default Value: 0

Completion Mode

Selects how completion is done in the editor: Either insert the completion at the cursor, replace any

symbols that heuristically match the selected completion (and insert in other cases), or replace any

existing symbol with the new symbol.

Internal Name: edit.autocomplete-mode

Data Specification: [insert, replace-matching, replace]

Default Value: insert

Case Insensitive Matching

Controls whether matching in the completer is case sensitive or not. The correct case is always used

when a completion is chosen.

Internal Name: edit.autocomplete-case-insensitive

Data Specification: <boolean: 0 or 1>

Default Value: True

Non-Python Completion

Controls whether or not use the completer in non-Python files, where it uses a simple word list

generated from the existing contents of the file. If enabled, the number of characters required before the

completer is shown may be specified here.This value overrides any character threshold set above.

Preferences Reference

347

Internal Name: edit.autocomplete-non-python-option

Data Specification: [never, always]

Default Value: 3

Non-Python Word Size

Sets the minimum size of words to add to the completion list for non-Python files. This affects only

words found in the file, and not words included because they are keywords for that file type.

Internal Name: edit.autocomplete-non-python-word-size

Data Specification: <type int>

Default Value: 4

Non-Latin Script Display

Whether to display autocompleter for non-latin scripts

Internal Name: .edit.display-autocompleter-for-non-latin-scripts

Data Specification: [auto, yes, no]

Default Value: auto

• Auto-editing

Auto-Editing Enabled

Enable or disable Wing's auto-editing capability. When enabled, a default set of individual auto-editing

operations (such as auto-closing quotes and parenthesis and auto-entering invocation arguments) will

be activated. The individual operations can then be enabled or disabled independently in preferences.

Internal Name: edit.auto-edit-enabled

Data Specification: <boolean: 0 or 1>

Default Value: 1

Auto-Close Characters

Enable to auto-close quotes, parenthesis, braces, comments, and so forth.

Internal Name: edit.auto-edit-close

Data Specification: <boolean: 0 or 1>

Default Value: 1

Auto-Enter Invocation Args

Enable auto-entry of invocation arguments for a function or method call.

Preferences Reference

348

Internal Name: edit.auto-edit-invoke

Data Specification: <boolean: 0 or 1>

Default Value: 1

** Auto-wrap Arguments**

Enable auto-wrapping of arguments during auto-invocation.

Internal Name: edit.auto-edit-invoke-wraps

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Invoke After Completion**

Enable auto-invocation to occur automatically after a callable symbol is entered by the auto-completer.

Internal Name: edit.auto-edit-invoke-after-complete

Data Specification: <boolean: 0 or 1>

Default Value: 0

Apply Quotes to Selection

Enable placing quotes around a non-empty selection.

Internal Name: edit.auto-edit-quotes

Data Specification: <boolean: 0 or 1>

Default Value: 1

Mutate Adjacent Quotes

Enable changing quote style by pressing a quote key while the caret is next to an existing quote

character.

Internal Name: edit.auto-edit-mutate-quotes

Data Specification: <boolean: 0 or 1>

Default Value: 1

Apply Comment Key to Selection

Enable commenting out a non-empty selection when a comment character is pressed.

Internal Name: edit.auto-edit-comment

Data Specification: <boolean: 0 or 1>

Default Value: 1

Preferences Reference

349

Apply (), [], and {} to Selection

Enable surrounding non-empty selection when a parenthesis is pressed.

Internal Name: edit.auto-edit-parens

Data Specification: <boolean: 0 or 1>

Default Value: 1

Apply Colon to Selection

Enable creating a new block with a selected range of lines when colon is pressed.

Internal Name: edit.auto-edit-colon-creates-block

Data Specification: <boolean: 0 or 1>

Default Value: 1

Auto-Enter Spaces

Enable auto-entering spaces around operators and punctuation.

Internal Name: edit.auto-edit-spaces

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Auto-Space After Keywords**

Enable auto-entering spaces after keywords.

Internal Name: edit.auto-edit-spaces-kw

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Enforce PEP 8 Style Spacing**

When auto-entering spaces is enabled, enforce PEP 8 style spacing by preventing redundant spaces.

Internal Name: edit.auto-edit-spaces-enforce

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Spaces Around = in Argument Lists**

Add spaces around = in argument lists.

Internal Name: edit.auto-edit-spaces-args

Data Specification: <boolean: 0 or 1>

Preferences Reference

350

Default Value: 0

** Spaces Elsewhere in Argument Lists**

Add spaces around characters other than = in argument lists.

Internal Name: edit.auto-edit-spaces-args-override

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Spaces After : in Type Annotations**

When auto-entering spaces is enabled, also auto-enter spaces around ":" in type annotations.

Internal Name: edit.auto-edit-spaces-types

Data Specification: <boolean: 0 or 1>

Default Value: 0

Manage Blocks on Repeated Colon Key Presses

Auto-enter newline and auto-indent after typing a colon that starts a new Python block and indent

following line or block of lines when colon is pressed repeatedly. This also starts a new Python block

using a selected range of lines as the body, if colon is pressed on a non-empty selection.

Internal Name: edit.auto-edit-colon

Data Specification: <boolean: 0 or 1>

Default Value: True

** Prefer Block Management in Assignments**

Prioritize block management with : over the possibility of entering a var:type variable type annotation

(Python 3.6+) or := (Python 3.8+). When this is disabled, typing : a second time will proceed with block

management.in the current editing context.

Internal Name: edit.auto-edit-colon-prioritize-blocks

Data Specification: <boolean: 0 or 1>

Default Value: False

Continue Comment or String on New Line

Automatically continue comments or strings in the form ("") or () after a newline is typed within the

comment or string text

Internal Name: edit.auto-edit-continue

Data Specification: <boolean: 0 or 1>

Preferences Reference

351

Default Value: 1

Correct Out-of-Order Typing

Automatically correct code when typing keys out of order. This handles cases such as x(.) -> x(). and

x(:) -> x(): as well as auto-inserting . when missing

Internal Name: edit.auto-edit-fixups

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Auto-formatting

Auto-Reformat

Controls when Wing automatically reformats code as you edit it. May be disabled, limited to only edited

lines after the caret leaves that line, or performed on whole files when they are saved to disk.

Internal Name: edit.pep8-autoformat

Data Specification: [disabled, lines, files]

Default Value: disabled

Reformatter

Selects the reformatter to use when reformatting code automatically.

Internal Name: edit.pep8-reformatter

Data Specification: [pep8, black, yapf]

Default Value: pep8

Reformat Timeout

Number of seconds to wait for auto-formatting to complete before aborting the reformatting process.

Internal Name: edit.pep8-timeout

Data Specification: <type float>, <type int>

Default Value: 5

Enforce Line Length

Whether to enforce line length during auto-formatting. The length is specified with the Editor > Line

Wrapping > Reformatting Wrap Column preference.

Internal Name: edit.pep8-enforce-line-length

Data Specification: <boolean: 0 or 1>

Preferences Reference

352

Default Value: 0

PEP 8: Reindent All Lines in Files

Whether to reindent all lines during PEP 8 reformatting. This affects only reformatting of whole files.

Lines in a selection are never reindented during reformatting.

Internal Name: edit.pep8-reindent-all-lines

Data Specification: <boolean: 0 or 1>

Default Value: 0

PEP 8: Spaces Around = in Argument Lists

Override PEP 8 by adding spaces around = in argument lists.

Internal Name: edit.pep8-spaces-args

Data Specification: <boolean: 0 or 1>

Default Value: 0

PEP 8: Spaces After #

When applying PEP 8 rules, follow PEP 8 by enforcing the addition of spaces after # comment start.

This option will lose indents in any commented out code.

Internal Name: edit.pep8-spaces-comment

Data Specification: <boolean: 0 or 1>

Default Value: 0

PEP 8: Move Imports to Top

When applying PEP 8 rules, follow PEP 8 by moving all imports to the top of the file.

Internal Name: edit.pep8-move-indents-to-top

Data Specification: <boolean: 0 or 1>

Default Value: 0

Black: Skip String Normalization

Whether or not to prevent Black from normalizing string quotes during auto-formatting.

Internal Name: edit.black-skip-string-normalization

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Snippets

Preferences Reference

353

Include Snippets in Auto-Completer

Whether or not to include code snippets in the auto-completer.

Internal Name: edit.snippets-in-autocompleter

Data Specification: <boolean: 0 or 1>

Default Value: True

Include Default Snippets

Whether to include the default snippets set in the Snippets tool. These are found in the User Settings

directory (USER_SETTINGS_DIR)

Internal Name: edit.snippets-include-defaults

Data Specification: <boolean: 0 or 1>

Default Value: True

Snippets Path

Path to search for code snippets. Later directories on the path override earlier directories for a particular

snippet name. Partial paths are interpreted relative to the current user's home directory (/Users/jpe/).

new snippets will be created in the last directory on the path.

Internal Name: edit.snippets-path

Data Specification: [tuple of: <type str>]

Default Value: ()

• Diff/Merge

Orientation

Orientation of difference/merge views: Side-by-side or top/bottom

Internal Name: diff.orientation

Data Specification: [horizontal, vertical]

Default Value: horizontal

Lock Scrolling

Controls whether scrolling of the diff/merge editors is locked to synchronize the editor scroll positions.

Internal Name: diff.scroll-lock

Data Specification: <boolean: 0 or 1>

Default Value: True

Preferences Reference

354

Ignore White Space

Controls whether differences will ignore changes that alter white space only.

Internal Name: diff.ignore-whitespace

Data Specification: <boolean: 0 or 1>

Default Value: False

Empty Session Warning

Controls whether to warn when changing white space filtering causes sessions to become empty of

changes.

Internal Name: diff.empty-session-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

Diff Color

Color to use on the source editor for differences during a diff/merge session. The current mark is drawn

in a lighter version of the same color. The within-difference change indicators are drawn transparently

with the color set in the Text Selection Color preference.

Internal Name: edit.qt-diff-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Merged Diff Color

Color to use on the source editor for already merged differences during a diff/merge session. The

current mark is drawn in a lighter version of the same color. The within-difference change indicators are

drawn transparently with the color set in the Text Selection Color preference.

Internal Name: edit.qt-merged-diff-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Printing

Document Font

Font to use when printing.

Internal Name: edit.print-font

Data Specification: [None or <type str>]

Preferences Reference

355

Default Value: None

Use Default Foreground Colors

Use default foreground colors for all text when printing. This is necessary when using a dark

background in the GUI and printing on white paper.

Internal Name: edit.use-default-foreground-when-printing

Data Specification: <boolean: 0 or 1>

Default Value: False

Print Header Format

Set the header format to use for printing. This can be any text with any of the following special fields

mixed in: %basename% - base file name; %prepend-fullpath% - full path file name; %prepend-relative%

- relative path with from project file; %append-relative% - file name with relative path appended;

%append-fullpath% - file name with full path appended; %file-time% - file modification time; %file-date%

- file modification date; %current-time% - current time; %current-date% - current date; %page% -

current page being printed

Internal Name: edit.print-header-format

Data Specification: <type str>

Default Value: %prepend-fullpath%

Print Header Font

Font to use in print header.

Internal Name: edit.print-header-font

Data Specification: [None or <type str>]

Default Value: None

Print Footer Format

Set the footer format to use for printing. The values allowed are the same as those for

print-header-format.

Internal Name: edit.print-footer-format

Data Specification: <type str>

Default Value: Page %page%, last modified %file-date% %file-time%

Print Footer Font

Font to use in print footer.

Internal Name: edit.print-header-font

Preferences Reference

356

Data Specification: [None or <type str>]

Default Value: None

• Context Menu

Groups Shown

Controls which groups of menu items will be shown in the editor's context menu.

Internal Name: edit.context-menu-groups

Data Specification: [list of: [clip, nav, debug, comment, indent, vcs, script]]

Default Value: ['clip', 'nav', 'debug', 'comment', 'indent', 'vcs', 'script']

Custom Items

Extra menu items to add to the editor context menu.

Internal Name: edit.context-menu-custom-items

Data Specification: [tuple of: [tuple length 2 of: <type str>, <type str>]]

Default Value: ()

• Advanced

Maximum Non-Sticky Editors

Maximum number of non-sticky (auto-closing) editors to keep open at one time, in addition to any that

are visible on screen

Internal Name: gui.max-non-sticky-editors

Data Specification: <type int>

Default Value: 5

Use Custom Mouse Cursor

When to use a custom mouse cursor. The color of the cursor will be the color of the caret.

Internal Name: edit.use-custom-mouse-cursor

Data Specification: [on-dark-backgrounds, never, always]

Default Value: on-dark-backgrounds

Mini-search Case Sensitivity

Whether or not mini-search is case sensitive. May match the current keyboard personality's default, use

case sensitive search only if an upper case character is typed, always search case sensitive, or always

search case insensitively.

Preferences Reference

357

Internal Name: edit.minisearch-case-sensitive

Data Specification: [match-mode, if-upper, always, never]

Default Value: match-mode

Symbol Menu Max Length

The maximum number of names allowed on a single symbol menu

Internal Name: .edit.max-symbol-menu-name-count

Data Specification: <type int>

Default Value: 200

Selection Policy

This controls whether to retain selection in the editor after certain operations. The editor may always

select the text that was operated on, only retain existing selections, or never select after the operation

completes.

Internal Name: edit.select-policy

Data Specification: [dict; keys: [('Indent Region', 'indent-region'), ('Outdent Region', 'outdent-regi

on'), ('Indent To Match', 'indent-to-match'), ('Comment out Region', 'comment-out-region'), ('Unc

omment out Region', 'uncomment-out-region')], values: [('Always Select', 'always-select'), ('Retai

n Select', 'retain-select'), ('Never Select', 'never-select')]]

Default Value: {'indent-region': 'retain-select', 'outdent-region': 'retain-select', 'indent-to-match': 'r

etain-select', 'comment-out-region': 'retain-select', 'uncomment-out-region': 'retain-select'}

Debugger
Integer Display Mode

Select the display style for integer values.

Internal Name: debug.default-integer-mode

Data Specification: [dec, hex, oct]

Default Value: dec

Hover Over Symbols

Enable to display debug data values for any symbol on the editor when the mouse cursor hovers over it.

Internal Name: debug.hover-over-symbols

Data Specification: <boolean: 0 or 1>

Default Value: 1

Preferences Reference

358

Hover Over Selection

Controls whether debug values are shown when the mouse hovers over a selection in the editor. This

may be disabled, enabled for symbols (like x.y.z) only, or enabled for all selections including function or

methods calls. WARNING: Enabling evaluation of any selection may result in function or method calls

that have side effects such as altering the program state or even making unintended database or disk

accesses!

Internal Name: debug.hover-over-selections

Data Specification: [0, 1, all]

Default Value: 1

Run Marker Color

The color of the text highlight used for the run position during debugging

Internal Name: debug.debug-marker-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Run Marker Alpha

Select transparency (0-160) of the text highlight used for the run position during debugging

Internal Name: debug.run-marker-alpha

Data Specification: [None or <type int>]

Default Value: None

Active Range Color

The color of the active range of code used for quick evaluation in the Python Shell or Debug Console.

Internal Name: debug.active-range-color

Data Specification: [None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Line Threshold

Defines the character length threshold under which a value will always be shown on a single line, even if

the value is a complex type like a list or dict.

Internal Name: debug.line-threshold

Data Specification: <type int>

Default Value: 95

Preferences Reference

359

Show Debug Environment Dialog

Controls whether the Debug Environment dialog is shown before each debug run: Either never show the

dialog or show it only if 'Show this dialog before each run' is checked in the launch file's or named entry

point's properties.

Internal Name: debug.show-args-dialog

Data Specification: [never, per-file]

Default Value: per-file

Indicate Project Files in Stack

Enable to indicate projects files in the the debug stack, in the stack selector, Stack Data, and Exception

tools.

Internal Name: debug.indicate-project-files

Data Specification: <boolean: 0 or 1>

Default Value: True

• Processes

Enable Multi-Process Debugging

Enable multi-process debugging. When disabled, Wing will only accept one debug connection at a time.

Internal Name: debug.multi-process-debug

Data Specification: <boolean: 0 or 1>

Default Value: True

Switch to Stopped Processes

When to automatically switch the currently active debug process to a process that reaches a breakpoint

or exception. The default Switch to Most Recently Launched Process Group switches only if there is no

other debug process active or if the process belongs to the most recently debug session started from

the IDE (this does not include processes that attach using wingdbstub).

Internal Name: debug.multi-process-switch

Data Specification: [none, launched, always]

Default Value: launched

Debug Child Processes

Enable debugging sub-processes. When disabled, Wing will only debug the initially launched parent

process.

Preferences Reference

360

Internal Name: debug.multi-process-debug-sub-processes

Data Specification: <boolean: 0 or 1>

Default Value: False

Replace sys.executable

Enable replacement of sys.executable so that processes launched using that value will be debugged.

This must be enabled on Windows in order to debug child processes created with the multiprocessing

module.

Internal Name: debug.multi-process-replace-sys-executable

Data Specification: <boolean: 0 or 1>

Default Value: True

Maximum Process Count

Maximum number of debug processes that can connect to Wing at once. After the limit is reached, Wing

accepts no additional connections until some processes detach or exit.

Internal Name: debug.multi-process-maximum

Data Specification: <type int>

Default Value: 50

Debug Multiple Tests at Once

Enable debugging more than one unit test at once. When enabled, the Debug/Abort button in the

Testing tool alters according to which test is selected.

Internal Name: debug.multi-process-multiple-tests

Data Specification: <boolean: 0 or 1>

Default Value: False

Debug Multiple Instances of a Named Entry Point

Enable debugging more than one instance of a named entry point. When disabled, any existing debug

process for a named entry point will be terminated when it is debugged.

Internal Name: debug.multi-process-multiple-entry-points

Data Specification: <boolean: 0 or 1>

Default Value: False

• Exceptions

Report Exceptions

Preferences Reference

361

Controls how Wing reports exceptions that are raised by your debug process. By default, Wing shows

exceptions at the time that the exception traceback would normally be printed. Alternatively, Wing can

try to predict which exceptions are unhandled, and stop immediately when unhandled exceptions are

raised so that any finally clauses can be stepped through in the debugger. Wing can also stop on all

exceptions (even if handled) immediately when they are raised, or it can wait to report fatal exceptions

as the debug process terminates. In the latter case Wing makes a best effort to stop before the debug

process exits or at least to report the exception post-mortem, but one or both may fail if working with

externally launched debug processes. In that case, we recommend using When Printed exception

reporting mode.

Internal Name: debug.exception-mode

Data Specification: [unhandled, never, always, printed]

Default Value: printed

Report Logged Exceptions In When Printed Mode

Controls whether to stop on exceptions logged with logging.exception if the exception mode is set to

'When Printed'

Internal Name: debug.stop-on-logged-exception

Data Specification: <boolean: 0 or 1>

Default Value: True

Never Report

Names of builtin exceptions to never report, even if the exception is not handled. This list takes

precedence over the Always Report preference and the Report Exceptions preference when it is set to a

value other than Always Immediately.

Internal Name: debug.never-stop-exceptions

Data Specification: [tuple of: <type str>]

Default Value: ['SystemExit', 'GeneratorExit']

Always Report

Names of builtin exceptions to (nearly) always report. These exceptions are not reported only if they are

explicitly caught by the specific subclass in the same frame in which they are raised.

Internal Name: debug.always-stop-exceptions

Data Specification: [tuple of: <type str>]

Default Value: ['AssertionError']

• I/O

Preferences Reference

362

Debug I/O Encoding

Encoding of input/output in the Debug I/O panel

Internal Name: debug.debug-io-encoding

Data Specification: [None or [Console default (utf-8), None, English ascii, Unicode (UTF-16) utf-16,

 Unicode (UTF-16, big endian) utf-16-be, Unicode (UTF-16, little endian) utf-16-le, Unicode (UTF-7

) utf-7, Unicode (UTF-8) utf-8, Western European iso8859-15, Western European latin-1, Western

European mac-roman, Arabic iso8859-6, Baltic Languages iso8859-13, Baltic Languages iso8859

-4, Celtic Languages iso8859-14, Central and Eastern European iso8859-2, Central and Eastern E

uropean mac-latin2, Cyrillic Languages iso8859-5, Cyrillic Languages mac-cyrillic, Esperanto an

d Maltese iso8859-3, Greek iso8859-7, Greek mac-greek, Hebrew iso8859-8, Icelandic mac-icelan

d, Nordic Languages iso8859-10, Turkish iso8859-9, Turkish mac-turkish, Western European cp1

140, Western European cp1252, Western European cp850, Arabic cp1256, Arabic cp864, Baltic L

anguages cp1257, Baltic Languages cp775, Canadian English/French cp863, Central and Easter

n European cp1250, Central and Eastern European cp852, Chinese (PRC) big5hkscs, Chinese (P

RC) gb18030, Chinese (PRC) gb2312, Chinese (PRC) gbk, Chinese (PRC) hz, Chinese (ROC) big5

, Chinese (ROC) cp950, Cyrillic Languages cp1251, Cyrillic Languages cp855, Danish, Norwegia

n cp865, Greek cp1253, Greek cp737, Greek cp869, Greek cp875, Hebrew cp1255, Hebrew cp424,

 Hebrew cp856, Hebrew cp862, Icelandic cp861, Japanese cp932, Japanese euc-jis-2004, Japane

se euc-jisx0213, Japanese euc-jp, Japanese iso-2022-jp, Japanese iso-2022-jp-1, Japanese iso-2

022-jp-2, Japanese iso-2022-jp-2004, Japanese iso-2022-jp-3, Japanese iso-2022-jp-ext, Japanes

e shift-jis, Japanese shift-jis-2004, Japanese shift-jisx0213, Korean cp949, Korean iso-2022-kr, K

orean johab, Portuguese cp860, Russian koi8-r, Thai cp874, Turkish cp1026, Turkish cp1254, Tu

rkish cp857, US, Australia, New Zealand, S. Africa cp437, US, Canada, and Others cp037, Ukraini

an koi8-u, Urdu cp1006, Vietnamese cp1258, Western European cp500]]

Default Value: utf_8

Flush I/O Periodically

Controls when the debugger periodically flushes I/O sent to sys.stdout and sys.stderr. Doing so may

deadlock in some code. Not doing so may not display text that has been output without newline.

Internal Name: debug.flush-io

Data Specification: [Always, Only if Single-Threaded, Never]

Default Value: single-thread

Shell Encoding

Encoding of input/output in the integrated Python Shell and Debug Console

Internal Name: debug.debug-probe-encoding

Preferences Reference

363

Data Specification: [None or [Use default stdin / stdout encoding, None, English ascii, Unicode (U

TF-16) utf-16, Unicode (UTF-16, big endian) utf-16-be, Unicode (UTF-16, little endian) utf-16-le, U

nicode (UTF-7) utf-7, Unicode (UTF-8) utf-8, Western European iso8859-15, Western European lat

in-1, Western European mac-roman, Arabic iso8859-6, Baltic Languages iso8859-13, Baltic Lang

uages iso8859-4, Celtic Languages iso8859-14, Central and Eastern European iso8859-2, Central

 and Eastern European mac-latin2, Cyrillic Languages iso8859-5, Cyrillic Languages mac-cyrillic

, Esperanto and Maltese iso8859-3, Greek iso8859-7, Greek mac-greek, Hebrew iso8859-8, Icelan

dic mac-iceland, Nordic Languages iso8859-10, Turkish iso8859-9, Turkish mac-turkish, Western

 European cp1140, Western European cp1252, Western European cp850, Arabic cp1256, Arabic

cp864, Baltic Languages cp1257, Baltic Languages cp775, Canadian English/French cp863, Cent

ral and Eastern European cp1250, Central and Eastern European cp852, Chinese (PRC) big5hks

cs, Chinese (PRC) gb18030, Chinese (PRC) gb2312, Chinese (PRC) gbk, Chinese (PRC) hz, Chin

ese (ROC) big5, Chinese (ROC) cp950, Cyrillic Languages cp1251, Cyrillic Languages cp855, Da

nish, Norwegian cp865, Greek cp1253, Greek cp737, Greek cp869, Greek cp875, Hebrew cp1255,

Hebrew cp424, Hebrew cp856, Hebrew cp862, Icelandic cp861, Japanese cp932, Japanese euc-ji

s-2004, Japanese euc-jisx0213, Japanese euc-jp, Japanese iso-2022-jp, Japanese iso-2022-jp-1,

Japanese iso-2022-jp-2, Japanese iso-2022-jp-2004, Japanese iso-2022-jp-3, Japanese iso-2022-j

p-ext, Japanese shift-jis, Japanese shift-jis-2004, Japanese shift-jisx0213, Korean cp949, Korean

 iso-2022-kr, Korean johab, Portuguese cp860, Russian koi8-r, Thai cp874, Turkish cp1026, Turki

sh cp1254, Turkish cp857, US, Australia, New Zealand, S. Africa cp437, US, Canada, and Others

cp037, Ukrainian koi8-u, Urdu cp1006, Vietnamese cp1258, Western European cp500]]

Default Value: utf_8

Pretty Print in Shells

Enable to use pprint.pprint to display values in the Python Shell and Debug Console.

Internal Name: debug.pretty-print-in-shells

Data Specification: <boolean: 0 or 1>

Default Value: False

OS Commands Encoding

Default encoding of sub-process input/output when run in the OS Commands panel. This can be

overridden on a per-command basis, in each command's properties.

Internal Name: consoles.encoding

Data Specification: [None or [Console default (utf-8), None, English ascii, Unicode (UTF-16) utf-16,

 Unicode (UTF-16, big endian) utf-16-be, Unicode (UTF-16, little endian) utf-16-le, Unicode (UTF-7

) utf-7, Unicode (UTF-8) utf-8, Western European iso8859-15, Western European latin-1, Western

European mac-roman, Arabic iso8859-6, Baltic Languages iso8859-13, Baltic Languages iso8859

-4, Celtic Languages iso8859-14, Central and Eastern European iso8859-2, Central and Eastern E

Preferences Reference

364

uropean mac-latin2, Cyrillic Languages iso8859-5, Cyrillic Languages mac-cyrillic, Esperanto an

d Maltese iso8859-3, Greek iso8859-7, Greek mac-greek, Hebrew iso8859-8, Icelandic mac-icelan

d, Nordic Languages iso8859-10, Turkish iso8859-9, Turkish mac-turkish, Western European cp1

140, Western European cp1252, Western European cp850, Arabic cp1256, Arabic cp864, Baltic L

anguages cp1257, Baltic Languages cp775, Canadian English/French cp863, Central and Easter

n European cp1250, Central and Eastern European cp852, Chinese (PRC) big5hkscs, Chinese (P

RC) gb18030, Chinese (PRC) gb2312, Chinese (PRC) gbk, Chinese (PRC) hz, Chinese (ROC) big5

, Chinese (ROC) cp950, Cyrillic Languages cp1251, Cyrillic Languages cp855, Danish, Norwegia

n cp865, Greek cp1253, Greek cp737, Greek cp869, Greek cp875, Hebrew cp1255, Hebrew cp424,

 Hebrew cp856, Hebrew cp862, Icelandic cp861, Japanese cp932, Japanese euc-jis-2004, Japane

se euc-jisx0213, Japanese euc-jp, Japanese iso-2022-jp, Japanese iso-2022-jp-1, Japanese iso-2

022-jp-2, Japanese iso-2022-jp-2004, Japanese iso-2022-jp-3, Japanese iso-2022-jp-ext, Japanes

e shift-jis, Japanese shift-jis-2004, Japanese shift-jisx0213, Korean cp949, Korean iso-2022-kr, K

orean johab, Portuguese cp860, Russian koi8-r, Thai cp874, Turkish cp1026, Turkish cp1254, Tu

rkish cp857, US, Australia, New Zealand, S. Africa cp437, US, Canada, and Others cp037, Ukraini

an koi8-u, Urdu cp1006, Vietnamese cp1258, Western European cp500]]

Default Value: None

Use External Console

Selects whether to use the integrated Debug I/O tool for debug process input/output or an external

terminal window. Use an external window if your debug process depends on details of the command

prompt environment for cursor movement, color text, etc. External consoles only work for locally run

code. Remote debugging always uses the Debug I/O tool. To debug code running remotely in an

external console, use wingdbstub to initiate debug.

Internal Name: debug.external-console

Data Specification: <boolean: 0 or 1>

Default Value: 0

External Console Waits on Exit

Determines whether to leave up the console after normal program exit, or to close the console right

away in all cases. This is only relevant when running with an external native console instead of using

the integrated Debug I/O tool.

Internal Name: debug.persist-console

Data Specification: <boolean: 0 or 1>

Default Value: 0

External Consoles

Preferences Reference

365

A list of the terminal programs that are used with debug processes when running with an external

console. Each is tried in turn until one is found to exist. If just the name is given, Wing will look for each

first on the PATH and then in likely places. Specify the full path (starting with "/") to use a specific

executable. If program arguments are specified, they must end with the argument that indicates that the

rest of arguments are the program to run in the terminal. If the program name starts with

${WINGHOME} , ${WINGHOME} is replaced by the Wing install directory. On macOS if the program

name ends is .applescript, the environment is loaded from a file before starting the debugger.

Internal Name: debug.x-terminal

Data Specification: [tuple of: <type str>]

Default Value: ['${WINGHOME}/resources/osx/run-in-terminal.applescript', 'gnome-terminal "--titl

e=Wing Debug Process" -x', 'xterm -T "Wing Debug Process" -e', 'konsole -T "Wing Debug Proc

ess" -e', 'rxvt -T "Wing Debug Process" -e']

• Data Display

Show __name Protected Variables

Controls whether the debugger shows protected variables (with one leadingunderscore) in the Stack

Data view.

Internal Name: debug.show-protected-variables

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show ____name Private Variables

Controls whether the debugger shows private variables (with two leadingunderscores) in the Stack Data

view.

Internal Name: debug.show-private-variables

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show ____name____ Special Variables

Controls whether the debugger shows special variables (with two leadingand two trailing underscores)

in the Stack Data view.

Internal Name: debug.show-special-variables

Data Specification: <boolean: 0 or 1>

Default Value: 1

Preferences Reference

366

Show Memory Addresses

Controls whether the debugger shows memory addresses as part of the display of object instances.

Internal Name: debug.show-memory-addresses

Data Specification: <boolean: 0 or 1>

Default Value: 1

Huge List Threshold

Defines the length threshold over which a list, dict, or other complex type will be considered too large to

show in the debugger. If this is set too large, the debugger will time out (see the Network Timeout

preference)

Internal Name: debug.huge-list-threshold

Data Specification: <type int>

Default Value: 2000

Huge String Threshold

Defines the length over which a string is considered too large to fetch for display in the debugger. If this

is set too large, the debugger will time out (see the Network Timeout preference).

Internal Name: debug.huge-string-threshold

Data Specification: <type int>

Default Value: 64000

Show Data Warnings

Controls whether or not time out, huge value, and error handling value errors are displayed by the

debugger the first time they are encountered in each run of Wing.

Internal Name: debug.show-debug-data-warnings

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Data Filters

Omit Types

Lists types for which values are never shown by the debugger. The strings here are compared with

type(value).__name__ and the value is omitted if a match is found.

Internal Name: debug.omit-types

Data Specification: [tuple of: <type str>]

Preferences Reference

367

Default Value: ('function', 'builtin_function_or_method', 'class', 'classobj', 'instance method', 'typ

e', 'module', 'ufunc', 'cython_function_or_method', 'wrapper_descriptor', 'method_descriptor', 'm

ethoddescriptor', 'member_descriptor', 'classmethod', 'staticmethod')

Omit Names

Defines variable/key names for which values are never shown by the debugger.

Internal Name: debug.omit-names

Data Specification: [tuple of: <type str>]

Default Value: ()

Do Not Expand

Lists types for which values should never be probed for contents. These are types that are known to

crash when the debugger probes them because they contain buggy data value extraction code. These

values are instead shown as an opaque value with hex object instance id and are never accessed for

runtime introspection. The strings here are compared with type(value).__name__ and a value is not

probed if a match is found.

Internal Name: debug.no-probe-types

Data Specification: [tuple of: <type str>]

Default Value: ('GdkColormap', 'IOBTree', 'JPackage', 'cython_function_or_method')

• Introspection

Resolve Properties

Set to show property values in the debug data views. This should be used with caution. It enables

invocation of the fget() method on the property, which in some code bases can execute unwanted code,

make unexpected changes to runtime state, hang on lengthy computations, trigger thread deadlocks, or

crash on buggy user code while debug data is being displayed in the IDE.

Internal Name: debug.resolve-properties

Data Specification: <boolean: 0 or 1>

Default Value: False

Allow Calls in Data Inspection

Enable to allow Python code and other dynamic calls to be invoked while inspecting data in the

debugger, for display in any part of the IDE's user interface. This should be used with caution because it

can cause the debug process to execute unwanted code, make unexpected changes to runtime state,

hang on lengthy computations, deadlock threads, or crash in buggy code.

Internal Name: debug.allow-dynamic-introspection

Preferences Reference

368

Data Specification: <boolean: 0 or 1>

Default Value: False

Call Python ____repr____ Methods

Allow __repr__ methods implemented in Python to be invoked. Disable this if the __repr__ methods

take too long to complete or fail due to other bugs.

Internal Name: debug.allow-bytecode-repr

Data Specification: <boolean: 0 or 1>

Default Value: True

Inspect Base Classes

Whether to inspect base classes for class attributes. Disable this to work around crashing in packages

such as openerp and odoo.

Internal Name: debug.max-base-classes

Data Specification: <boolean: 0 or 1>

Default Value: True

• Listening

Accept Debug Connections

Controls whether or not the debugger listens for connections from an externally launched program. This

should be enabled when the debug program is not launched by the IDE.

Internal Name: debug.passive-listen

Data Specification: <boolean: 0 or 1>

Default Value: 0

Kill Externally Launched Processes

Enable or disable terminating debug processes that were launched from outside of the IDE. When

disabled, Wing just detaches from the process, leaving it running.

Internal Name: debug.enable-kill-external

Data Specification: <boolean: 0 or 1>

Default Value: 0

Server Host

Determines the network interface on which the debugger listens for connections. This can be a symbolic

name, an IP address, or left unspecified to indicate that the debugger should listen on all valid network

Preferences Reference

369

interfaces on the machine. Note that when a debug session is launched from within the IDE (with the

Run button), it always connects from the loopback interface (127.0.0.1)

Internal Name: debug.network-server

Data Specification: [None or <type str>]

Default Value: None

Server Port

Determines the TCP/IP port on which the IDE will listen for the connection from the debug process. This

needs to be unique for each developer working on a given host. The debug process, if launched from

outside of the IDE, needs to be told the value specified here using kWingHostPort inside wingdbstub.py

or by WINGDB_HOSTPORT environment variable before importing wingdbstub in the debug process.

Internal Name: debug.network-port

Data Specification: [from 0 to 65535]

Default Value: 50005

• Network

Use Digests to Identify Files

Controls whether to build an inferred location map from file digest matches that are found locally when

debugging files on a remote host. This allows the debugger to find files that are not in the project and

were not found to be imported by static analysis, or that are still waiting to be scanned.

Internal Name: debug.use-digests-to-identify-files

Data Specification: <boolean: 0 or 1>

Default Value: True

Warn About Ambigious Digest Matches

Controls whether to show a dialog when the debugger detects a remote file that matches more than one

local file.

Internal Name: debug.show-multiple-local-files

Data Specification: <boolean: 0 or 1>

Default Value: True

Location Map

Defines a mapping between the remote and local locations of files for host-to-host debugging. This is

used only for manual remote debug configuration and is ignored when debug is controlled by a remote

host configuration. For each specific IP address or IP address with wildcards (e.g. 10.1.1.*), a remote

Preferences Reference

370

and local prefix is given. This should be used when full paths of files on the remote host do not match

those for the same files on the local host. Wing assumes an external file server or synchronization

protocol is in use and does not itself transfer the files.

Internal Name: debug.location-map

Data Specification: [dict; keys: <ip4 address #.#.#.#>, values: [None or [list of: [tuple length 2 of: <

type str>, <type str>]]]]

Default Value: {'127.0.0.1': None}

Connection Keep Alive

Number of seconds between keep-alive messages sent to the debug process so that the connection

doesn't close due to inactivity. Use a value <= 0 to disable the sending of keep-alive messages

Internal Name: debug.send-keep-alive-seconds

Data Specification: <type int>

Default Value: 60

Network Timeout

Controls the amount of time that the IDE will wait for the debug process to respond before it gives up.

This protects the IDE from freezing up if your program running within the debug process crashes or

becomes unavailable. It must also be taken into account when network connections are slow or if

sending large data values (see the Huge List Threshold and Hug String Threshold preferences).

Internal Name: debug.network-timeout

Data Specification: <type float>, <type int>

Default Value: 10

Close Connection on Timeout

Controls whether the debugger will close the connection after any data handling timeout. This reduces

the potential for hanging on data handling issues, but increases the chances the debug connection will

be unnecessarily closed if any inspection of data takes more than the configured timeout to complete.

Internal Name: debug.close-on-timeout

Data Specification: <boolean: 0 or 1>

Default Value: 0

Allowed Hosts

Sets which hosts are allowed to connect to the debugger when it is listening for externally launched

programs. Host names, specific IP numbers, or IP number dotted quad masks with * to match anything

Preferences Reference

371

(e.g. 10.1.1.*) may be used. This is used only for manual remote debug configuration and is ignored

when debug is controlled by a remote host configuration.

Internal Name: debug.passive-hosts

Data Specification: [tuple of: <type str>]

Default Value: ('*.*.*.*',)

Common Attach Hosts

List of host/port combinations that should be included by default in the attach request list shown with

Attach to Process in the Debug menu, in addition to those that are registered at runtime. These are

used primarily with manual remote debug configuration, and are not necessary when debug is

controlled by a remote host configuration. This value corresponds with kAttachPort configured in

wingdbstub.py or by WINGDB_ATTACHPORT environment variable before importing wingdbstub in the

debug process.

Internal Name: debug.attach-defaults

Data Specification: [tuple of: [tuple length 2 of: <type str>, [from 0 to 65535]]]

Default Value: (('127.0.0.1', 50015),)

• Shells

Enable Debugging

Enables debugging code executed in the Python Shell or Debug Console.

Internal Name: debug.debug-shells

Data Specification: <boolean: 0 or 1>

Default Value: 0

Enable Recursive Prompt

Enables recursive debugging in the Python Shell and Debug Console.

Internal Name: debug.recursive

Data Specification: <boolean: 0 or 1>

Default Value: 0

Pretty Print

Enable to use pprint.pprint to display values in the Python Shell and Debug Console.

Internal Name: debug.pretty-print-in-shells

Data Specification: <boolean: 0 or 1>

Preferences Reference

372

Default Value: False

Auto-Restart when Switch Projects

Auto-restart the Python Shell when changing projects. When this is disabled, the Python Shell will

continue to use environment from the previously opened project.

Internal Name: debug.shell-auto-restart-proj-switch

Data Specification: <boolean: 0 or 1>

Default Value: 1

Auto-Restart when Evaluate File

Auto-restart the Python Shell before a file is evaluated within it. When this is disabled, be aware that

previously defined symbols will linger in the Python Shell environment.

Internal Name: debug.shell-auto-restart-before-eval

Data Specification: <boolean: 0 or 1>

Default Value: 1

Prompt to Confirm Restart

Whether to prompt when restarting the Python Shell as a result of restarting debugging.

Internal Name: debug.prompt-to-restart-python-shell-debug

Data Specification: <boolean: 0 or 1>

Default Value: True

Filter History by Entered Prefix

Enable to filter shell history traversal when something is entered prior to starting traversal. When

enabled, Wing will only show history items starting with the text between the start of the current item

and the caret.

Internal Name: debug.filter-shell-history

Data Specification: <boolean: 0 or 1>

Default Value: False

Evaluate Only Whole Lines

Evaluate whole lines from editor rather than the exact selection, when a selection from the editor is sent

to the Python Shell tool.

Internal Name: debug.shell-eval-whole-lines

Data Specification: <boolean: 0 or 1>

Preferences Reference

373

Default Value: 0

Execute Pasted Lines in Shells Immediately

Whether to always execute immediately after text is pasted into a shell. Note that if the number of lines

exceed the pasted line threshold, the lines are immediately executed.

Internal Name: debug.shell-always-execute-on-paste

Data Specification: <boolean: 0 or 1>

Default Value: False

Show Editor on Exceptions in Shells

Controls whether the debugger raises source files to indicate exception locations encountered when

working in the Debug Console, and other debugger tools.

Internal Name: debug.raise-from-tools

Data Specification: <boolean: 0 or 1>

Default Value: 1

Shells Ignore Editor Modes

Set to False so that shells will act modal in the same way as editors when working with a modal key

bindings such as that for VI. When True, the shells always act as if in Insert mode.

Internal Name: debug.shells-ignore-editor-modes

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Advanced

Termination Model

How to terminate debug when a parent process or child process is terminated. A process group

includes any all parent and child processes, up to the initially launched process, including also

grand-children and any other descendent process.

Internal Name: debug.multi-process-kill-model

Data Specification: [leave-running, auto-kill-group, prompt]

Default Value: auto-kill-group

Ignore Unsynchronized Files

Controls whether or not Wing ignores files that were not saved before starting debug or that have

changed since they were loaded by the debug process. Wing normally will warn of unsynchronized files

Preferences Reference

374

since breakpoints may not be reached and stepping through the files may not work properly if lines have

moved. Checking this option turns off these warnings.

Internal Name: gui.ignore-unsaved-before-action

Data Specification: <boolean: 0 or 1>

Default Value: 0

Step Past importlib Frames

Controls where Wing ignores code inside of Python's importlib machinery when stepping through code.

When enabled, Step Into on an import statement continues until it reaches the top level of the module

being imported (or results in ImportError or moves past the import if the module was already imported),

and Step Out will skip over frames in importlib.

Internal Name: debug.ignore-import-lib

Data Specification: <boolean: 0 or 1>

Default Value: 1

Use sys.stdin Wrapper

Whether sys.stdin should be set a wrapper object for user input in the program being debugged. The

wrapper allows debug commands, such as pause, to be executed while the program is waiting for user

input. The wrapper may cause problems with multi-threaded programs that use C stdio functions to read

directly from stdin and will be slower than the normal file object.However, turning this preference off

means that your debug process will not pause or accept breakpoint changes while waiting for keyboard

input, and any keyboard input that occurs as a side effect of commands typed in the Debug Console will

happen in unmodified stdin instead (even though output will still appear in the Debug Console as

always).

Internal Name: debug.use-stdin-wrapper

Data Specification: <boolean: 0 or 1>

Default Value: 1

When Build Fails

Controls whether to start debugging if the defined build process fails

Internal Name: debug.debug-if-build-fails

Data Specification: [None, 0, 1]

Default Value: None

Default Watch Style

Preferences Reference

375

Sets the tracking style used when a value is double clicked in order to watch it. Values may be tracked

by symbolic name, by object reference and attribute by name, and by direct object reference.

Internal Name: debug.default-watch-style

Data Specification: [symbolic, parent-ref, ref]

Default Value: symbolic

Move Breakpoints to Valid Lines

Whether to automatically move breakpoints to a valid position when they are placed on a line that will

not be reached by the Python interpreter, such as within certain types of multi-line expressions.

Internal Name: debug.move-breakpoints

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show Breaks Moved Dialog

Whether to show a dialog when a breakpoint is set on a different line than the selected on.

Internal Name: debug.show-breaks-moved-message

Data Specification: <boolean: 0 or 1>

Default Value: 1

Animate Debug Data Tooltips

Whether to animate debug data tips shown when Shift-Space is pressed.

Internal Name: debug.animate-data-tips

Data Specification: <boolean: 0 or 1>

Default Value: 0

• Diagnostics

Debug Internals Log File

This is used to obtain verbose information about debugger internals in cases where you are having

problems getting debugging working. The resulting log file can be emailed to support@wingware.com

along with your bug report for interpretation. Logging can be disabled, or sent to stderr, stdout, or a file.

When enabled, the debugger will run more slowly.

Internal Name: debug.logfile

Data Specification: [one of: None, [<stderr>, <stdout>], <type str>]

Default Value: None

Preferences Reference

376

mailto:support@wingware.com

Extremely Verbose Internal Log

This is used to turn on very verbose and detailed logging from the debugger. This should only be

enabled at the request of Wingware Technical Support and will drastically slow down the debugger.

Internal Name: debug.very-verbose-log

Data Specification: <boolean: 0 or 1>

Default Value: False

Python Shell Debug Log

This is used to obtain verbose information about the Python Shell internals in cases where you are

having problems getting it working. The resulting log file can be emailed to support@wingware.com

along with your bug report for interpretation. Logging can be disabled, or sent to stderr, stdout, or a file.

When enabled, the Python Shell will run more slowly.

Internal Name: debug.shell-logfile

Data Specification: [one of: None, [<stderr>, <stdout>], <type str>]

Default Value: None

Extremely Verbose Python Shell Debug Log

This is used to turn on very verbose and detailed logging from the Python Shell internals. This should

only be enabled at the request of Wingware Technical Support and will drastically slow down the Python

Shell.

Internal Name: debug.very-verbose-shell-log

Data Specification: <boolean: 0 or 1>

Default Value: False

Source Analysis
Introspect Live Runtime

Set to introspect live Python runtimes for information displayed in autocompletion, the Source Assistant,

and debug data value tooltips. Runtimes introspected include the Python Shell and live debug

processes stopped at an exception or breakpoint.

Internal Name: debug.introspect-in-shells

Data Specification: <boolean: 0 or 1>

Default Value: 1

Typing Suspend Timeout

Preferences Reference

377

mailto:support@wingware.com

Number of seconds between last key press and when analysis is re-enabled if analysis is to be

suspended while typing occurs. If <= 0, analysis is not suspended.

Internal Name: edit.suspend-analysis-timeout

Data Specification: <type float>, <type int>

Default Value: 1

Max Cache Size (MB)

The maximum size of the disk cache in megabytes

Internal Name: pysource.max-disk-cache-size

Data Specification: [from 100 to 100000]

Default Value: 2000

Max Memory Buffers

The maximum # of analysis info buffers that can be in-memory at once for files that are not open.

Internal Name: pysource.max-background-buffers

Data Specification: [from 50 to 300]

Default Value: 80

Analyze Function and Method Calls

Whether to analyze function calls and record the types of values passed as arguments to functions. The

disk cache should be cleared after this value is changed.

Internal Name: pysource.analyze-function-calls

Data Specification: <boolean: 0 or 1>

Default Value: False

• Advanced

Interface File Path

Path to search for interface files for extension modules. If directory name is relative, it will be interpreted

as relative to the user settings directory (USER_SETTINGS_DIR)

Internal Name: pysource.interfaces-path

Data Specification: [tuple of: <type str>]

Default Value: ('pi-files',)

Scrape Extension Modules

Preferences Reference

378

Enable to automatically load and introspect extension modules and other modules that cannot be

statically analysed. These modules are loaded in another process space and 'scraped' to obtain at least

some analysis of the module's contents.

Internal Name: pysource.scrape-modules

Data Specification: <boolean: 0 or 1>

Default Value: True

Scraping Helper Snippets

This is a dictionary from module name to Python code that should be executed before attempting to

load extension modules for scraping. This is needed in cases where the extension modules are

designed to be loaded only after some configuration magic is performed. For most extension modules,

no extra configuration should be needed.

Internal Name: pysource.scrape-config

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {'gtk': 'import pygtk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nv

ers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n except:\n pass\n', 'gdk': 'im

port pygtk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in v

ers:\n try:\n pygtk.require(v)\n break\n except:\n pass\n', 'pango': 'import pygtk\nvers = py

gtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.r

equire(v)\n break\n except:\n pass\n', 'atk': 'import pygtk\nvers = pygtk._get_available_versi

ons().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n ex

cept:\n pass\n', 'gobject': 'import pygtk\nvers = pygtk._get_available_versions().keys()\nvers.s

ort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n except:\n pass\n', 'w

xpython': 'pass', 'Qt': 'try:\n from PyQt4 import Qt\nexcept:\n try:\n from PyQt5 import Qt\n e

xcept:\n from PySide import Qt\n', 'QSci': 'try:\n from PyQt4 import QSci\nexcept:\n try:\n fr

om PyQt5 import QSci\n except:\n from PySide import QSci\n', 'QtAssistant': 'try:\n from PyQ

t4 import QtAssistant\nexcept:\n try:\n from PyQt5 import QtAssistant\n except:\n from PyS

ide import QtAssistant\n', 'QtCore': 'try:\n from PyQt4 import QtCore\nexcept:\n try:\n from Py

Qt5 import QtCore\n except:\n from PySide import QtCore\n', 'QtDesigner': 'try:\n from PyQt4

import QtDesigner\nexcept:\n try:\n from PyQt5 import QtDesigner\n except:\n from PySide

import QtDesigner\n', 'QtGui': 'try:\n from PyQt4 import QtGui\nexcept:\n try:\n from PyQt5 im

port QtGui\n except:\n from PySide import QtGui\n', 'QtHelp': 'try:\n from PyQt4 import QtHel

p\nexcept:\n try:\n from PyQt5 import QtHelp\n except:\n from PySide import QtHelp\n', 'Qt

Network': 'try:\n from PyQt4 import QtNetwork\nexcept:\n try:\n from PyQt5 import QtNetwork

\n except:\n from PySide import QtNetwork\n', 'QtOpenGL': 'try:\n from PyQt4 import QtOpen

GL\nexcept:\n try:\n from PyQt5 import QtOpenGL\n except:\n from PySide import QtOpen

GL\n', 'QtScript': 'try:\n from PyQt4 import QtScript\nexcept:\n try:\n from PyQt5 import QtScr

ipt\n except:\n from PySide import QtScript\n', 'QtScriptTools': 'try:\n from PyQt4 import QtSc

Preferences Reference

379

riptTools\nexcept:\n try:\n from PyQt5 import QtScriptTools\n except:\n from PySide import

 QtScriptTools\n', 'QtSql': 'try:\n from PyQt4 import QtSql\nexcept:\n try:\n from PyQt5 import

 QtSql\n except:\n from PySide import QtSql\n', 'QtSvg': 'try:\n from PyQt4 import QtSvg\nexc

ept:\n try:\n from PyQt5 import QtSvg\n except:\n from PySide import QtSvg\n', 'QtTest': 'try

:\n from PyQt4 import QtTest\nexcept:\n try:\n from PyQt5 import QtTest\n except:\n from P

ySide import QtTest\n', 'QtWebKit': 'try:\n from PyQt4 import QtWebKit\nexcept:\n try:\n from

PyQt5 import QtWebKit\n except:\n from PySide import QtWebKit\n', 'QtXml': 'try:\n from PyQ

t4 import QtXml\nexcept:\n try:\n from PyQt5 import QtXml\n except:\n from PySide import

QtXml\n', 'QtXmlPatterns': 'try:\n from PyQt4 import QtXmlPatterns\nexcept:\n try:\n from Py

Qt5 import QtXmlPatterns\n except:\n from PySide import QtXmlPatterns\n', 'QtUiTools': 'try:\

n from PyQt4 import QtUiTools\nexcept:\n try:\n from PyQt5 import QtUiTools\n except:\n f

rom PySide import QtUiTools\n', 'QtDeclarative': 'try:\n from PyQt4 import QtDeclarative\nexcep

t:\n try:\n from PyQt5 import QtDeclarative\n except:\n from PySide import QtDeclarative\n',

'QtWidgets': 'try:\n from PyQt4 import QtWidgets\nexcept:\n try:\n from PyQt5 import QtWidg

ets\n except:\n from PySide import QtWidgets\n', '_gst': 'from gst import _gst', 'h5py': 'import

h5py'}

Python Docs URL Prefix

Prefix for Python Standard Library Documentation. This should be in the form

https://docs.python.org/library/ and Wing will append module and symbol specific to the given URL. To

use locally stored documentation, you must run a local web server since # bookmarks do not work in

file: URLs.

Internal Name: pysource.python-doc-url-prefix

Data Specification: [None or <type int>]

Default Value: None

Version Control
Enable built-in version control

Enable the integrated version control system.

Internal Name: versioncontrol.enable-non-script

Data Specification: <boolean: 0 or 1>

Default Value: True

Save files without prompting

Save without prompting before running version control commands.

Internal Name: versioncontrol.save-without-prompting

Data Specification: <boolean: 0 or 1>

Preferences Reference

380

https://docs.python.org/library/

Default Value: True

Track changes made in project tool

Track file add, remove, and rename operations made with Wing's Project view into the version control

repository.

Internal Name: versioncontrol.track-disk-operations

Data Specification: <boolean: 0 or 1>

Default Value: True

Automatically refresh status

Watch disk for version control changes and refresh the Project view and Project Status accordingly.

Internal Name: versioncontrol.watch-disk

Data Specification: <boolean: 0 or 1>

Default Value: True

Enable diagnostic logging

Log all commands to ide.log in the user settings directory.

Internal Name: versioncontrol.log-all-commands

Data Specification: <boolean: 0 or 1>

Default Value: False

• SVN

Active

When Subversion version control support is active

Internal Name: .versioncontrol.svn.active

Data Specification: [always-active, active-if-project-dir, not-active]

Default Value: active-if-project-dir

SVN Executable

Executable command to run Subversion

Internal Name: .versioncontrol.svn.executable

Data Specification: <type str>

Default Value: svn

SVN Admin Executable

Preferences Reference

381

Executable command to run svn

Internal Name: versioncontrol.svn.svnadmin-executable

Data Specification: <type str>

Default Value: svnadmin

Extra Global Arguments

Extra arguments to pass to every command.

Internal Name: versioncontrol.svn.extra-global-args

Data Specification: <type str>

Default Value: ""

• Git

Active

When Git version control support is active

Internal Name: .versioncontrol.git.active

Data Specification: [always-active, active-if-project-dir, not-active]

Default Value: active-if-project-dir

Git Executable

Executable command to run Git

Internal Name: .versioncontrol.git.executable

Data Specification: <type str>

Default Value: git

Use --porcelain

Use --porcelain output for git status

Internal Name: versioncontrol.git.use-porcelain

Data Specification: <boolean: 0 or 1>

Default Value: True

• Mercurial

Active

When Mercurial version control support is active

Preferences Reference

382

Internal Name: .versioncontrol.hg.active

Data Specification: [always-active, active-if-project-dir, not-active]

Default Value: active-if-project-dir

Mercurial Executable

Executable command to run Mercurial

Internal Name: .versioncontrol.hg.executable

Data Specification: <type str>

Default Value: hg

Extra Global Arguments

Extra arguments to pass to every command.

Internal Name: versioncontrol.hg.extra-global-args

Data Specification: <type str>

Default Value: --encoding=utf8

Don't Find Unregistered Files

Don't find unregistered files when scanning for file status. This can substantially reduce the time to scan

large repositories.

Internal Name: versioncontrol.hg.dont-find-unregistered

Data Specification: <boolean: 0 or 1>

Default Value: True

• CVS

Active

When CVS version control support is active

Internal Name: .versioncontrol.cvs.active

Data Specification: [always-active, active-if-project-dir, not-active]

Default Value: active-if-project-dir

CVS Executable

Executable command to run CVS

Internal Name: .versioncontrol.cvs.executable

Data Specification: <type str>

Preferences Reference

383

Default Value: cvs

Extra Global Arguments

Extra arguments to pass to every command.

Internal Name: versioncontrol.cvs.extra-global-args

Data Specification: <type str>

Default Value: -z3

• Perforce

Active

When Perforce version control support is active

Internal Name: .versioncontrol.perforce.active

Data Specification: [always-active, active-if-project-dir, not-active]

Default Value: not-active

Perforce Executable

Executable command to run Perforce

Internal Name: .versioncontrol.perforce.executable

Data Specification: <type str>

Default Value: p4

Extra Global Arguments

Extra arguments to pass to every command.

Internal Name: versioncontrol.perforce.extra-global-args

Data Specification: <type str>

Default Value: ""

Don't Find Unregistered Files

Don't find unregistered files when scanning for file status. This can substantially reduce the time to scan

large repositories.

Internal Name: versioncontrol.perforce.dont-find-unregistered

Data Specification: <boolean: 0 or 1>

Default Value: True

Preferences Reference

384

Remote Development
SSH Implementation

The SSH implementation to use for remote development. This is used to launch Wing's remote agent

and to establish secure SSH tunnels for debugging on remote systems. When searching on the PATH,

Wing will look for OpenSSH's ssh. If it cannot be found, the built-in SSH implementation is used instead.

Internal Name: main.ssh-executable

Data Specification: [None or <type str>]

Default Value: None

Allow Access to SSH User Agent

Controls whether to allow access to an SSH user agent like OpenSSH's ssh-agent or PuTTY's pageant.

Internal Name: main.use-ssh-agent

Data Specification: <boolean: 0 or 1>

Default Value: True

SSH Timeout

The maximum time in seconds to wait for SSH connections to be established.

Internal Name: main.ssh-timeout

Data Specification: <type int>

Default Value: 10

Hung Connection Timeout

The maximum time in seconds to wait if a connection to a remote host is not responding. Afterwards the

connection is closed and retried.

Internal Name: main.hung-connection-threshold

Data Specification: <type int>

Default Value: 15

Warn when Edit Active Remote Configuration

Controls whether to show a warning before editing a remote host configuration that is currently in use.

Internal Name: main.show-remote-config-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

Write Remote Diagnostics to IDE Log

Preferences Reference

385

Controls whether remote agent activity is directed into the IDE log instead of being written on the remote

host. This will slow down the remote agent and should only be enabled at the requestof Wingware

Technical Support.

Internal Name: main.write-remote-log-to-ide-log

Data Specification: <boolean: 0 or 1>

Default Value: False

IDE Extension Scripting
Auto-Reload Scripts on Save

When enabled, Wing will automatically reload scripts that extend the IDE when they are edited and

saved from the IDE. This makes developing extension scripts for the IDE very fast, and should work in

most cases. Disable this when working on extension scripts that do not reload properly, such as those

that reach through the scripting API extensively.

Internal Name: main.auto-reload-scripts

Data Specification: <boolean: 0 or 1>

Default Value: True

Search Path

Specifies the directories in which Wing will look for user-defined scripts that extend the functionality of

the IDE itself. The directory names may contain environment variables in the $(envname) form. Use

$(WING:PROJECT_DIR) for the project directory.For each directory, Wing will load all found Python

modules and packages, treating any function whose name starts with a letter (not _ or __) as a

script-provided command. Extension scripts found in files within directories later in the list will override

scripts of the same name found earlier, except that scripts can never override commands that are

defined internally in Wing itself (these are documented in the Command Reference in the users

manual). See the Scripting and Extending chapter of the manual for more information on writing and

using extension scripts.

Internal Name: main.script-path

Data Specification: [list of: <type str>]

Default Value: ['USER_SETTINGS_DIR/scripts']

Network
Use HTTPS to wingware.com

Whether to use secure https (port 443) when accessing wingware.com for license activation, update

checks, and submitting feedback or bug reports. When disabled, http (port 80) is used instead.

Preferences Reference

386

Internal Name: main.secure-http-to-wingware

Data Specification: <boolean: 0 or 1>

Default Value: True

HTTP Proxy Server

Allows manual configuration of an http proxy to be used for feedback, bug reports, and license

activation, all of which result in Wing connecting to wingware.com via http. Leave user name and

password blank if not required.

Internal Name: main.http-proxy

Data Specification: [None or [tuple length 4 of: <type str>, <type int>, <type str>, <type str>]]

Default Value: None

Internal Preferences

Core Preferences
main.autocheck-remote-agent-version

When enabled, Wing will show a dialog offerring to update any remote agent that does not match

Wing's version.

Internal Name: main.autocheck-remote-agent-version

Data Specification: <boolean: 0 or 1>

Default Value: True

main.debug-break-on-critical

If True and a gtk, gdk, or glib critical message is logged, Wing tries to start a C debugger and break at

the current execution point

Internal Name: main.debug-break-on-critical

Data Specification: <boolean: 0 or 1>

Default Value: False

main.extra-mime-type-comments

This is a map from mime type to tuple of start/end comment characters for each mime type. One entry

should be added for each new mime type added with the main.extra-mime-types preference.

Internal Name: main.extra-mime-type-comments

Data Specification: [dict; keys: <type str>, values: [tuple length 2 of: <type str>, <type str>]]

Default Value: {}

Preferences Reference

387

main.extra-mime-type-names

This is a map from mime type to displayable name for that mime type; one entry should be added for

each new mime type added with the main.extra-mime-types preference.

Internal Name: main.extra-mime-type-names

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {}

main.help-font-zoom

The amount by which to zoom font sizes in or out in the documentation viewer.

Internal Name: main.help-font-zoom

Data Specification: <type float>

Default Value: 1.0

main.ignored-update

Used internally to keep track of latest version the user is not interested in

Internal Name: main.ignored-update

Data Specification: [tuple of: <type int>]

Default Value: (0, 0, 0, 0)

main.last-dark-theme

Used internally to remember the most recently used dark theme

Internal Name: main.last-dark-theme

Data Specification: [tuple length 2 of: [None or <type str>], [None or <type str>]]

Default Value: ('one-dark', None)

main.last-light-theme

Used internally to select the most recently used light theme.

Internal Name: main.last-light-theme

Data Specification: [tuple length 2 of: [None or <type str>], [None or <type str>]]

Default Value: ('wing-classic', None)

main.last-prefs-page

Used internally to select the most recently used prefs page.

Internal Name: main.last-prefs-page

Preferences Reference

388

Data Specification: [tuple length 2 of: <type int>, <type int>]

Default Value: (-1, -1)

main.last-properties-pages

Used internally to select the most recently used properties dialog pages.

Internal Name: main.last-properties-pages

Data Specification: [dict; keys: <type str>, values: <type int>]

Default Value: {}

main.non-font-scale-factor

Scale factor for icons, windows, and other graphical elements other than fonts. Can either be a single

number or a ; (semicolon) separated list of per-screen scale factors in the format used by the

QT_SCREEN_SCALE_FACTORS environment variable. This has no effect if the

QT_SCREEN_SCALE_FACTORS environment variable is set before Wing is started Wing must be

restarted before this value takes effect.

Internal Name: main.non-font-scale-factor

Data Specification: <type str>

Default Value: ""

main.plugin-overrides

Defines which plugins are enabled or disabled.

Internal Name: main.plugin-overrides

Data Specification: [dict; keys: <type str>, values: <boolean: 0 or 1>]

Default Value: {}

main.prefs-version

Used internally to identify prefs file version

Internal Name: main.prefs-version

Data Specification: [None or <type int>]

Default Value: None

.main.set-auto-screen-scale-factor

Automatically set scale factor based on screen dpi.

Internal Name: .main.set-auto-screen-scale-factor

Data Specification: <boolean: 0 or 1>

Preferences Reference

389

Default Value: False

main.sassist-allow-pep287-errors

Whether to render docstrings even if they contain parse errors at or above the threshold set by Source

Assistant PEP 287 Error Threshold. When disabled, failing docstrings are shown as plain text instead.

When enabled, a best effort is made to display the formatted docstring while suppressing errors.

Internal Name: main.sassist-allow-pep287-errors

Data Specification: <boolean: 0 or 1>

Default Value: False

main.sassist-always-show-docstrings

Whether to always show docstrings in the Source Assistant. When disabled, only the docstring for the

last displayed symbol is shown.

Internal Name: main.sassist-always-show-docstrings

Data Specification: <boolean: 0 or 1>

Default Value: False

main.sassist-pep287-error-level

The error level at or above which the source assistant will display parse errors in PEP287 docstrings (if

showing PEP287 errors) or will fall back to showing plain text (if not showing PEP287 errors). For errors

below this threshold, a best attempt is made to achieve a reasonable rendering.

Internal Name: main.sassist-pep287-error-level

Data Specification: [0, 1, 2, 3, 4]

Default Value: 2

main.sassist-tries-rewrap

Whether to rewrap plain text docstrings for display in the Source Assistant. This may destroy formatting

of some docstrings.

Internal Name: main.sassist-tries-rewrap

Data Specification: <boolean: 0 or 1>

Default Value: True

main.sassist-show-validity

Whether show docstring type and validity in the Source Assistant.

Internal Name: main.sassist-show-validity

Preferences Reference

390

Data Specification: <boolean: 0 or 1>

Default Value: True

main.sassist-tries-pep287

Whether to try parsing docstrings as ReST format for display in the Source Assistant. This may destroy

formatting of some docstrings.

Internal Name: main.sassist-tries-pep287

Data Specification: <boolean: 0 or 1>

Default Value: True

main.suggest-non-font-scale-factor

Whether to suggest per-screen scale factors at startup, based on inspection of font size on each

attached display.

Internal Name: main.suggest-non-font-scale-factor

Data Specification: <boolean: 0 or 1>

Default Value: True

main.update-history

History of updates used diagnostically

Internal Name: main.update-history

Data Specification: <type list>

Default Value: []

User Interface Preferences
gui.alphabetize-tabs

Whether to keep tabs in alphabetical order.

Internal Name: gui.alphabetize-tabs

Data Specification: <boolean: 0 or 1>

Default Value: True

gui.feedback-email

Email address to use by default in the Feedback and Bug Report dialogs

Internal Name: gui.feedback-email

Data Specification: <type str>

Preferences Reference

391

Default Value: ""

gui.last-feedback-shown

Used internally to avoid showing the feedback dialog on exit over and over again.

Internal Name: gui.last-feedback-shown

Data Specification: <type float>

Default Value: 0.0

guimgr.last-wingtips-size

Internal preference used to remember the last size of the Wing Tips window

Internal Name: guimgr.last-wingtips-size

Data Specification: [any value]

Default Value: (500, 450)

gui.more-controls-for-search-in-files

Controls whether "Search in Files" dialog has an extra row of visible options as buttons.

Internal Name: gui.more-controls-for-search-in-files

Data Specification: <boolean: 0 or 1>

Default Value: 0

gui.new-tabs-on-left

Whether to add new tabs on the left side instead on the right.

Internal Name: gui.new-tabs-on-left

Data Specification: <boolean: 0 or 1>

Default Value: False

gui.prefered-symbol-order

Control preferred order in source index displays such as the editor browse menus. Either sort in the

order found in the file or alphabetical order.

Internal Name: gui.prefered-symbol-order

Data Specification: [file-order, alpha-order]

Default Value: alpha-order

gui.reported-exceptions

Preferences Reference

392

Used internally to remember which unexpected exceptions have already been reported so we only show

error reporting dialog once for each.

Internal Name: gui.reported-exceptions

Data Specification:

[dict; keys: <type str>, values: [dict; keys: <type str>, values: <boolean: 0 or 1>]]

Default Value: {}

gui.set-win32-foreground-lock-timeout

Controls whether or not to set the foreground lock timeout on Windows, where normally Wing will be

unable to bring source windows to front whenever the debug process has windows in the foreground.

When this preference is true, the system-wide value that prevents background applications from raising

windows is cleared whenever Wing is running. This means that other apps will also be able to raise

windows without these restrictions while Wing is running. Set the preference to false to avoid this, but

be prepared for windows to fail to raise in some instances. Note: If Wing is terminated abnormally or

from the task manager, the changed value will persist until the user logs out.

Internal Name: gui.set-win32-foreground-lock-timeout

Data Specification: <boolean: 0 or 1>

Default Value: 1

gui.show-report-error-dialog

Whether the error bug reporting dialog (also available from the Help menu) is shown automatically when

an unexpected exception is encountered inside Wing.

Internal Name: gui.show-report-error-dialog

Data Specification: <boolean: 0 or 1>

Default Value: False

gui.show-feedback-dialog

Whether feedback dialog is shown to user on quit.

Internal Name: gui.show-feedback-dialog

Data Specification: <boolean: 0 or 1>

Default Value: 1

guimgr.show-menu-bar

Whether to show the menu bar in the window. When this is False, a menu icon is added to the top right.

Internal Name: guimgr.show-menu-bar

Preferences Reference

393

Data Specification: <boolean: 0 or 1>

Default Value: True

gui.startup-show-wingtips

Controls whether or not the Wing Tips tool is shown automatically at startup of the IDE.

Internal Name: gui.startup-show-wingtips

Data Specification: <boolean: 0 or 1>

Default Value: 1

gui.work-area-rect

Rectangle to use for the IDE work area on screen. All windows open within this area. Format is (x, y,

width, height), or use None for full screen.

Internal Name: gui.work-area-rect

Data Specification: [None or [tuple length 4 of: <type int>, <type int>, <type int>, <type int>]]

Default Value: None

Editor Preferences
consoles.auto-clear

Automatically clear the OS Commands consoles each time the command is re-executed

Internal Name: consoles.auto-clear

Data Specification: <boolean: 0 or 1>

Default Value: False

edit.fold-mime-types

Selects the mime types for which folding should be allowed when folding in general is enabled.

Internal Name: edit.fold-mime-types

Data Specification: [list of: <type str>]

Default Value: ['text/x-python', 'text/x-python-interface', 'text/x-c-source', 'text/x-cpp-source', 'text/

x-java-source', 'text/x-javascript', 'text/html', 'text/x-mako', 'text/x-django', 'text/xml', 'text/x-zope-

pt', 'text/x-eiffel', 'text/x-lisp', 'text/x-ruby', 'text/x-cython', 'text/x-yaml', 'application/json']

consoles.wrap-long-lines

Wrap long output lines in OS Commands tool to fit within available display area.

Internal Name: consoles.wrap-long-lines

Preferences Reference

394

Data Specification: <boolean: 0 or 1>

Default Value: False

consoles.python-prompt-after-execution

Drop into Python shell after executing any Python file in the OS Commands tool

Internal Name: consoles.python-prompt-after-execution

Data Specification: <boolean: 0 or 1>

Default Value: False

edit.shared-bookmark-categories

Bookmark categories that are shared with all projects.

Internal Name: edit.shared-bookmark-categories

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {}

edit.sassist-font-zoom

The amount by which to zoom font sizes in or out in the Source Assistant.

Internal Name: edit.sassist-font-zoom

Data Specification: <type float>

Default Value: 1.0

edit.symbol-find-alpha-sort

Controls whether to sort Find Symbol dialog alphabetically or in natural file order

Internal Name: edit.symbol-find-alpha-sort

Data Specification: <boolean: 0 or 1>

Default Value: True

edit.symbol-find-include-args

Controls whether to include argument specs in the searchable text used in the Find Symbol dialog

Internal Name: edit.symbol-find-include-args

Data Specification: <boolean: 0 or 1>

Default Value: False

Preferences Reference

395

Project Manager Preferences
proj.follow-editor

Controls whether or not the IDE will follow the current editor by expanding the project tree to show the

file open in the editor.

Internal Name: proj.follow-editor

Data Specification: <boolean: 0 or 1>

Default Value: 0

proj.follow-selection

Controls whether or not the IDE will follow the current project manager selection by opening the

corresponding source file in a non-sticky (auto-closing) editor. In either case, the project manager will

always open a file in sticky mode when an item is double clicked or the Goto Source context menu item

is used.

Internal Name: proj.follow-selection

Data Specification: <boolean: 0 or 1>

Default Value: 0

proj.last-anaconda

Used internally to store the last successfully used Anaconda installationfor New Project.

Internal Name: proj.last-anaconda

Data Specification: <type str>

Default Value: ""

proj.last-new-project-dir-type

Used internally to store the last used new project directory type.

Internal Name: proj.last-new-project-dir-type

Data Specification: <type str>

Default Value: existing

proj.last-new-project-env-type

Used internally to store the last used new project environment type.

Internal Name: proj.last-new-project-env-type

Data Specification: <type str>

Default Value: existing

Preferences Reference

396

proj.last-new-project-python-type

Used internally to store the last used new project Python type.

Internal Name: proj.last-new-project-python-type

Data Specification: <type str>

Default Value: existing

proj.last-new-project-type

Used internally to store the last used new project type.

Internal Name: proj.last-new-project-type

Data Specification: <type str>

Default Value: generic

proj.open-from-project-full-paths

Match fragments to full path of the file name, rather than just the file name. Full path matching still

occurs when the path separation character is included in the search pattern.

Internal Name: proj.open-from-project-full-paths

Data Specification: <boolean: 0 or 1>

Default Value: 1

proj.auto-correct-pyexec

Whether to automatically correct Python Executable in Project Properties when it does not match the

virtualenv created by pipenv.

Internal Name: proj.auto-correct-pyexec

Data Specification: <boolean: 0 or 1>

Default Value: 0

Debugger Preferences
debug.auto-clear-debug-io

Enable to automatically clear the Debug I/O tool each time a new debug session is started

Internal Name: debug.auto-clear-debug-io

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.auto-show-debug-io

Preferences Reference

397

Controls whether and when to automatically show the Debug I/O tool when it receives output.

Internal Name: debug.auto-show-debug-io

Data Specification: [False, first, True]

Default Value: first

debug.array-search-all-columns

Controls whether searching in the debug array view searchs all columns or just the visible columns

Internal Name: debug.array-search-all-columns

Data Specification: <boolean: 0 or 1>

Default Value: False

debug.array-search-case

Selects whether search in the array view is case sensitive

Internal Name: debug.array-search-case

Data Specification: <boolean: 0 or 1>

Default Value: False

debug.array-search-type

Selects the type of search to perform in the array view of debug data: text, wildcard, or regex

Internal Name: debug.array-search-type

Data Specification: [text, wildcard, regex]

Default Value: text

debug.debug-data-vertical

Controls whether the debugger shows value details in data views verticallyor horizontally.

Internal Name: debug.debug-data-vertical

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.debug-io-focus-for-input

Enable to raise the Debug I/O tool and place focus into the I/O buffer whenever the debug process is

waiting for keyboard input.

Internal Name: debug.debug-io-focus-for-input

Data Specification: <boolean: 0 or 1>

Preferences Reference

398

Default Value: False

debug.debug-io-history

Enable to maintain a history of Debug I/O, up to the number configured in the Files > Max Recent Items

preference.

Internal Name: debug.debug-io-history

Data Specification: <boolean: 0 or 1>

Default Value: False

debug.debug-io-history

Enable to include child processes in the process selector popup.

Internal Name: debug.debug-io-history

Data Specification: <boolean: 0 or 1>

Default Value: True

debug.default-python-exec

Sets the default Python Executable to use for debugging and source code analysis. This can be

overridden on a project by project basis in Project Properties.

Internal Name: debug.default-python-exec

Data Specification: [None or <type str>]

Default Value: None

main.launch-shared-file

Selects the file to use for storing and retrieving shared launch configurations. By default the file 'launch'

in the user settings directory is used.

Internal Name: main.launch-shared-file

Data Specification: [one of: <type NoneType>, <type str>]

Default Value: None

debug.shell-pasted-line-threshold

The number of lines after which the Python Shell will just print a summary rather than the actual lines of

code pasted, dragged, or other transferred to the shell.

Internal Name: debug.shell-pasted-line-threshold

Data Specification: <type int>

Default Value: 30

Preferences Reference

399

debug.show-debug-data-details

Controls whether the debugger shows value details in data views.

Internal Name: debug.show-debug-data-details

Data Specification: <type float>

Default Value: 0.0

debug.show-exceptions-tip

Used internally to show information about exception handling to new users. Once turned off, it is never

turned on again

Internal Name: debug.show-exceptions-tip

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.stop-timeout

Number of seconds to wait before the debugger will stop in its own code after a pause request is

received and no other Python code is reached.

Internal Name: debug.stop-timeout

Data Specification: <type int>, <type float>

Default Value: 3.0

debug.use-members-attrib

Set this to true to have the debug server use the __members__ attribute to try to interpret otherwise

opaque data values. This is a preference because some extension modules contain bugs that result in

crashing if this attribute is accessed. Note that __members__ has been deprecated since Python

version 2.2.

Internal Name: debug.use-members-attrib

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.warn-stale-shell

Enable to display a dialog when the Python Shell state no longer matches the configured Python

Executable and/or Python Path.

Internal Name: debug.warn-stale-shell

Data Specification: <boolean: 0 or 1>

Preferences Reference

400

Default Value: 0

debug.wrap-debug-io

Enables line wrapping in the integrated Debug I/O tool.

Internal Name: debug.wrap-debug-io

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.wrap-debug-probe

Enables line wrapping in the Debug Console.

Internal Name: debug.wrap-debug-probe

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.wrap-python-shell

Enables line wrapping in the Python Shell.

Internal Name: debug.wrap-python-shell

Data Specification: <boolean: 0 or 1>

Default Value: 0

Source Analysis Preferences
pysource.analyze-in-background

Whether Wing should try to analyze python source in the background.

Internal Name: pysource.analyze-in-background

Data Specification: <boolean: 0 or 1>

Default Value: 1

pysource.use-sqllite-dotfile-locking

Use slower, dotfile locking for sqllite databases to work around buggy remote file servers. Only needed

if the user cache directory is on a remote file system or can be accessed via a remote file system. It is

recommended that the user cache directory be on the local file system for performance reasons.

Internal Name: pysource.use-sqllite-dotfile-locking

Data Specification: <boolean: 0 or 1>

Default Value: False

Preferences Reference

401

Command Reference
This chapter describes the entire top-level command set of Wing. Use this reference to look up

command names for use in modified keyboard bindings.

Commands that list arguments of type <numeric modifier> accept either a number or previously

entered numeric modifier. This is used with key bindings that provide a way to enter a numeric modifier

(such as Esc 1 2 3 in the emacs personality or typing numerals in browse mode in the vi personality).

24.1. Top-level Commands

Application Control Commands

These are the high level application control commands.

abandon-changes (confirm=True)

Abandon any changes in the current document and reload it from disk. Prompts for user to confirm the

operation unless either there are no local changes being abandoned or confirm is set to False.

about-application ()

Show the application-wide about box

apply-update ()

Apply a manually downloaded update

begin-visited-document-cycle (move_back=True, back_key=None, forward_key=None)

Start moving between documents in the order they were visited. Starts modal key interaction that ends

when a key other than tab is seen or ctrl is released. Key Bindings: Wing: Ctrl-Shift-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); Brief: Ctrl-Shift-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); Eclipse: Ctrl-Shift-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); Emacs: Ctrl-Shift-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); macOS: Ctrl-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); MATLAB: Ctrl-Shift-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); VI/VIM: Ctrl-Shift-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); Visual Studio: Ctrl-Shift-Shift-Tab invokes

begin-visited-document-cycle(move_back=False); XCode: Ctrl-Shift-Tab invokes

begin-visited-document-cycle(move_back=False)

bookmarks-category-menu-items ()

Returns list of menu items for selecting bookmark category

bookmarks-menu-items (names_only=False)

Returns list of menu items for selecting among defined bookmarks

Command Reference

402

https://wingware.com/doc/custom/key-equivalents

check-for-updates ()

Check for updates to Wing and offer to install any that are available

close (ignore_changes=False, close_window=True, can_quit=False)

Close active document. Abandon any changes when ignore_changes is True. Close empty windows

when close_window is true and quit if all document windows closed when can_quit is true. Key

Bindings: Wing: Ctrl-W; Brief: Ctrl-F4; Eclipse: Ctrl-W; Emacs: Ctrl-F4; macOS: Command-Shift-W;

MATLAB: Ctrl-W; VI/VIM: Ctrl-W q invokes close(close_window=1); Visual Studio: Ctrl-W; XCode:

Command-Shift-W

close-all (omit_current=False, ignore_changes=False, close_window=False, include_help=True,

omit_modified=False)

Close all documents in the current window, or in all windows if in one-window-per-editor windowing

policy. Leave currently visible documents (or active window in one-window-per-editor-mode) if

omit_current is True. Abandons changes rather than saving them when ignore_changes is True. Close

empty window and quit if all document windows closed when close_window is True. Also closes

documentation views, unless include_help is set to False. Key Bindings: Eclipse: Ctrl-Shift-W

close-window ()

Close the current window and all documents and panels in it Key Bindings: Wing: Alt-F4; Brief: Alt-F4;

Eclipse: Alt-F4; Emacs: Ctrl-X 5 0; macOS: Option-F4; MATLAB: Alt-F4; VI/VIM: Alt-F4; Visual Studio:

Alt-F4; XCode: Option-F4

command-by-name (command_name)

Execute given command by name, collecting any args as needed Key Bindings: Wing: Ctrl-F12; Brief:

F10; Eclipse: Ctrl-F12; Emacs: Esc X; macOS: Ctrl-F12; MATLAB: Ctrl-F12; VI/VIM: Ctrl-F12; Visual

Studio: Ctrl-/; XCode: Ctrl-F12

copy-import-name-to-clipboard (loc=None)

Copy the import name of a file to the clipboard. The loc may either be a location, filename, url, or None.

The current file is used if loc is None

copy-tutorial ()

Prompt user and copy the tutorial directory from the Wing installation to the directory selected by the

user

edit-bookmark-categories ()

Edit the defined bookmark categories

edit-preferences-file ()

Edit the preferences as a text file

Command Reference

403

enter-license ()

Enter a new license code, replacing any existing license activation

execute-file (loc=None)

Execute the file at the given location or use the active view if loc is None. Key Bindings: Eclipse: Ctrl-U

execute-os-command (title, show=True)

Execute one of the stored commands in the OS Commands tool, selecting it by its title

execute-os-command-by-id (id, raise_panel=True)

Execute one of the stored commands in the OS Commands tool, selecting it by its internal ID

execute-process (cmd_line)

Execute the given command line in the OS Commands tool using default run directory and environment

as defined in project properties, or the values set in an existing command with the same command line

in the OS Commands tool. Key Bindings: Emacs: Alt-!

export-bookmark-categories (filename)

Export all bookmark categories

fileset-load (name)

Load the given named file set

fileset-manage ()

Display the file set manager dialog

fileset-new-with-open-files (file_set_name)

Create a new named file set with the currently open files

fileset-new-with-selected-files (file_set_name)

Create a new named file set with the currently selected files

goto-bookmark (mark)

Goto named bookmark Key Bindings: Wing: Ctrl-Alt-G; Eclipse: Ctrl-Alt-G; Emacs: Ctrl-X R B; macOS:

Command-Ctrl-B; MATLAB: Ctrl-Alt-G; Visual Studio: Ctrl-Alt-G; XCode: Command-Ctrl-B

goto-definition (symbol=None, context='selection,path', other_split=None)

Go to the definition of the given symbol, working from the given scope. If symbol is not given then the

currently selected symbol is used.

The context can contain one or more of the following in a comma-separated list. They are used in order

given and processing stops when a valid definition if found:

Command Reference

404

• 'selection' to resolve the symbol in the scope of the current editor selection

• 'def' to resolve it in the scope of the point of definition of the current editor selection.

• 'path' to resolve by treating the leading portion as a module Name on the Python Path

If other_split is true, the definition will be displayed if a split other than the current split; if other_split is

false, it will be displayed in the current editor; if other_split is not specified or None, the split to be used

is determined by the Split Reuse Policy preference value..

goto-next-bookmark (current_file_only=False, category=None)

Go to the next bookmark, or the first one if no bookmark is selected. Stays within the file in the current

editor when current_file_only is True. Only bookmarks in the current bookmark category are visited

unless a category is passed. Key Bindings: Wing: Ctrl-Alt-Down invokes

goto-next-bookmark(current_file_only=True); Brief: Ctrl-Alt-Down invokes

goto-next-bookmark(current_file_only=True); Eclipse: Ctrl-Alt-Down invokes

goto-next-bookmark(current_file_only=True); Emacs: Ctrl-Alt-Down invokes

goto-next-bookmark(current_file_only=True); MATLAB: F2; VI/VIM: Ctrl-Alt-Down invokes

goto-next-bookmark(current_file_only=True); Visual Studio: Ctrl-K Ctrl-N

goto-previous-bookmark (current_file_only=False, category=None)

Go to the previous bookmark in the bookmark list, or the last one if no bookmark is selected. Stays

within the file in the current editor when current_file_only is True. Only bookmarks in the current

bookmark category are visited unless a category is passed. Key Bindings: Wing: Ctrl-Alt-Up invokes

goto-previous-bookmark(current_file_only=True); Brief: Ctrl-Alt-Up invokes

goto-previous-bookmark(current_file_only=True); Eclipse: Ctrl-Alt-Up invokes

goto-previous-bookmark(current_file_only=True); Emacs: Ctrl-Alt-Up invokes

goto-previous-bookmark(current_file_only=True); MATLAB: Shift-F2; VI/VIM: Ctrl-Alt-Up invokes

goto-previous-bookmark(current_file_only=True); Visual Studio: Ctrl-K Ctrl-P

hide-line-numbers ()

Hide line numbers in editors

import-bookmark-categories (filename)

Import bookmark categories

initiate-numeric-modifier (digit)

VI style repeat/numeric modifier for following command Key Bindings: VI/VIM: 9 invokes

initiate-numeric-modifier(digit=9)

initiate-repeat ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Ctrl-U

Command Reference

405

initiate-repeat-0 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-0

initiate-repeat-1 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-1

initiate-repeat-2 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-2

initiate-repeat-3 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-3

initiate-repeat-4 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Brief: Ctrl-R; Emacs: Alt-4

initiate-repeat-5 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-5

initiate-repeat-6 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-6

initiate-repeat-7 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-7

initiate-repeat-8 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-8

initiate-repeat-9 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command or keystroke.

Key Bindings: Emacs: Alt-9

internal-keystroke-logging-start ()

Start logging information about keystroke processing to ide.log

Command Reference

406

internal-keystroke-logging-stop ()

Stop logging information about keystroke processing to ide.log

internal-logging-start (name=None)

Start logging information about the internal subsystem to ide.log

internal-logging-stop (name=None)

Stop logging information about the internal subsystem to ide.log

internal-profile-start (print_freq=0, print_top_n=40)

Start internal profiling. Profile information is collected for Wing's internals until internal_profile_stop is

executed. If the print_freq argument is > 0, stats will be printed to ide.log every print_freq seconds. The

print_top_n arg specifies the number of top functions to print.

internal-profile-stop ()

Stop internal profiling after earlier internal_profile_start command. The profile can be found in the ide.log

file or submitted to Wingware as part of the error log included with a bug report from the Help menu.

internal-tooltip-logging-start ()

Start logging information about tooltip processing to ide.log

internal-tooltip-logging-stop ()

Stop logging information about tooltip processing to ide.log

maximize-editor-to-window ()

Move the current editor out of the main document window and into its own editor-only window Key

Bindings: MATLAB: Ctrl-Shift-U

new-blank-file (filename)

Create a new blank file on disk, open it in an editor, and add it to the current project.

new-directory (filename)

Create a new directory on disk and add it to the current project.

new-document-window ()

Create a new document window with same documents and panels as in the current document window

(if any; otherwise empty with default panels) Key Bindings: Emacs: Ctrl-X 5 3; macOS: Shift-F4; XCode:

Shift-F4

new-file (ext='.py')

Create a new file Key Bindings: Wing: Ctrl-N; Eclipse: Ctrl-N; macOS: Command-N; MATLAB: Ctrl-N;

Visual Studio: Ctrl-N; XCode: Command-T

Command Reference

407

new-package (filename)

Create a new Python package directory on disk, add it to the current project, and open the new

__init__.py in the editor.

new-panel-window (panel_type=None)

Create a new panel window of given type

next-document (repeat=<numeric modifier; default=1>, alphabetical=None, all_splits=True)

Move to the next document open in the current window. If alphabetical is true, the list traversed will be

alphabetized. If all_splits is true, documents from all splits will be traversed; otherwise, only the current

split will be. Key Bindings: Wing: Ctrl-0; Brief: Alt-N; Eclipse: Ctrl-F6; Emacs: Ctrl-X N; macOS:

Command-0; MATLAB: Ctrl-PageDown; VI/VIM: g T; Visual Studio: Ctrl-0; XCode: Command-}

next-window ()

Switch to the next window alphabetically by title Key Bindings: Wing: Ctrl-Comma; Eclipse: Ctrl-Comma;

Emacs: Ctrl-X 5 O; MATLAB: Ctrl-Comma; Visual Studio: Ctrl-Comma

nth-document (n=<numeric modifier; default=0>, alphabetical=None, all_splits=True)

Move to the nth document open in the current window. If alphabetical is true, the list of documents will

be alphabetized. If all_splits is true, documents from all splits will be in list; otherwise, only the current

split will be. Key Bindings: VI/VIM: Ctrl-^

open (filename)

Open a file from disk using keyboard-driven selection of the file

open-container ()

Prompt user to open a file from a container

open-from-keyboard (filename)

Open a file from disk using keyboard-driven selection of the file Key Bindings: Wing: Ctrl-K; Eclipse:

Ctrl-K; Emacs: Ctrl-X Ctrl-F; MATLAB: Ctrl-K; Visual Studio: Ctrl-K Ctrl-O

open-from-project (fragment='', skip_if_unique=False)

Open document from the project via the Open From Project dialog. The given fragment is used as the

initial fragment filter and if it is None, the selected text or the symbol under the cursor is used. If

skip_if_unique is true, the file is opened without the dialog being displayed if only one filename matches

the fragment. Key Bindings: Wing: Ctrl-Shift-O; Eclipse: Ctrl-Shift-R; Emacs: Ctrl-X Ctrl-O; macOS:

Command-Shift-O; MATLAB: Ctrl-Shift-F; VI/VIM: Ctrl-Shift-O; Visual Studio: Ctrl-Shift-O; XCode:

Command-Shift-O

open-gui (filename=None)

Command Reference

408

Open a file from local disk or a remote host, prompting with file selection dialog if necessary. The dialog

shown depends on the default starting directory, and may be for local files or remote files. Key Bindings:

Wing: Ctrl-O; Brief: Alt-E; Eclipse: Ctrl-O; macOS: Command-O; MATLAB: Ctrl-O; Visual Studio: Ctrl-O;

XCode: Command-O

open-local (filename=None)

Prompt user to open a file from local disk

open-remote ()

Prompt user to open a file from a remote host

perspective-disable-auto ()

Disable auto-perspectives

perspective-enable-auto ()

Enable auto-perspectives

perspective-manage ()

Display the perspectives manager dialog

perspective-restore (name)

Restore the given named perspective.

perspective-update-with-current-state (name=None)

Update the perspective with the current state. If no name is given, the active perspective is used.

previous-document (repeat=<numeric modifier; default=1>, alphabetical=None, all_splits=True)

Move to the previous document open in the current window. If alphabetical is true, the list traversed will

be alphabetized. If all_splits is true, documents from all splits will be traversed; otherwise, only the

current split will be. Key Bindings: Wing: Ctrl-9; Brief: Alt--; Eclipse: Ctrl-9; Emacs: Ctrl-X P; macOS:

Command-9; MATLAB: Ctrl-PageUp; VI/VIM: g Shift-T; Visual Studio: Ctrl-9; XCode: Command-{

previous-window ()

Switch to the previous window alphabetically by title

quit ()

Quit the application. Key Bindings: Wing: Ctrl-Q; Brief: Alt-X; Eclipse: Ctrl-Q; Emacs: Ctrl-X Ctrl-C;

macOS: Command-Q; MATLAB: Alt-F4; Visual Studio: Ctrl-Q; XCode: Command-Q

recent-document ()

Command Reference

409

Switches to previous document most recently visited in the current window or window set if in

one-window-per-editor windowing mode. Key Bindings: Wing: Ctrl-8; Eclipse: Ctrl-8; Emacs: Ctrl-X D;

macOS: Command-8; MATLAB: Ctrl-8; Visual Studio: Ctrl-8; XCode: Command-8

reload-scripts ()

Force reload of all scripts, from all configured script directories. This is usually only needed when adding

a new script file. Existing scripts are automatically reloaded when they change on disk.

remove-bookmark (mark, confirm=False)

Remove the given named bookmark, optionally confirming the removal with the user.

remove-bookmark-current ()

Remove bookmark at current line, if any. This command is only available if there is a bookmark on the

line.

rename-current-file (filename)

Rename current file, moving the file on disk if it exists.

restart-wing ()

Restart the application

restore-default-tools ()

Hide/remove all tools and restore to original default state

save (close=False, force=False)

Save active document. Also close it if close is True. Key Bindings: Wing: Ctrl-S; Brief: Alt-W; Eclipse:

Ctrl-S; Emacs: Ctrl-X Ctrl-S; macOS: Command-S; MATLAB: Ctrl-S; VI/VIM: Ctrl-S; Visual Studio:

Ctrl-S; XCode: Command-S

save-all (close_window=False)

Save all unsaved items, prompting for names for any new items that don't have a filename already. Key

Bindings: Eclipse: Ctrl-Shift-S; Visual Studio: Ctrl-Shift-S

save-as ()

Save active document to a new file Key Bindings: Wing: Ctrl-Shift-S; Eclipse: Ctrl-Shift-S; macOS:

Command-Shift-S; MATLAB: Ctrl-Shift-S; XCode: Command-Shift-S

save-as-remote ()

Save active document to a new file on a remote host

scratch-document (title='Scratch', mime_type='text/plain')

Command Reference

410

Create a new scratch buffer with given title and mime type. The buffer is never marked as changed but

can be saved w/ save-as.

set-bookmark (mark)

Set a bookmark at current location on the editor. Mark is the project-wide textual name of the bookmark,

the category is set to the current bookmark category, and notes are left blank. Key Bindings: Wing:

Ctrl-Alt-M; Brief: Alt-9 invokes set-bookmark(mark="9"); Eclipse: Ctrl-Alt-M; Emacs: Ctrl-X R M; macOS:

Command-B; MATLAB: Ctrl-Alt-M; Visual Studio: Ctrl-Alt-M; XCode: Command-B

set-bookmark-default ()

Set a bookmark at current line, using a default bookmark name for that context. This command is only

available if there is not already a bookmark on the line. The bookmark's category is set to the current

bookmark category, and notes are left blank.

set-bookmark-dialog ()

Set a bookmark at the current location on the editor using a dialog to set the bookmark name, category,

and notes. The default name is auto-generated based on location, and default category is set to the

current bookmark category.

set-bookmark-dialog-at-click ()

Set a bookmark at the clicked location on the editor using a dialog to set the bookmark name, category,

and notes. The default name is auto-generated based on location, and default category is set to the

current bookmark category.

show-bookmarks ()

Show a list of all currently defined bookmarks Key Bindings: Wing: Ctrl-Alt-K; Brief: Alt-J; Eclipse:

Ctrl-Alt-K; Emacs: Ctrl-X R Return; macOS: Command-Shift-K; MATLAB: Ctrl-Alt-K; Visual Studio:

Ctrl-Alt-K; XCode: Command-Shift-K

show-bug-report-dialog ()

Show the bug reporting dialog

show-document (section='manual')

Show the given documentation section Key Bindings: macOS: Command-?; XCode: Command-Alt-?

show-feedback-dialog ()

Show the feedback submission dialog

show-file-in-editor (filename, lineno=None, col=-1, length=0)

Show the given file in the editor. Selects the code starting and given column (if >= 0) and of given

length.

Command Reference

411

show-file-in-os-file-manager (filename=None)

Show the selected file in the Explorer, Finder, or other OS-provided file manager. Shows the given file, if

any, or the current file selected in the GUI.

show-howtos ()

Show the How-Tos index

show-html-document (section='manual')

Show the given document section in HTML format.

show-line-numbers (show=1)

Show the line numbers in editors

show-manual-html ()

Show the HTML version of the Wing users manual

show-manual-pdf ()

Show the PDF version of the Wing users manual for either US Letter or A4, depending on user's print

locale

show-panel (panel_type, flash=True, grab_focus=None)

Show most recently visited panel instance of given type. If no such panel exists, add one to the primary

window and show it. Returns the panel view object or None if not shown. Focus is shifted to panel if

grab_focus is specified and is true; if grab_focus is not specified, it defaults to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**) debug-data debug-stack

debug-io debug-exceptions debug-breakpoints (**) debug-console (**) debug-watch (**) debug-modules

(**) python-shell messages (*) help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**)

snippets (**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)

versioncontrol.git (**) versioncontrol.cvs (**) versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only Key Bindings: Eclipse: Alt-Shift-T invokes

show-panel(panel_type="refactoring"); MATLAB: F1 invokes

show-panel(panel_type="source-assistant")

show-panel-batch-search (flash=True, grab_focus=None)

Not documented

show-panel-bookmarks (flash=True, grab_focus=None)

Not documented

show-panel-browser (flash=True, grab_focus=None)

Command Reference

412

Not documented

show-panel-code-warnings (flash=True, grab_focus=None)

Not documented

show-panel-containers (flash=True, grab_focus=None)

Not documented

show-panel-debug-breakpoints (flash=True, grab_focus=None)

Not documented

show-panel-debug-console (flash=True, grab_focus=None)

Not documented

show-panel-debug-data (flash=True, grab_focus=None)

Not documented

show-panel-debug-exceptions (flash=True, grab_focus=None)

Not documented

show-panel-debug-io (flash=True, grab_focus=None)

Not documented

show-panel-debug-modules (flash=True, grab_focus=None)

Not documented

show-panel-debug-stack (flash=True, grab_focus=None)

Not documented

show-panel-debug-watch (flash=True, grab_focus=None)

Not documented

show-panel-diff (flash=True, grab_focus=None)

Not documented

show-panel-help (flash=True, grab_focus=None)

Not documented

show-panel-indent (flash=True, grab_focus=None)

Not documented

show-panel-interactive-search (flash=True, grab_focus=None)

Not documented

Command Reference

413

show-panel-messages (flash=True, grab_focus=None)

Not documented

show-panel-open-files (flash=True, grab_focus=None)

Not documented

show-panel-os-command (flash=True, grab_focus=None)

Not documented

show-panel-packages (flash=True, grab_focus=None)

Not documented

show-panel-project (flash=True, grab_focus=None)

Not documented

show-panel-python-shell (flash=True, grab_focus=None)

Not documented

show-panel-refactoring (flash=True, grab_focus=None)

Not documented

show-panel-snippets (flash=True, grab_focus=None)

Not documented Key Bindings: XCode: Command-Alt-Ctrl-2

show-panel-source-assistant (flash=True, grab_focus=None)

Not documented Key Bindings: XCode: Command-Alt-Ctrl-/

show-panel-testing (flash=True, grab_focus=None)

Not documented

show-panel-uses (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-cvs (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-git (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-hg (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-perforce (flash=True, grab_focus=None)

Command Reference

414

Not documented

show-panel-versioncontrol-svn (flash=True, grab_focus=None)

Not documented

show-plugins-gui ()

Show the plugins GUI for enabling and disabling plugins

show-preferences-gui (prefname=None)

Edit the preferences file using the preferences GUI, optionally opening to the section that contains the

given preference by name Key Bindings: macOS: Command-Comma; XCode: Command-Comma

show-python-donate-html ()

Show the Python donations web page

show-python-for-beginners-html ()

Show the Python for Beginners web page

show-python-manual-html ()

Show the Python users manual

show-python-org-html ()

Show the python.org site home page

show-python-org-search-html ()

Show the python.org site search page

show-qa-html ()

Show the Wing Q&A site

show-quickstart ()

Show the quick start guide

show-success-stories-html ()

Show the Python Success Stories page

show-support-html ()

Show the Wing support site home page

show-text-registers ()

Show the contents of all non-empty text registers in a temporary editor

show-tutorial ()

Command Reference

415

Show the tutorial

show-wingtip (section='/')

Show the Wing Tips window

show-wingware-donate ()

Show the Wingware donation page

show-wingware-store ()

Show the Wingware store for purchasing a license

show-wingware-website ()

Show the Wingware home page

show-wingware-wiki ()

Show the contributed materials area

start-terminal ()

Start a terminal in the OS Commands tool

switch-document (document_name)

Switches to named document. Name may either be the complete name or the last path component of a

path name. Key Bindings: Emacs: Ctrl-X B; Visual Studio: Ctrl-K Ctrl-S

terminate-os-command (title)

Terminate one of the stored commands in the OS Commands tool, selecting it by its title

toggle-bookmark ()

Set or remove a bookmark at current location on the editor. When set, the name of the bookmark is set

to an auto-generated default, the category is set to the current bookmark category, and notes are left

blank. When removed, the bookmark is removed without confirmation. Key Bindings: Wing: Ctrl-Alt-T;

Eclipse: Ctrl-Alt-T; Emacs: Ctrl-X R T; macOS: Command-Shift-B; MATLAB: Ctrl-F2; Visual Studio:

Ctrl-K Ctrl-K; XCode: Command-Shift-B

toggle-bookmark-at-click ()

Set or remove a bookmark at the position in the editor where the most recent mouse click occurred.

When set, the name of the bookmark is set to an auto-generated default, the category is set to the

current bookmark category, and notes are left blank. When removed, the bookmark is removed without

confirmation.

toggle-line-numbers ()

Toggle whether or not line numbers are shown in editors

Command Reference

416

toolbar-search (text, next=False, set_anchor=True, forward=True)

Search using given text and the toolbar search area. The search is always forward from the current

cursor or selection position

toolbar-search-focus ()

Move focus to toolbar search entry. Key Bindings: Wing: Ctrl-Alt-D; Eclipse: Ctrl-Alt-D; MATLAB:

Ctrl-Alt-D; Visual Studio: Ctrl-K Ctrl-D

toolbar-search-next (set_anchor=True)

Move to next match of text already entered in the toolbar search area

toolbar-search-prev (set_anchor=True)

Move to previous match of text already entered in the toolbar search area

unmaximize-editors-from-window ()

Move all the editors in the current editor-only window back into the main document window and close

the editor-only window. A new main document window is created if none currently exists. Key Bindings:

MATLAB: Ctrl-Shift-D

validate-install ()

Validate the Wing installation, checking that all files are present and have the expected contents

vi-delete-bookmark (marks)

Remove one or more bookmarks without confirmation (pass in space separated list of names)

vi-goto-bookmark ()

Goto bookmark using single character name defined by the next pressed key Key Bindings: VI/VIM: '

vi-set-bookmark ()

Set a bookmark at current location on the editor using the next key press as the name of the bookmark.

Key Bindings: VI/VIM: m

wing-tips ()

Display interactive tip manager

write-changed-file-and-close (filename)

Write current document to given location only if it contains any changes and close it. Writes to current

file name if given filename is None.

write-file (filename, start_line=None, end_line=None, follow=True)

Write current file to a new location, optionally omitting all but the lines in the given range. The editor is

changed to point to the new location when follow is True. If follow is 'untitled' then the editor is changed

Command Reference

417

to point to the new location only if starting with an untitled buffer and saving the whole file. Note that the

editor contents will be truncated to the given start/end lines when follow is True. Key Bindings: Emacs:

Ctrl-X Ctrl-W

write-file-and-close (filename)

Write current document to given location and close it. Saves to current file name if the given filename is

None. Key Bindings: VI/VIM: Shift-Z Shift-Z invokes write-file-and-close(filename=None)

Dock Window Commands

Commands for windows that contain dockable tool areas. These are available for the currently active

window, if any.

display-toolbox-on-left ()

Display the tall toolbox on the right.

display-toolbox-on-right ()

Display the tall toolbox on the left.

enter-fullscreen ()

Hide both the vertical and horizontal tool areas and toolbar, saving previous state so it can be restored

later with exit_fullscreen Key Bindings: Wing: Shift-F2; Brief: Shift-F2; Eclipse: Ctrl-M; Emacs: Shift-F2;

macOS: Shift-F2; MATLAB: Ctrl-Shift-M; VI/VIM: Shift-F2; Visual Studio: Shift-F2; XCode: Shift-F2

exit-fullscreen ()

Restore previous non-fullscreen state of all tools and tool bar Key Bindings: Wing: Shift-F2; Brief:

Shift-F2; Eclipse: Ctrl-M; Emacs: Shift-F2; macOS: Shift-F2; MATLAB: Ctrl-Shift-M; VI/VIM: Shift-F2;

Visual Studio: Shift-F2; XCode: Shift-F2

hide-horizontal-tools ()

Hide the horizontal tool area

hide-toolbar ()

Hide toolbars in all document windows

hide-vertical-tools ()

Hide the vertical tool area

minimize-horizontal-tools ()

Minimize the horizontal tool area Key Binding: F1

minimize-vertical-tools ()

Minimize the vertical tool area Key Binding: F2

Command Reference

418

show-horizontal-tools ()

Show the horizontal tool area Key Binding: F1

show-toolbar ()

Show toolbars in all document windows

show-vertical-tools ()

Show the vertical tool area Key Binding: F2

toggle-horizontal-tools ()

Show or minimize the horizontal tool area Key Bindings: XCode: Command-Shift-Y

toggle-vertical-tools ()

Show or minimize the vertical tool area Key Bindings: XCode: Command-0

Document Viewer Commands

Commands for the documentation viewer. These are available when the documentation viewer has the

keyboard focus.

copy ()

Copy any selected text. Key Bindings: Wing: Ctrl-C; Brief: Ctrl-C; Eclipse: Ctrl-C; Emacs: Alt-W;

macOS: Command-C; MATLAB: Ctrl-C; VI/VIM: Ctrl-Insert; Visual Studio: Ctrl-C; XCode: Command-C

document-back ()

Go back to prior page in the history of those that have been viewed

document-contents ()

Go to the document contents page

document-forward ()

Go forward to next page in the history of those that have been viewed

document-next ()

Go to the next page in the current document

document-previous ()

Go to the previous page in the current document

isearch-backward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, optionally entering the given search

string. Key Bindings: Wing: Ctrl-Shift-U; Eclipse: Ctrl-Shift-J; Emacs: Ctrl-R; macOS: Command-Shift-U;

MATLAB: Ctrl-Shift-R; Visual Studio: Ctrl-Shift-U; XCode: Command-Shift-U

Command Reference

419

isearch-backward-regex (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental regular expression mini-search backward from the cursor position, optionally

entering the given search string. Key Bindings: Emacs: Ctrl-Alt-R; VI/VIM: ?

isearch-forward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, optionally entering the given search

string. Key Bindings: Wing: Ctrl-U; Eclipse: Ctrl-J; Emacs: Ctrl-S; macOS: Command-U; MATLAB:

Ctrl-Shift-S; Visual Studio: Ctrl-I; XCode: Command-U

isearch-forward-regex (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental regular expression mini-search forward from the cursor position, optionally entering

the given search string. Key Bindings: Emacs: Ctrl-Alt-S; VI/VIM: /

isearch-repeat (reverse=False, repeat=<numeric modifier; default=1>)

Repeat the most recent isearch, using same string and regex/text. Reverse direction when reverse is

True. Key Bindings: VI/VIM: Shift-N invokes isearch-repeat(reverse=1)

isearch-sel-backward (persist=True, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, using current selection as the search

string. Set persist=False to do the search but end the interactive search session immediately. Key

Bindings: Wing: Ctrl-Shift-B; Eclipse: Ctrl-Shift-B; Emacs: Ctrl-C R; MATLAB: Ctrl-Shift-B; VI/VIM: #

invokes isearch-sel-backward(persist=0, whole_word=1); Visual Studio: Ctrl-Shift-B

isearch-sel-forward (persist=True, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, using current selection as the search

string. Set persist=False to do the search but end the interactive search session immediately. Key

Bindings: Wing: Ctrl-B; Eclipse: Ctrl-B; Emacs: Ctrl-C S; MATLAB: Ctrl-B; VI/VIM: * invokes

isearch-sel-forward(persist=0, whole_word=1); Visual Studio: Ctrl-B

zoom-in ()

Increase documentation font size Key Binding: Ctrl-+

zoom-out ()

Decrease documentation font size Key Binding: Ctrl--

zoom-reset ()

Reset documentation font size to default Key Binding: Ctrl-_

Global Documentation Commands

Commands for the documentation viewer that are available regardless of where the focus is.

document-search (txt=None)

Command Reference

420

Search all documentation.

Window Commands

Commands for windows in general. These are available for the currently active window, if any.

focus-current-editor ()

Move focus back to the current editor, out of any tool, if there is an active editor. Key Bindings: Eclipse:

Ctrl-Shift-E; XCode: Command-J

move-editor-focus (dir=1, wrap=True)

Move focus to next or previous editor split, optionally wrapping when the end is reached. Key Bindings:

Emacs: Ctrl-X O; MATLAB: F6; VI/VIM: Ctrl-W W invokes move-editor-focus(dir=-1)

move-editor-focus-first ()

Move focus to first editor split Key Bindings: VI/VIM: Ctrl-W t

move-editor-focus-last ()

Move focus to last editor split Key Bindings: VI/VIM: Ctrl-W b

move-editor-focus-previous ()

Move focus to previous editor split Key Bindings: VI/VIM: Ctrl-W p

move-focus ()

Move the keyboard focus forward within the Window to the next editable area Key Binding: Shift-F1

next-tool (wrap=True)

Show the next tool, starting with most recently shown tool Key Bindings: MATLAB: Ctrl-F6

prev-tool (wrap=True)

Show the previous tool, starting with the move recently shown tool Key Bindings: MATLAB: Ctrl-Shift-F6

Wing Tips Commands

Commands for the Wing Tips tool. These are only available when the tool is visible and has focus

wingtips-close ()

Close the Wing Tips window

wingtips-contents ()

Go to the Wing Tips contents page

wingtips-next ()

Go to the next page in Wing Tips

Command Reference

421

wingtips-next-unseen ()

Go to a next unseen Wing Tips page

wingtips-previous ()

Go to the previous page in Wing Tips

24.2. Project Manager Commands

Project Manager Commands

These commands act on the project manager or on the current project, regardless of whether the

project list has the keyboard focus.

add-current-file-to-project ()

Add the frontmost currently open file to project Key Bindings: Wing: Ctrl-Shift-I; Brief: Ctrl-Shift-I;

Eclipse: Ctrl-Shift-I; Emacs: Ctrl-Shift-I; macOS: Command-Shift-I; MATLAB: Ctrl-Shift-I; VI/VIM:

Ctrl-Shift-I; Visual Studio: Ctrl-Shift-I; XCode: Command-Shift-I

add-directory-to-project (loc=None, recursive=True, filter='*', include_hidden=False, gui=True)

Add directory to project.

add-file-to-project ()

Add an existing file to the project.

browse-selected-from-project ()

Browse file currently selected in the project manager

clear-project-main-entry-point ()

Clear main entry point to nothing, so that debugging and execution starts with the file in the current

editor

close-project ()

Close currently open project file

debug-selected-from-project ()

Start debugging the file currently selected in the project manager

execute-selected-from-project ()

Execute the file currently selected in the project manager

new-project (show_dialog=True)

Create a new project. When show_dialog is False, a new blank project is created. Otherwise, the New

Project dialog is shown.

Command Reference

422

open-ext-selected-from-project ()

Open file currently selected in the project manager

open-project (filename=None)

Open the given project file, or prompt the user to select a file if the filename is not given.

open-project-remote ()

Open a project file from a remote host

open-selected-from-project ()

Open files currently selected in the project manager

remove-directory-from-project (loc=None, gui=True)

Remove directory from project.

remove-selection-from-project ()

Remove currently selected file or package from the project

rescan-project-directories (dirs=None, recursive=True)

Scan project directories for changes. If list of directories is not specified, currently selected directories

are used.

save-project ()

Save project file.

save-project-as (filename=None)

Save project file under the given name, or prompt user for a name if the filename is not given.

save-project-as-remote (filename=None)

Save current project to a remote host

set-current-as-main-entry-point ()

Set current editor file as the main entry point for this project

set-selected-as-main-entry-point ()

Set selected file as the main entry point for this project

show-current-file-in-project-tool ()

Show the currently selected file in the project view, if present. The selection may be the current editor, if

it has focus, or files selected in other views.

show-project-window ()

Command Reference

423

Raise the project manager window

show-python-environment ()

Show the effective Python version and path for the current configuration

use-shared-project ()

Store project in sharable (two file) format. The .wpr file can be checked into revision control or other

shared with other users and machines. This is the default and the format cannot be read by Wing

Personal.

use-single-user-project ()

Store project single-user (one file) format, which can also be read by Wing Personal.

view-directory-properties (loc=None)

Show the project manager's directory properties dialog

view-file-properties (loc=None, page=None, highlighted_attribs=None)

View project properties for a particular file (current file if none is given) Key Bindings: Eclipse: Alt-Enter;

macOS: Command-I; XCode: Command-I

view-project-as-flat-tree ()

View project as flattened directory tree from project file

view-project-as-tree ()

View project as directory tree from project file

view-project-properties (highlighted_attrib=None, show_page=None)

View or change project-wide properties Key Bindings: Visual Studio: Alt-F7

Project View Commands

Commands that are available only when the project view has the keyboard focus.

browse-selected-from-project ()

Browse file currently selected in the project manager

debug-selected-from-project ()

Start debugging the file currently selected in the project manager

execute-selected-from-project ()

Execute the file currently selected in the project manager

move-files-selected-in-project-to-trash ()

Command Reference

424

Move the files and/or directories currently selected in the project view to the trash or recycling bin

open-ext-selected-from-project ()

Open file currently selected in the project manager

open-selected-from-project ()

Open files currently selected in the project manager

remove-selection-from-project ()

Remove currently selected file or package from the project

rename-selected-in-project (new_name)

Rename the currently selected file or directory in the project view

search-in-selected-from-project ()

Search in file or directory currently selected in the project manager

set-selected-as-main-entry-point ()

Set selected file as the main entry point for this project

view-project-as-flat-tree ()

View project as flattened directory tree from project file

view-project-as-tree ()

View project as directory tree from project file

24.3. Editor Commands

Editor Browse Mode Commands

Commands available only when the editor is in browse mode (used for VI bindings and possibly others)

enter-insert-mode (pos='before')

Enter editor insert mode Key Bindings: VI/VIM: Shift-A invokes enter-insert-mode(pos="after")

enter-replace-mode ()

Enter editor replace mode Key Bindings: VI/VIM: Shift-R

enter-visual-mode (unit='char')

Enter editor visual mode. Unit should be one of 'char', 'line', or 'block'.

previous-select ()

Turn on auto-select using previous mode and selection Key Bindings: VI/VIM: g v

Command Reference

425

start-select-block ()

Turn on auto-select rectangle mode (deprecated name)

start-select-char ()

Turn on auto-select mode character by character Key Bindings: Wing: Shift-F8; Brief: Shift-F8; Eclipse:

Shift-F8; Emacs: Shift-F8; macOS: Shift-F8; MATLAB: Shift-F8; VI/VIM: v; Visual Studio: Shift-F8;

XCode: Shift-F8

start-select-line ()

Turn on auto-select mode line by line Key Bindings: Wing: Ctrl-F8; Brief: Ctrl-F8; Eclipse: Ctrl-F8;

Emacs: Ctrl-F8; macOS: Command-F8; MATLAB: Ctrl-F8; VI/VIM: Shift-V; Visual Studio: Ctrl-F8;

XCode: Command-F8

start-select-rectangle ()

Turn on auto-select rectangle mode Key Bindings: Wing: Shift-Ctrl-F8; Brief: Shift-Ctrl-F8; Eclipse:

Shift-Ctrl-F8; Emacs: Shift-Ctrl-F8; macOS: Shift-Command-F8; MATLAB: Shift-Ctrl-F8; VI/VIM: Ctrl-Q;

Visual Studio: Shift-Ctrl-F8; XCode: Shift-Command-F8

vi-command-by-name ()

Execute a VI command by name. This implements ":" commands for the VI/Vim keyboard personality.

The following subset of VI/Vim : commands are supported:

r[!], e[dit], e!, e#, ene[w], w[rite], up[date], wa[ll], q[uit], q[!], qall, wq,
x[it], xall, wqall, sp[lit], vs[plit], new, on[ly], buffers, files, !, s[ubstitute],
d, delm, reg, marks, n[ext], N, p[revious], rew[ind], last, m[ove], co[py], cl[ose]
(an approximation), and set.

The supported directives for 'set' are:

ic, ignorecase, noic, noignorecase, ai, autoindent, noai, noautoindent, nu, number,
nonu, nonumber, ro, readonly, noro, noreadonly, sm, showmatch, nosm, and noshowmatch.
 Key Bindings: VI/VIM: :

vi-set (command)

Perform vi's :set action. The command is the portion after :set. Currently supports ic, noic, ai, noai,

number or nu, nonumber or nonu, ro, noro, sm, and nosm. Multiple options can be specied in one call

as for :set ic sm ai

Editor Insert Mode Commands

Commands available only when editor is in insert mode (used for VI bindings and possibly others)

enter-browse-mode (provisional=False)

Command Reference

426

Enter editor browse mode Key Bindings: VI/VIM: Ctrl-V

Editor Non Modal Commands

Commands available only when the editor is in non-modal editing mode

exit-visual-mode ()

Exit visual mode and return back to default mode Key Bindings: Wing: Esc; Brief: Esc; Eclipse: Esc;

Emacs: Esc; macOS: Esc; MATLAB: Esc; VI/VIM: Ctrl-[; Visual Studio: Esc; XCode: Esc

start-select-block ()

Turn on auto-select rectangle mode (deprecated name)

start-select-char ()

Turn on auto-select mode character by character Key Bindings: Wing: Shift-F8; Brief: Shift-F8; Eclipse:

Shift-F8; Emacs: Shift-F8; macOS: Shift-F8; MATLAB: Shift-F8; VI/VIM: v; Visual Studio: Shift-F8;

XCode: Shift-F8

start-select-line ()

Turn on auto-select mode line by line Key Bindings: Wing: Ctrl-F8; Brief: Ctrl-F8; Eclipse: Ctrl-F8;

Emacs: Ctrl-F8; macOS: Command-F8; MATLAB: Ctrl-F8; VI/VIM: Shift-V; Visual Studio: Ctrl-F8;

XCode: Command-F8

start-select-rectangle ()

Turn on auto-select rectangle mode Key Bindings: Wing: Shift-Ctrl-F8; Brief: Shift-Ctrl-F8; Eclipse:

Shift-Ctrl-F8; Emacs: Shift-Ctrl-F8; macOS: Shift-Command-F8; MATLAB: Shift-Ctrl-F8; VI/VIM: Ctrl-Q;

Visual Studio: Shift-Ctrl-F8; XCode: Shift-Command-F8

Editor Panel Commands

Commands that control splitting up an editor panel. These are available when one split in the editor

panel has the keyboard focus.

split-horizontally (new=0)

Split current view horizontally. Key Bindings: Emacs: Ctrl-X 3; VI/VIM: Ctrl-W v

split-horizontally-open-file (filename)

Split current view horizontally and open selected file

split-vertically (new=0)

Split current view vertically. Create new editor in new view when new==1. Key Bindings: Brief: F3;

Emacs: Ctrl-X 2; VI/VIM: Ctrl-W n invokes split-vertically(new=1)

split-vertically-open-file (filename)

Command Reference

427

Split current view vertically and open selected file

unsplit (action='current')

Unsplit all editors so there's only one. Action specifies how to choose the remaining displayed editor.

One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left. *Key Bindings: Brief: F4; Emacs: Ctrl-X 1; VI/VIM: Ctrl-W o*

Editor Replace Mode Commands

Commands available only when editor is in replace mode (used for VI bindings and possibly others)

enter-browse-mode (provisional=False)

Enter editor browse mode Key Bindings: VI/VIM: Ctrl-V

Editor Split Commands

Commands for a particular editor split, available when the editor in that split has the keyboard focus.

Additional commands affecting the editor's content are defined separately.

activate-file-option-menu ()

Activate the file menu for the editor. Key Bindings: Wing: Ctrl-1; Brief: Ctrl-1; Eclipse: Ctrl-1; Emacs:

Ctrl-1; macOS: Command-1; MATLAB: Ctrl-1; VI/VIM: Ctrl-1; Visual Studio: Ctrl-1; XCode: Command-1

grow-split-horizontally ()

Increase width of this split

grow-split-vertically ()

Increase height of this split Key Bindings: VI/VIM: Ctrl-W +

shrink-split-horizontally ()

Decrease width of this split

shrink-split-vertically ()

Decrease height of this split Key Bindings: VI/VIM: Ctrl-W -

visit-history-next ()

Command Reference

428

Move forward in history to next visited editor position Key Bindings: Wing: Forward-button-click; Brief:

Forward-button-click; Eclipse: Alt-Right; Emacs: Forward-button-click; macOS: Forward-button-click;

MATLAB: Forward-button-click; VI/VIM: Ctrl-I; Visual Studio: Ctrl-_; XCode: Command-Ctrl-Right

visit-history-previous ()

Move back in history to previous visited editor position Key Bindings: Wing: Back-button-click; Brief:

Back-button-click; Eclipse: Ctrl-Q; Emacs: Back-button-click; macOS: Back-button-click; MATLAB:

Back-button-click; VI/VIM: Ctrl-O; Visual Studio: Ctrl--; XCode: Command-Ctrl-Left

Editor Visual Mode Commands

Commands available only when the editor is in visual mode (used for VI bindings and some others)

enter-browse-mode ()

Enter editor browse mode Key Bindings: VI/VIM: Ctrl-V

enter-insert-mode (pos='delete-sel')

Enter editor insert mode Key Bindings: VI/VIM: Shift-A invokes enter-insert-mode(pos="after")

enter-visual-mode (unit='char')

Alter type of editor visual mode or exit back to browse mode. Unit should be one of 'char', 'line', or

'block'.

exit-visual-mode ()

Exit visual mode and return back to default mode Key Bindings: Wing: Esc; Brief: Esc; Eclipse: Esc;

Emacs: Esc; macOS: Esc; MATLAB: Esc; VI/VIM: Ctrl-[; Visual Studio: Esc; XCode: Esc

select-inner (extend=False)

Select a text object based on the following key press Key Bindings: VI/VIM: a invokes

select-inner(extend=True)

vi-command-by-name ()

Execute a VI command by name. This implements ":" commands for the VI/Vim keyboard personality.

The following subset of VI/Vim : commands are supported:

r[!], e[dit], e!, e#, ene[w], w[rite], up[date], wa[ll], q[uit], q[!], qall, wq,
x[it], xall, wqall, sp[lit], vs[plit], new, on[ly], buffers, files, !, s[ubstitute],
d, delm, reg, marks, n[ext], N, p[revious], rew[ind], last, m[ove], co[py], cl[ose]
(an approximation), and set.

The supported directives for 'set' are:

Command Reference

429

ic, ignorecase, noic, noignorecase, ai, autoindent, noai, noautoindent, nu, number,
nonu, nonumber, ro, readonly, noro, noreadonly, sm, showmatch, nosm, and noshowmatch.
 Key Bindings: VI/VIM: :

Active Editor Commands

Commands that only apply to editors when they have the keyboard focus. These commands are also

available for the Python Shell, Debug Console, and Debug I/O tools, which subclass the source editor,

although some of the commands are modified or disabled as appropriate in those contexts.

activate-symbol-option-menu-1 ()

Activate the 1st symbol menu for the editor. Key Bindings: Wing: Ctrl-2; Brief: Ctrl-2; Eclipse: Ctrl-2;

Emacs: Ctrl-2; macOS: Command-2; MATLAB: Ctrl-2; VI/VIM: Ctrl-2; Visual Studio: Ctrl-2; XCode:

Command-2

activate-symbol-option-menu-2 ()

Activate the 2nd symbol menu for the editor. Key Bindings: Wing: Ctrl-3; Brief: Ctrl-3; Eclipse: Ctrl-3;

Emacs: Ctrl-3; macOS: Command-3; MATLAB: Ctrl-3; VI/VIM: Ctrl-3; Visual Studio: Ctrl-3; XCode:

Command-3

activate-symbol-option-menu-3 ()

Activate the 3rd symbol menu for the editor. Key Bindings: Wing: Ctrl-4; Brief: Ctrl-4; Eclipse: Ctrl-4;

Emacs: Ctrl-4; macOS: Command-4; MATLAB: Ctrl-4; VI/VIM: Ctrl-4; Visual Studio: Ctrl-4; XCode:

Command-4

activate-symbol-option-menu-4 ()

Activate the 4th symbol menu for the editor. Key Bindings: Wing: Ctrl-5; Brief: Ctrl-5; Eclipse: Ctrl-5;

Emacs: Ctrl-5; macOS: Command-5; MATLAB: Ctrl-5; VI/VIM: Ctrl-5; Visual Studio: Ctrl-5; XCode:

Command-5

activate-symbol-option-menu-5 ()

Activate the 5th symbol menu for the editor. Key Bindings: Wing: Ctrl-6; Brief: Ctrl-6; Eclipse: Ctrl-6;

Emacs: Ctrl-6; macOS: Command-6; MATLAB: Ctrl-6; VI/VIM: Ctrl-6; Visual Studio: Ctrl-6; XCode:

Command-6

backward-char (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character Key Bindings: Wing: Left; Brief: Left; Eclipse: Left; Emacs: Ctrl-B;

macOS: Ctrl-b; MATLAB: Left; VI/VIM: Ctrl-h; Visual Studio: Left; XCode: Ctrl-b

backward-char-extend (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character, adjusting the selection range to new position Key Binding:

Shift-Left

Command Reference

430

backward-char-extend-rect (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character, adjusting the rectangular selection range to new position Key

Bindings: Wing: Shift-Alt-Left; Brief: Shift-Alt-Left; Eclipse: Shift-Alt-Left; Emacs: Shift-Alt-Left; macOS:

Ctrl-Option-Left; MATLAB: Shift-Alt-Left; VI/VIM: Shift-Alt-Left; Visual Studio: Shift-Alt-Left; XCode:

Ctrl-Option-Left

backward-delete-char (repeat=<numeric modifier; default=1>)

Delete one character behind the cursor, or the current selection if not empty. Key Bindings: Wing:

Shift-BackSpace; Brief: Shift-BackSpace; Eclipse: Shift-BackSpace; Emacs: Ctrl-H; macOS: Ctrl-h;

MATLAB: Shift-BackSpace; VI/VIM: Ctrl-H; Visual Studio: Shift-BackSpace; XCode: Ctrl-h

backward-delete-word (delimiters=None, repeat=<numeric modifier; default=1>)

Delete one word behind of the cursor Key Bindings: Wing: Alt-Delete; Brief: Alt-Delete; Eclipse:

Alt-Delete; Emacs: Alt-Delete; macOS: Option-Backspace; MATLAB: Alt-Delete; VI/VIM: Ctrl-W; Visual

Studio: Alt-Delete; XCode: Option-Backspace

backward-page (repeat=<numeric modifier; default=1>)

Move cursor backward one page Key Bindings: Wing: Ctrl-Prior; Brief: Ctrl-Prior; Eclipse: Ctrl-Prior;

Emacs: Alt-V; macOS: Option-Page_Up; MATLAB: Ctrl-Prior; VI/VIM: Ctrl-B; Visual Studio: Ctrl-Prior;

XCode: Option-Page_Up

backward-page-extend (repeat=<numeric modifier; default=1>)

Move cursor backward one page, adjusting the selection range to new position Key Bindings: Wing:

Ctrl-Shift-Page_Up; Brief: Ctrl-Shift-Page_Up; Eclipse: Ctrl-Shift-Page_Up; Emacs: Ctrl-Shift-Page_Up;

macOS: Shift-Page_Up; MATLAB: Ctrl-Shift-Page_Up; VI/VIM: Ctrl-Shift-Page_Up; Visual Studio:

Ctrl-Shift-Page_Up; XCode: Shift-Page_Up

backward-paragraph (repeat=<numeric modifier; default=1>)

Move cursor backward one paragraph (to next all-whitespace line). Key Bindings: VI/VIM: {

backward-paragraph-extend (repeat=<numeric modifier; default=1>)

Move cursor backward one paragraph (to next all-whitespace line), adjusting the selection range to new

position.

backward-tab ()

Outdent line at current position Key Binding: Shift-Tab

backward-word (delimiters=None, gravity='start', repeat=<numeric modifier; default=1>)

Move cursor backward one word. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word. Key Bindings: Wing: Ctrl-Left; Brief: Ctrl-Left; Eclipse: Ctrl-Left; Emacs: Alt-B;

Command Reference

431

macOS: Ctrl-Left invokes backward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn"); MATLAB:

Ctrl-Left; VI/VIM: Ctrl-W; Visual Studio: Ctrl-Left; XCode: Ctrl-Left invokes

backward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

backward-word-extend (delimiters=None, gravity='start', repeat=<numeric modifier; default=1>)

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word. Key Bindings: Wing: Ctrl-Shift-Left;

Brief: Ctrl-Shift-Left; Eclipse: Ctrl-Shift-Left; Emacs: Ctrl-Shift-Left; macOS: Option-Shift-Left; MATLAB:

Ctrl-Shift-Left; VI/VIM: Ctrl-Shift-Left; Visual Studio: Ctrl-Shift-Left; XCode: Option-Shift-Left

beginning-of-line (toggle=True)

Move to beginning of current line. When toggle is True, moves to the end of the leading white space if

already at the beginning of the line (and vice versa). Key Bindings: Brief: Shift-Home; Emacs: Ctrl-A;

macOS: Ctrl-a; VI/VIM: 0 invokes beginning-of-line(toggle=0); XCode: Ctrl-a

beginning-of-line-extend (toggle=True)

Move to beginning of current line, adjusting the selection range to the new position. When toggle is

True, moves to the end of the leading white space if already at the beginning of the line (and vice

versa). Key Bindings: Emacs: Shift-Home; macOS: Command-Shift-Left; XCode: Command-Shift-Left

beginning-of-line-text (toggle=True)

Move to end of the leading white space, if any, on the current line. If toggle is True, moves to the

beginning of the line if already at the end of the leading white space (and vice versa). Key Bindings:

Wing: Home; Brief: Home; Eclipse: Home; Emacs: Home; MATLAB: Home; VI/VIM: _; Visual Studio:

Home

beginning-of-line-text-extend (toggle=True)

Move to end of the leading white space, if any, on the current line, adjusting the selection range to the

new position. If toggle is True, moves to the beginning of the line if already at the end of the leading

white space (and vice versa). Key Bindings: Wing: Shift-Home; Brief: Shift-Home; Eclipse: Shift-Home;

Emacs: Shift-Home; MATLAB: Shift-Home; VI/VIM: Shift-Home; Visual Studio: Shift-Home

beginning-of-screen-line ()

Move to beginning of current wrapped line Key Bindings: VI/VIM: g 0

beginning-of-screen-line-extend ()

Move to beginning of current wrapped line, extending selection

beginning-of-screen-line-text ()

Move to first non-blank character at beginning of current wrapped line Key Bindings: VI/VIM: g ^

Command Reference

432

beginning-of-screen-line-text-extend ()

Move to first non-blank character at beginning of current wrapped line, extending selection

brace-match ()

Match brace at current cursor position, selecting all text between the two and hilighting the braces Key

Bindings: Wing: Ctrl-]; Eclipse: Ctrl-Shift-P; Emacs: Ctrl-M; macOS: Command-); MATLAB: Ctrl-]; Visual

Studio: Ctrl-]; XCode: Command-)

cancel ()

Cancel current editor command

cancel-autocompletion ()

Cancel any active autocompletion.

case-lower (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no selection, to lower

case Key Bindings: Visual Studio: Ctrl-U

case-lower-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to lower case Key Bindings: VI/VIM: g u

case-swap (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no selection, so each

letter is the opposite of its current case Key Bindings: VI/VIM: ~

case-swap-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement so each letter is the opposite of its current case

Key Bindings: VI/VIM: g ~

case-title (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no selection, to title

case (first letter of each word capitalized)

case-title-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to title case (first letter of each word capitalized)

case-upper (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no selection, to upper

case Key Bindings: Visual Studio: Ctrl-Shift-U

case-upper-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to upper case Key Bindings: VI/VIM: g Shift-U

Command Reference

433

center-cursor ()

Scroll so cursor is centered on display Key Bindings: Brief: Ctrl-C; Emacs: Ctrl-L; MATLAB: Ctrl-G;

VI/VIM: z z

clear ()

Clear selected text

clear-move-command ()

Clear any pending move command action, as for VI mode Key Bindings: VI/VIM: Esc

complete-autocompletion (append='')

Complete the current active autocompletion.

copy ()

Copy selected text Key Bindings: Wing: Ctrl-C; Brief: Ctrl-C; Eclipse: Ctrl-C; Emacs: Alt-W; macOS:

Command-C; MATLAB: Ctrl-C; VI/VIM: Ctrl-Insert; Visual Studio: Ctrl-C; XCode: Command-C

copy-line ()

Copy the current lines(s) to clipboard

copy-range (start_line, end_line, target_line)

Copy the given range of lines to the given target line. Copies to current line if target_line is '.'.

copy-selection-or-line ()

Copy the current selection or current line if there is no selection. The text is placed on the clipboard.

cursor-move-to-bottom (offset=<numeric modifier; default=0>)

Move cursor to bottom of display (without scrolling), optionally at an offset of given number of lines

before bottom Key Bindings: VI/VIM: Shift-L

cursor-move-to-center ()

Move cursor to center of display (without scrolling) Key Bindings: VI/VIM: Shift-M

cursor-move-to-top (offset=<numeric modifier; default=0>)

Move cursor to top of display (without scrolling), optionally at an offset of given number of lines below

top Key Bindings: VI/VIM: Shift-H

cursor-to-bottom ()

Scroll so cursor is centered at bottom of display Key Bindings: VI/VIM: z b

cursor-to-top ()

Scroll so cursor is centered at top of display Key Bindings: VI/VIM: z +

Command Reference

434

cut ()

Cut selected text Key Bindings: Wing: Ctrl-X; Brief: Ctrl-X; Eclipse: Ctrl-X; Emacs: Ctrl-W; macOS:

Command-X; MATLAB: Ctrl-X; VI/VIM: Shift-Delete; Visual Studio: Ctrl-X; XCode: Command-X

cut-line ()

Cut the current line(s) to clipboard. Key Bindings: Visual Studio: Ctrl-L

cut-selection-or-line ()

Cut the current selection or current line if there is no selection. The text is placed on the clipboard. Key

Bindings: Visual Studio: Shift-Delete

delete-line (repeat=<numeric modifier; default=1>)

Delete the current line or lines when the selection spans multiple lines or given repeat is > 1 Key

Bindings: Wing: Ctrl-Shift-C; Eclipse: Ctrl-D; MATLAB: Ctrl-Shift-C

delete-line-insert (repeat=<numeric modifier; default=1>)

Delete the current line or lines when the selection spans multiple lines or given repeat is > 1. Enters

insert mode (when working with modal key bindings). Key Bindings: VI/VIM: Shift-S

delete-next-move (repeat=<numeric modifier; default=1>)

Delete the text covered by the next cursor move command. Key Bindings: VI/VIM: d

delete-next-move-insert (repeat=<numeric modifier; default=1>)

Delete the text covered by the next cursor move command and then enter insert mode (when working in

a modal editor key binding) Key Bindings: VI/VIM: c

delete-range (start_line, end_line, register=None)

Delete given range of lines, copying them into given register (or currently selected default register if

register is None

delete-to-end-of-line (repeat=<numeric modifier; default=1>, post_offset=0)

Delete everything between the cursor and end of line Key Bindings: MATLAB: Ctrl-K; VI/VIM: Shift-D

invokes delete-to-end-of-line(post_offset=-1)

delete-to-end-of-line-insert (repeat=<numeric modifier; default=1>)

Delete everything between the cursor and end of line and enter insert move (when working in a modal

editor key binding) Key Bindings: VI/VIM: Shift-C

delete-to-start-of-line ()

Delete everything between the cursor and start of line Key Bindings: VI/VIM: Ctrl-U; XCode:

Command-Backspace

Command Reference

435

drop-current-selection ()

Drop current selection when there's 2+ selections

drop-extra-selections ()

Drop all exceptions except the main selection

duplicate-line (pos='below')

Duplicate the current line or lines. Places the duplicate on the line following the selection if pos is 'below'

or before the selection if it is 'above'. Key Bindings: Wing: Ctrl-Shift-V; Eclipse: Ctrl-Alt-Down; MATLAB:

Ctrl-Shift-V

duplicate-line-above ()

Duplicate the current line or lines above the selection. Key Bindings: Wing: Ctrl-Shift-Y; Eclipse:

Ctrl-Alt-Up; MATLAB: Ctrl-Shift-Y

enclose (start='(', end=')')

Enclose the selection or the rest of the current line when there is no selection with the given start and

end strings. The caret is moved to the end of the enclosed text. Key Bindings: Wing: Ctrl-< invokes

enclose(start="<", end=">"); Brief: Ctrl-< invokes enclose(start="<", end=">"); Eclipse: Ctrl-< invokes

enclose(start="<", end=">"); Emacs: Ctrl-< invokes enclose(start="<", end=">"); MATLAB: Ctrl-< invokes

enclose(start="<", end=">"); VI/VIM: Ctrl-< invokes enclose(start="<", end=">"); Visual Studio: Ctrl-<

invokes enclose(start="<", end=">")

end-of-document ()

Move cursor to end of document Key Bindings: Wing: Ctrl-End; Brief: Ctrl-PageDown; Eclipse: Ctrl-End;

Emacs: Ctrl-X]; macOS: Command-Down; MATLAB: Ctrl-End; VI/VIM: Ctrl-End; Visual Studio:

Ctrl-End; XCode: Command-Down

end-of-document-extend ()

Move cursor to end of document, adjusting the selection range to new position Key Bindings: Wing:

Ctrl-Shift-End; Brief: Ctrl-Shift-End; Eclipse: Ctrl-Shift-End; Emacs: Ctrl-Shift-End; macOS: Shift-End;

MATLAB: Ctrl-Shift-End; VI/VIM: Ctrl-Shift-End; Visual Studio: Ctrl-Shift-End; XCode: Shift-End

end-of-line (count=<numeric modifier; default=1>)

Move to end of current line Key Bindings: Wing: End; Brief: Shift-End; Eclipse: End; Emacs: Ctrl-E;

macOS: Ctrl-e; MATLAB: Ctrl-E; VI/VIM: $; Visual Studio: End; XCode: Ctrl-e

end-of-line-extend (count=<numeric modifier; default=1>)

Move to end of current line, adjusting the selection range to new position Key Bindings: Wing: Shift-End;

Brief: Shift-End; Eclipse: Shift-End; Emacs: Shift-End; macOS: Command-Shift-Right; MATLAB:

Shift-End; VI/VIM: Shift-End; Visual Studio: Shift-End; XCode: Command-Shift-Right

Command Reference

436

end-of-screen-line (count=<numeric modifier; default=1>)

Move to end of current wrapped line Key Bindings: VI/VIM: g $

end-of-screen-line-extend (count=<numeric modifier; default=1>)

Move to end of current wrapped line, extending selection

exchange-point-and-mark ()

When currently marking text, this exchanges the current position and mark ends of the current selection

Key Bindings: Emacs: Ctrl-X Ctrl-X; VI/VIM: Shift-O

filter-next-move (repeat=<numeric modifier; default=1>)

Filter the lines covered by the next cursor move command through an external command and replace

the lines with the result Key Bindings: VI/VIM: !

filter-range (cmd, start_line=0, end_line=-1)

Filter a range of lines in the editor through an external command and replace the lines with the result.

Filters the whole file by default. Filters nothing and opens up a scratch buffer with the output of the

command if start_line and end_line are both -1.

filter-selection (cmd)

Filter the current selection through an external command and replace the lines with the result Key

Bindings: VI/VIM: !

form-feed ()

Place a form feed character at the current cursor position

forward-char (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character Key Bindings: Wing: Right; Brief: Right; Eclipse: Right; Emacs:

Ctrl-F; macOS: Ctrl-f; MATLAB: Right; VI/VIM: l invokes forward-char(wrap=0); Visual Studio: Right;

XCode: Ctrl-f

forward-char-extend (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character, adjusting the selection range to new position Key Binding:

Shift-Right

forward-char-extend-rect (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character, adjusting the rectangular selection range to new position Key

Bindings: Wing: Shift-Alt-Right; Brief: Shift-Alt-Right; Eclipse: Shift-Alt-Right; Emacs: Shift-Alt-Right;

macOS: Ctrl-Option-Right; MATLAB: Shift-Alt-Right; VI/VIM: Shift-Alt-Right; Visual Studio:

Shift-Alt-Right; XCode: Ctrl-Option-Right

forward-delete-char (repeat=<numeric modifier; default=1>)

Command Reference

437

Delete one character in front of the cursor Key Bindings: Wing: Delete; Brief: Delete; Eclipse: Delete;

Emacs: Ctrl-D; macOS: Ctrl-d; MATLAB: Delete; VI/VIM: Delete; Visual Studio: Delete; XCode: Ctrl-d

forward-delete-char-insert (repeat=<numeric modifier; default=1>)

Delete one char in front of the cursor and enter insert mode (when working in modal key bindings) Key

Bindings: VI/VIM: s

forward-delete-char-within-line (repeat=<numeric modifier; default=1>)

Delete one character in front of the cursor unless at end of line, in which case delete backward. Do

nothing if the line is empty. This is VI style 'x' in browser mode. Key Bindings: VI/VIM: x

forward-delete-word (delimiters=None, repeat=<numeric modifier; default=1>)

Delete one word in front of the cursor Key Bindings: Wing: Ctrl-Delete; Brief: Ctrl-K; Eclipse: Ctrl-Delete;

Emacs: Alt-D; macOS: Option-Delete; MATLAB: Ctrl-Delete; VI/VIM: Ctrl-Delete; Visual Studio:

Ctrl-Delete; XCode: Option-Delete

forward-delete-word-insert (delimiters=None, repeat=<numeric modifier; default=1>)

Delete one word in front of the cursor and enter insert mode (when working in modal key bindings)

forward-page (repeat=<numeric modifier; default=1>)

Move cursor forward one page Key Bindings: Wing: Ctrl-Next; Brief: Ctrl-Next; Eclipse: Ctrl-Next;

Emacs: Ctrl-V; macOS: Ctrl-v; MATLAB: Ctrl-Next; VI/VIM: Ctrl-F; Visual Studio: Ctrl-Next; XCode:

Ctrl-v

forward-page-extend (repeat=<numeric modifier; default=1>)

Move cursor forward one page, adjusting the selection range to new position Key Bindings: Wing:

Ctrl-Shift-Page_Down; Brief: Ctrl-Shift-Page_Down; Eclipse: Ctrl-Shift-Page_Down; Emacs:

Ctrl-Shift-Page_Down; macOS: Shift-Page_Down; MATLAB: Ctrl-Shift-Page_Down; VI/VIM:

Ctrl-Shift-Page_Down; Visual Studio: Ctrl-Shift-Page_Down; XCode: Shift-Page_Down

forward-paragraph (repeat=<numeric modifier; default=1>)

Move cursor forward one paragraph (to next all-whitespace line). Key Bindings: VI/VIM: }

forward-paragraph-extend (repeat=<numeric modifier; default=1>)

Move cursor forward one paragraph (to next all-whitespace line), adjusting the selection range to new

position.

forward-tab ()

Place a tab character at the current cursor position Key Bindings: Wing: Ctrl-T; Brief: Ctrl-T; Eclipse:

Ctrl-T; Emacs: Ctrl-T; macOS: Ctrl-T; MATLAB: Tab; VI/VIM: Ctrl-T; Visual Studio: Ctrl-T; XCode: Ctrl-T

forward-word (delimiters=None, gravity='start', repeat=<numeric modifier; default=1>)

Command Reference

438

Move cursor forward one word. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word. Key Bindings: Wing: Ctrl-Right; Brief: Ctrl-Right; Eclipse: Ctrl-Right; Emacs:

Alt-F; macOS: Option-Right; MATLAB: Ctrl-Right; VI/VIM: Shift-E invokes forward-word(delimiters="

tnr", gravity="endm1"); Visual Studio: Ctrl-Right; XCode: Option-Right

forward-word-extend (delimiters=None, gravity='start', repeat=<numeric modifier; default=1>)

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word. Key Bindings: Wing:

Ctrl-Shift-Right; Brief: Ctrl-Shift-Right; Eclipse: Ctrl-Shift-Right; Emacs: Ctrl-Shift-Right; macOS:

Ctrl-Shift-Right invokes forward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn");

MATLAB: Ctrl-Shift-Right; VI/VIM: Ctrl-Shift-Right; Visual Studio: Ctrl-Shift-Right; XCode:

Ctrl-Shift-Right invokes forward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

goto-overridden-method ()

Goes to the method that is overridden by the current method

hide-selection ()

Turn off display of the current text selection

hide-selections-popup ()

Hide the selections popup; this overrides the preference setting for the current file

indent-to-match (toggle=False)

Indent the current line or selected region to match indentation of preceding non-blank line. Set

toggle=True to indent instead of one level higher if already at the matching position. Key Bindings:

Wing: Ctrl-=; Brief: Ctrl-=; Eclipse: Ctrl-=; Emacs: Ctrl-=; macOS: Command-; MATLAB: Ctrl-=; VI/VIM:

Ctrl-=; Visual Studio: Ctrl-=; XCode: Ctrl-I

indent-to-next-indent-stop ()

Indent to next indent stop from the current position. Acts like indent command if selection covers

multiple lines.

isearch-backward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, optionally entering the given search

string Key Bindings: Wing: Ctrl-Shift-U; Eclipse: Ctrl-Shift-J; Emacs: Ctrl-R; macOS: Command-Shift-U;

MATLAB: Ctrl-Shift-R; Visual Studio: Ctrl-Shift-U; XCode: Command-Shift-U

isearch-backward-regex (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental regular expression mini-search backward from the cursor position, optionally

entering the given search string Key Bindings: Emacs: Ctrl-Alt-R; VI/VIM: ?

Command Reference

439

isearch-forward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, optionally entering the given search

string Key Bindings: Wing: Ctrl-U; Eclipse: Ctrl-J; Emacs: Ctrl-S; macOS: Command-U; MATLAB:

Ctrl-Shift-S; Visual Studio: Ctrl-I; XCode: Command-U

isearch-forward-regex (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental regular expression mini-search forward from the cursor position, optionally entering

the given search string Key Bindings: Emacs: Ctrl-Alt-S; VI/VIM: /

isearch-repeat (reverse=False, repeat=<numeric modifier; default=1>)

Repeat the most recent isearch, using same string and regex/text. Reverse direction when reverse is

True. Key Bindings: VI/VIM: Shift-N invokes isearch-repeat(reverse=1)

isearch-sel-backward (persist=True, whole_word=False, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, using current selection as the search

string. Set persist=False to do the search but end the interactive search session immediately. Key

Bindings: Wing: Ctrl-Shift-B; Eclipse: Ctrl-Shift-B; Emacs: Ctrl-C R; MATLAB: Ctrl-Shift-B; VI/VIM: #

invokes isearch-sel-backward(persist=0, whole_word=1); Visual Studio: Ctrl-Shift-B

isearch-sel-forward (persist=True, whole_word=False, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, using current selection as the search

string. Set persist=False to do the search but end the interactive search session immediately. Key

Bindings: Wing: Ctrl-B; Eclipse: Ctrl-B; Emacs: Ctrl-C S; MATLAB: Ctrl-B; VI/VIM: * invokes

isearch-sel-forward(persist=0, whole_word=1); Visual Studio: Ctrl-B

kill-line ()

Kill rest of line from cursor to end of line, and place it into the clipboard with any other contiguously

removed lines. End-of-line is removed only if there is nothing between the cursor and the end of the line.

Key Bindings: Brief: Alt-K; Emacs: Ctrl-K; macOS: Ctrl-k; XCode: Ctrl-k

middle-of-screen-line ()

Move to middle of current wrapped line Key Bindings: VI/VIM: g m

middle-of-screen-line-extend ()

Move to middle of current wrapped line, extending selection

move-line-down (indent=True, repeat=<numeric modifier; default=1>)

Move the current line or lines up down line, optionally indenting to match the new position Key Bindings:

Wing: Ctrl-Shift-Down; Eclipse: Alt-Down invokes move-line-down(indent=True); MATLAB:

Ctrl-Shift-Down; XCode: Command-Alt-]

move-line-up (indent=True, repeat=<numeric modifier; default=1>)

Command Reference

440

Move the current line or lines up one line, optionally indenting to match the new position Key Bindings:

Wing: Ctrl-Shift-Up; Eclipse: Alt-Up invokes move-line-up(indent=True); MATLAB: Ctrl-Shift-Up; XCode:

Command-Alt-[

move-range (start_line, end_line, target_line)

Move the given range of lines to the given target line. Moves to current line if target_line is '.'.

move-to-register (unit='char', cut=0, num=<numeric modifier; default=1>)

Cut or copy a specified number of characters or lines, or the current selection. Set cut=1 to remove the

range of text from the editor after moving to register (otherwise it is just copied). Unit should be one of

'char' or 'line' or 'sel' for current selection. Key Bindings: VI/VIM: Shift-Y invokes

move-to-register(unit="line")

move-to-register-next-move (cut=0, repeat=<numeric modifier; default=1>)

Move the text spanned by the next cursor motion to a register Key Bindings: VI/VIM: y

new-line (auto_indent=None)

Place a new line at the current cursor position. Override the auto-indent preference by setting

auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent only on

blank lines. Key Bindings: Wing: Alt-Return; Brief: Alt-Return; Eclipse: Alt-Return; Emacs: Alt-Return;

macOS: Option-Return; MATLAB: Shift-Return invokes new-line(auto_indent="never"); VI/VIM: Ctrl-J;

Visual Studio: Alt-Return; XCode: Option-Return

new-line-after ()

Place a new line after the current line Key Bindings: Wing: Ctrl-Return; Brief: Ctrl-Return; Eclipse:

Shift-Enter; Emacs: Ctrl-Return; MATLAB: Ctrl-Return; VI/VIM: Ctrl-Return; Visual Studio: Ctrl-Return

new-line-before ()

Place a new line before the current line Key Bindings: Wing: Shift-Return; Brief: Shift-Return; Eclipse:

Ctrl-Shift-Enter; Emacs: Shift-Return; MATLAB: Shift-Return; VI/VIM: Shift-Return; Visual Studio:

Shift-Return

next-blank-line (threshold=0, repeat=<numeric modifier; default=1>)

Move to the next blank line in the file, if any. If threshold>0 then a line is considered blank if it contains

less than that many characters after leading and trailing whitespace are removed. Key Bindings:

Emacs: Alt-} invokes next-blank-line(threshold=1)

next-block (count=1, ignore_indented=True)

Select the next block. Will ignore indented blocks under the current block unless ignore_indented is

False. Specify a count of more than 1 to go forward multiple blocks. Key Bindings: MATLAB: Ctrl-Down

next-line (cursor='same', repeat=<numeric modifier; default=1>)

Command Reference

441

Move to screen next line, optionally repositioning character within line: 'same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char. Key Bindings: Wing:

Down; Brief: Down; Eclipse: Down; Emacs: Ctrl-N; macOS: Ctrl-n; MATLAB: Down; VI/VIM: Ctrl-N;

Visual Studio: Down; XCode: Ctrl-n

next-line-extend (cursor='same', repeat=<numeric modifier; default=1>)

Move to next screen line, adjusting the selection range to new position, optionally repositioning

character within line: same' to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first

non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection. Key Bindings: Wing:

Shift-Down; Brief: Shift-Down; Eclipse: Shift-Down; Emacs: Shift-Down; macOS: Shift-Alt-Down invokes

next-line-extend(cursor="xcode"); MATLAB: Shift-Down; VI/VIM: Shift-Down; Visual Studio: Shift-Down;

XCode: Shift-Alt-Down invokes next-line-extend(cursor="xcode")

next-line-extend-rect (cursor='same', repeat=<numeric modifier; default=1>)

Move to next screen line, adjusting the rectangular selection range to new position, optionally

repositioning character within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,

or 'fnb' for first non-blank char. Key Bindings: Wing: Shift-Alt-Down; Brief: Shift-Alt-Down; Eclipse:

Shift-Alt-Down; Emacs: Shift-Alt-Down; macOS: Ctrl-Option-Down; MATLAB: Shift-Alt-Down; VI/VIM:

Shift-Alt-Down; Visual Studio: Shift-Alt-Down; XCode: Ctrl-Option-Down

next-line-in-file (cursor='start', repeat=<numeric modifier; default=1>)

Move to next line in file, repositioning character within line: 'start' at start, 'end' at end, or 'fnb' for first

non-blank char. Key Bindings: VI/VIM: Ctrl-M invokes next-line-in-file(cursor="fnb")

next-scope (count=1, sibling_only=False)

Select the next scope. Specify a count of more than 1 to go forward multiple scopes. If sibling_only is

true, move only to other scopes of the same parent. Key Bindings: Eclipse: Ctrl-Shift-Down

next-statement (count=1, ignore_indented=True)

Select the next statement. Will ignore indented statements under the current statements unless

ignore_indented is False. Specify a count of more than 1 to go forward multiple statements. Key

Bindings: Eclipse: Alt-Shift-Right

open-line ()

Open the current line by inserting a newline after the caret Key Bindings: Emacs: Ctrl-O

paste ()

Paste text from clipboard Key Bindings: Wing: Ctrl-V; Brief: Ctrl-V; Eclipse: Ctrl-V; Emacs: Ctrl-Y;

macOS: Command-V; MATLAB: Ctrl-V; VI/VIM: Shift-Insert; Visual Studio: Ctrl-V; XCode: Command-V

paste-register (pos=1, indent=0, cursor=-1)

Command Reference

442

Paste text from register as before or after the current position. If the register contains only lines, then the

lines are pasted before or after current line (rather than at cursor). If the register contains fragments of

lines, the text is pasted over the current selection or either before or after the cursor. Set pos = 1 to

paste after, or -1 to paste before. Set indent=1 to indent the pasted text to match current line. Set

cursor=-1 to place cursor before lines or cursor=1 to place it after lines after paste completes. Key

Bindings: VI/VIM: g Shift-P invokes paste-register(pos=-1, cursor=1)

previous-blank-line (threshold=0, repeat=<numeric modifier; default=1>)

Move to the previous blank line in the file, if any. If threshold>0 then a line is considered blank if it

contains less than that many characters after leading and trailing whitespace are removed. Key

Bindings: Emacs: Alt-{ invokes previous-blank-line(threshold=1)

previous-block (count=1, ignore_indented=True)

Select the previous block. Will ignore indented blocks under the current block unless ignore_indented is

False. Specify a count of more than 1 to go backward multiple blocks. Key Bindings: MATLAB: Ctrl-Up

previous-line (cursor='same', repeat=<numeric modifier; default=1>)

Move to previous screen line, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char. Key Bindings: Wing: Up;

Brief: Up; Eclipse: Up; Emacs: Ctrl-P; macOS: Ctrl-p; MATLAB: Up; VI/VIM: Ctrl-P; Visual Studio: Up;

XCode: Ctrl-p

previous-line-extend (cursor='same', repeat=<numeric modifier; default=1>)

Move to previous screen line, adjusting the selection range to new position, optionally repositioning

character within line: same' to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first

non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection. Key Bindings: Wing: Shift-Up;

Brief: Shift-Up; Eclipse: Shift-Up; Emacs: Shift-Up; macOS: Shift-Alt-Up invokes

previous-line-extend(cursor="xcode"); MATLAB: Shift-Up; VI/VIM: Shift-Up; Visual Studio: Shift-Up;

XCode: Shift-Alt-Up invokes previous-line-extend(cursor="xcode")

previous-line-extend-rect (cursor='same', repeat=<numeric modifier; default=1>)

Move to previous screen line, adjusting the rectangular selection range to new position, optionally

repositioning character within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,

or 'fnb' for first non-blank char. Key Bindings: Wing: Shift-Alt-Up; Brief: Shift-Alt-Up; Eclipse:

Shift-Alt-Up; Emacs: Shift-Alt-Up; macOS: Ctrl-Option-Up; MATLAB: Shift-Alt-Up; VI/VIM: Shift-Alt-Up;

Visual Studio: Shift-Alt-Up; XCode: Ctrl-Option-Up

previous-line-in-file (cursor='start', repeat=<numeric modifier; default=1>)

Move to previous line in file, repositioning character within line: 'start' at start, 'end' at end, or 'fnb' for

first non-blank char. Key Bindings: VI/VIM: - invokes previous-line-in-file(cursor="fnb")

previous-scope (count=1, sibling_only=False)

Command Reference

443

Select the previous scope. Specify a count of more than 1 to go backward multiple scopes. If

sibling_only is true, move only to other scopes of the same parent. Key Bindings: Eclipse: Ctrl-Shift-Up

previous-statement (count=1, ignore_indented=True)

Select the previous statement. Will ignore indented statements under the current statements unless

ignore_indented is False. Specify a count of more than 1 to go back multiple statements. Key Bindings:

Eclipse: Alt-Shift-Left

profile-editor-start ()

Turn on profiling for the current source editor

profile-editor-stop ()

Stop profiling and print stats to stdout

reanalyze-file ()

Rescan file for code analysis.

redo ()

Redo last action Key Bindings: Wing: Ctrl-Shift-Z; Brief: Ctrl-U; Eclipse: Ctrl-Shift-Z; Emacs: Ctrl-.;

macOS: Command-Shift-Z; MATLAB: Alt-Shift-Backspace; VI/VIM: Ctrl-R; Visual Studio: Ctrl-Shift-Z;

XCode: Command-Shift-Z

repeat-command (repeat=<numeric modifier; default=1>)

Repeat the last editor command Key Bindings: VI/VIM: .

repeat-search-char (opposite=0, repeat=<numeric modifier; default=1>)

Repeat the last search_char operation, optionally in the opposite direction. Key Bindings: VI/VIM: ,

invokes repeat-search-char(opposite=1)

rstrip-each-line ()

Strip trailing whitespace from each line.

scroll-text-down (repeat=<numeric modifier; default=1>, move_cursor=True)

Scroll text down a line w/o moving cursor's relative position on screen. Repeat is number of lines or if >0

and <1.0 then percent of screen. Set move_cursor to False to leave cursor in current position within the

source, otherwise it is moved so the cursor remains on same screen line. Key Bindings: Wing:

Ctrl-Shift-Down; Brief: Ctrl-D; Eclipse: Ctrl-Shift-Down; Emacs: Ctrl-Shift-Down; MATLAB: Ctrl-Down;

VI/VIM: Ctrl-D invokes scroll-text-down(repeat=0.5); Visual Studio: Ctrl-Shift-Down

scroll-text-left (repeat=<numeric modifier; default=1>)

Scroll text left a column w/o moving cursor's relative position on screen. Repeat is number of columns or

if >0 and <1.0 then percent of screen. Key Bindings: VI/VIM: z Shift-L invokes scroll-text-left(repeat=0.5)

Command Reference

444

scroll-text-page-down (repeat=<numeric modifier; default=1>, move_cursor=True)

Scroll text down a page w/o moving cursor's relative position on screen. Repeat is number of pages or if

>0 and <1.0 then percent of screen. Set move_cursor to False to leave cursor in current position within

the source, otherwise it is moved so the cursor remains on same screen line.

scroll-text-page-up (repeat=<numeric modifier; default=1>, move_cursor=True)

Scroll text up a page w/o moving cursor's relative position on screen. Repeat is number of pages or if >0

and <1.0 then percent of screen. Set move_cursor to False to leave cursor in current position within the

source, otherwise it is moved so the cursor remains on same screen line.

scroll-text-right (repeat=<numeric modifier; default=1>)

Scroll text right a column w/o moving cursor's relative position on screen. Repeat is number of columns

or if >0 and <1.0 then percent of screen. Key Bindings: VI/VIM: z Shift-H invokes

scroll-text-right(repeat=0.5)

scroll-text-up (repeat=<numeric modifier; default=1>, move_cursor=True)

Scroll text up a line w/o moving cursor's relative position on screen. Repeat is number of lines or if >0

and <1.0 then percent of screen. Set move_cursor to False to leave cursor in current position within the

source, otherwise it is moved so the cursor remains on same screen line. Key Bindings: Wing:

Ctrl-Shift-Up; Brief: Ctrl-E; Eclipse: Ctrl-Shift-Up; Emacs: Ctrl-Shift-Up; MATLAB: Ctrl-Up; VI/VIM: Ctrl-U

invokes scroll-text-up(repeat=0.5); Visual Studio: Ctrl-Shift-Up

scroll-to-cursor ()

Scroll to current cursor position, if not already visible

scroll-to-end (move_caret=False)

Scroll to the end of the text in the editor. Set move_caret to control whether the caret is moved. Key

Bindings: macOS: End; XCode: End

scroll-to-start (move_caret=False)

Scroll to the top of the text in the editor. Set move_caret to control whether the the caret is moved. Key

Bindings: macOS: Home; XCode: Home

search-char (dir=1, pos=0, repeat=<numeric modifier; default=1>, single_line=0)

Search for the given character. Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor

pos characters to left or right of the target (e.g., use -1 to place one to left). If repeat > 1, the Nth match

is found. Set single_line=1 to search only within the current line. Key Bindings: VI/VIM: Shift-T invokes

search-char(dir=-1, pos=1, single_line=1)

select-all ()

Command Reference

445

Select all text in the editor Key Bindings: Wing: Ctrl-A; Eclipse: Ctrl-A; macOS: Command-A; MATLAB:

Ctrl-A; Visual Studio: Ctrl-A; XCode: Command-A

select-block ()

Select the block the cursor is in.

select-less ()

Select less code; undoes the last select-more command Key Bindings: Wing: Ctrl-Down; Brief:

Ctrl-Down; Eclipse: Alt-Shift-Down; Emacs: Ctrl-Down; MATLAB: Ctrl-Down; VI/VIM: Ctrl-Down; Visual

Studio: Ctrl-Down

select-lines ()

Select the current line or lines

select-more ()

Select more code on either the current line or larger multi-line blocks. Key Bindings: Wing: Ctrl-Up;

Brief: Ctrl-Up; Eclipse: Alt-Shift-Up; Emacs: Ctrl-Up; macOS: Option-Up; MATLAB: Ctrl-Up; VI/VIM:

Ctrl-Up; Visual Studio: Ctrl-Up; XCode: Option-Up

select-scope ()

Select the scope the cursor is in.

select-statement ()

Select the statement the cursor is in.

selection-add-all-occurrences-in-block (stop_at_blank=True, match_case=None,

whole_words=None)

Add an extra selection for all occurrences of the main selection text in blocks that contain one or more

selections

selection-add-all-occurrences-in-class (match_case=None, whole_words=None)

Add an extra selection for all occurrences of the main selection text in classes that contain one or more

selections

selection-add-all-occurrences-in-def (match_case=None, whole_words=None)

Add an extra selection for all occurrences of the main selection text in functions / methods that contain

one or more selections

selection-add-all-occurrences-in-file (match_case=None, whole_words=None)

Add an extra selection for all occurrences of the main selection text in the file

selection-add-next-occurrence (skip_current=False, reverse=False, match_case=None,

whole_words=None, wrap=None)

Command Reference

446

Add another selection containing the text of the current selection. If skip_current is true, the current

selection will be deselected. If nothing is currently selected, select the current word. Searches

backwards if reverse is true. Key Bindings: Wing: Ctrl-Shift-D invokes

selection-add-next-occurrence(skip_current=True); Eclipse: Ctrl-Shift-D invokes

selection-add-next-occurrence(skip_current=True); Emacs: Ctrl-Alt-> invokes

selection-add-next-occurrence(skip_current=True); macOS: Command-Shift-D invokes

selection-add-next-occurrence(skip_current=True); MATLAB: Ctrl-Shift-D invokes

selection-add-next-occurrence(skip_current=True); Visual Studio: Ctrl-Shift-D invokes

selection-add-next-occurrence(skip_current=True); XCode: Command-Shift-D invokes

selection-add-next-occurrence(skip_current=True)

send-keys (keys)

Send one or more keys to the editor. Send a string to enter each key in the string, or a list of strings

and/or (mod, key) tuples where mod is a string containing any of case insensitive 'shift', 'ctrl', or 'alt'.

Valid examples:

"testme"
"TestMe"
["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),] *Key Binding: Shift-Space invokes send-keys(keys=" ")*

set-mark-command (unit='char')

Set start of text marking for selection at current cursor position. Subsequently, all cursor move

operations will automatically extend the text selection until stop-mark-command is issued. Unit defines

what is selected: can be one of char, line, or block (rectangle). Key Bindings: Emacs: Ctrl-@

set-register ()

Set the register to use for subsequent cut/copy/paste operations Key Bindings: VI/VIM: "

show-autocompleter ()

Show the auto-completer for current cursor position Key Bindings: Wing: Ctrl-space; Eclipse: Ctrl-space;

Emacs: Alt-/; macOS: Ctrl-space; MATLAB: Ctrl-space; Visual Studio: Ctrl-space; XCode: Ctrl-Space

show-selection ()

Turn on display of the current text selection

show-selections-popup ()

Show the selections popup; this overrides the preference setting for the current file

smart-tab ()

Implement smart handling of tab key. The behavior varies by context as follows:

• In Non-Python code, always indents to the next indent stop

Command Reference

447

• On a non-blank line when cursor is at end or before a comment, insert tab

• On a where indent does not match the computed indent level, move to the matching indent level

• Otherwise decrease indent one level (thus a non-blank line toggles between matching position and

one block higher)

Key Bindings: MATLAB: Ctrl-I

start-of-document ()

Move cursor to start of document Key Bindings: Wing: Ctrl-Home; Brief: Home Home Home; Eclipse:

Ctrl-Home; Emacs: Ctrl-X [; macOS: Command-Up; MATLAB: Ctrl-Home; VI/VIM: Ctrl-Home; Visual

Studio: Ctrl-Home; XCode: Command-Up

start-of-document-extend ()

Move cursor to start of document, adjusting the selection range to new position Key Bindings: Wing:

Ctrl-Shift-Home; Brief: Ctrl-Shift-Home; Eclipse: Ctrl-Shift-Home; Emacs: Ctrl-Shift-Home; macOS:

Shift-Home; MATLAB: Ctrl-Shift-Home; VI/VIM: Ctrl-Shift-Home; Visual Studio: Ctrl-Shift-Home; XCode:

Shift-Home

stop-mark-command (deselect=True)

Stop text marking for selection at current cursor position, leaving the selection set as is. Subsequent

cursor move operations will deselect the range and set selection to cursor position. Deselect

immediately when deselect is True. Key Bindings: Emacs: Ctrl-G

swap-lines (previous=False)

Swap the line at start of current selection with the line that follows it, or the preceding line if previous is

True. Key Bindings: Wing: Ctrl-Shift-L; Eclipse: Ctrl-Shift-L; Emacs: Ctrl-X Ctrl-T invokes

swap-lines(previous=True); MATLAB: Ctrl-Shift-L

tab-key ()

Implement the tab key, the action of which is configurable by preference Key Binding: Tab

toggle-selection-add-match-case ()

Toggle the value of the default flag for whether the selection add commands match case or not when

looking for additional occurrences

toggle-selection-add-whole-words ()

Toggle the value of the default flag for whether the selection add commands only add whole words

when looking for additional occurrences

toggle-selection-add-wrap ()

Command Reference

448

Toggle the value of the default flag for whether the selection add commands wrap when looking for

additional occurrences

undo ()

Undo last action Key Bindings: Wing: Ctrl-Z; Brief: Ctrl-Z; Eclipse: Ctrl-Z; Emacs: Ctrl-X U; macOS:

Command-Z; MATLAB: Alt-Backspace; VI/VIM: u; Visual Studio: Ctrl-Z; XCode: Command-Z

yank-line ()

Yank contents of kill buffer created with kill-line into the edit buffer Key Bindings: Emacs: Ctrl-Y

yank-range (start_line, end_line, register=None)

Copy given range of lines into given register (or currently selected default register if register is None

General Editor Commands

Editor commands that act on the current (most recently active) source editor, whether or not it currently

has the keyboard focus.

black-file (timeout=None)

Reformat the current file with Black, if installed in the active Python. The command will time out after the

given number of seconds, or if timeout is None the timeout configured with the Editor > Auto-formatting

> Reformat Timeout preference.

black-selection (start=None, end=None)

Reformat the current selection, or current line if there is no selection with Black. Reformats the given

range if start and end are given.

check-indent-consistency ()

Check whether indents consistently use spaces or tabs throughout the file.

comment-out-region (style=None)

Comment out the selected region. The style of commenting can be controlled with the style argument:

'indented' uses the default comment style indented at end of leading white space and 'block' uses a

block comment in column zero. Append '-pep8' to the style to conform to PEP 8 comment format rules.

If not given, the style configured with the Editor / Block Comment Style preference is used. Each call

adds a level of commenting. Key Bindings: Wing: Ctrl-/; Eclipse: Ctrl-/; Emacs: Ctrl-C C; macOS:

Command-'; MATLAB: Ctrl-/; Visual Studio: Ctrl-K Ctrl-C; XCode: Command-'

comment-out-toggle (style=None)

Comment out the selected lines. This command is not available if they lines are already commented out.

The style of commenting can be controlled with the style argument: 'indented' uses the default comment

style indented at end of leading white space and 'block' uses a block comment in column zero. Append

Command Reference

449

'-pep8' to the style to conform to PEP 8 block comment format rules. If not given, the style configured

with the Editor / Block Comment Style preference is used.

comment-toggle (style=None)

Toggle commenting out of the selected lines. The style of commenting can be controlled with the style

argument: 'indented' uses the default comment style indented at end of leading white space and 'block'

uses a block comment in column zero. Append '-pep8' to the style to conform to PEP 8 comment format

rules. If not given, the style configured with the Editor / Block Comment Style preference is used. Key

Bindings: Wing: Ctrl-.; Eclipse: Ctrl-.; Emacs: Ctrl-C #; macOS: Command-;; MATLAB: Ctrl-.; Visual

Studio: Ctrl-K Ctrl-T; XCode: Command-/

convert-indents-to-mixed (indent_size)

Convert all lines with leading spaces to mixed tabs and spaces.

convert-indents-to-spaces-only (indent_size)

Convert all lines containing leading tabs to spaces only.

convert-indents-to-tabs-only ()

Convert all indentation to use tab characters only and no spaces

evaluate-code-in-debug-console (code)

Evaluate the given code within the Debug Console tool. When invoking this command directly, only one

line can be entered. To enter multiple lines at once, invoke this command with

CAPIApplication.ExecuteCommand() in the scripting API.

evaluate-code-in-shell (code, restart=False)

Evaluate the given code within the Python Shell tool, optionally restarting the shell first. When invoking

this command directly, only one line can be entered. To enter multiple lines at once, invoke this

command with CAPIApplication.ExecuteCommand() in the scripting API.

evaluate-file-in-shell (restart_shell=None)

Run or debug the contents of the editor within the Python Shell Key Bindings: Wing: Ctrl-Alt-V; Eclipse:

Ctrl-Alt-V; MATLAB: Ctrl-Alt-V

evaluate-sel-in-debug-console (whole_lines=None)

Evaluate the current selection from the editor within the Debug Console tool. When whole_lines is set,

the selection is rounded to whole lines before evaluation. When unspecified (set to None), the setting

from the Shell's Option menu is used instead. Key Bindings: Wing: Ctrl-Alt-D; Eclipse: Ctrl-Alt-D;

MATLAB: Ctrl-Alt-D

evaluate-sel-in-shell (restart_shell=False, whole_lines=None)

Command Reference

450

Evaluate the current selection from the editor within the Python Shell tool, optionally restarting the shell

first. When whole_lines is set, the selection is rounded to whole lines before evaluation. When

unspecified (set to None), the setting from the Shell's Option menu is used instead. Key Bindings: Wing:

Ctrl-Alt-E; Eclipse: Ctrl-Alt-E; Emacs: Ctrl-C |; MATLAB: F9; XCode: Command-R

execute-kbd-macro (register='a', repeat=<numeric modifier; default=1>)

Execute most recently recorded keyboard macro. If register is None then the user is asked to enter a

letter a-z for the register where the macro is filed. Otherwise, register 'a' is used by default. Key

Bindings: Wing: Ctrl-M; Brief: F8; Eclipse: Ctrl-M; Emacs: Ctrl-X E; macOS: Command-M; MATLAB:

Ctrl-M; VI/VIM: @ invokes execute-kbd-macro(register=None); Visual Studio: Ctrl-M; XCode:

Command-M

fill-paragraph ()

Re-wrap the selected text or current line to the configured text wrap column. When there is no selection,

wrappable regions are delineated by surrounding blank lines. Otherwise, when there is a selection,

wrapping is constrained to occur only within that selection. Wrapping behavior depends on context; for

example, wrapping Python code is different than wrapping plain text or the contents of comments and

docstrings. A shared leading prefix found on all lines is retained and only the content after the prefix is

wrapped. Key Bindings: Wing: Ctrl-J; Eclipse: Ctrl-Shift-F; Emacs: Alt-Q; macOS: Command-J;

MATLAB: Ctrl-J; VI/VIM: g q; Visual Studio: Ctrl-K Ctrl-F; XCode: Command-J

find-symbol ()

Allow user to visit point of definition of a source symbol in the current editor context by typing a fragment

of the name Key Bindings: Wing: Ctrl-Shift-T; Eclipse: Ctrl-O; Emacs: Ctrl-X G; macOS:

Command-Shift-T; MATLAB: Shift-F1; VI/VIM: Ctrl-Shift-T; Visual Studio: Ctrl-Shift-T; XCode:

Command-Shift-T

find-symbol-in-project (fragment=None)

Allow user to visit point of definition of a source symbol in the any file in the project by typing a fragment

of the name Key Bindings: Wing: Ctrl-Shift-P; Eclipse: Ctrl-Shift-T; Emacs: Ctrl-X Ctrl-G; macOS:

Command-Shift-P; MATLAB: Ctrl-Shift-F1; VI/VIM: Ctrl-Shift-P; Visual Studio: Ctrl-Shift-P; XCode:

Command-Shift-P

fold-collapse-all ()

Collapse all fold points in the current file Key Bindings: Wing: Alt-Home; Brief: Alt-Home; Eclipse:

Alt-Home; Emacs: Alt-Home; macOS: Command-Ctrl--; MATLAB: Ctrl-=; VI/VIM: z Shift-M; Visual

Studio: Alt-Home; XCode: Command-Ctrl--

fold-collapse-all-clicked ()

Collapse the clicked fold point completely

fold-collapse-all-current ()

Command Reference

451

Collapse the current fold point completely Key Bindings: Wing: Alt-Page_Up; Brief: Alt-Page_Up;

Eclipse: Alt-Page_Up; Emacs: Alt-Page_Up; macOS: Command--; MATLAB: Alt-Page_Up; VI/VIM:

Alt-Page_Up; Visual Studio: Alt-Page_Up; XCode: Command--

fold-collapse-current ()

Collapse the current fold point Key Bindings: Eclipse: Ctrl--; VI/VIM: z c

fold-collapse-more-clicked ()

Collapse the clicked fold point one more level

fold-collapse-more-current ()

Collapse the current fold point one more level Key Bindings: Wing: Alt-Up; Brief: Alt-Up; Eclipse: Alt-Up;

Emacs: Alt-Up; macOS: Command-_; MATLAB: Alt-Up; VI/VIM: Alt-Up; Visual Studio: Alt-Up; XCode:

Command-Alt-Left

fold-expand-all ()

Expand all fold points in the current file Key Bindings: Wing: Alt-End; Brief: Alt-End; Eclipse: Ctrl-*;

Emacs: Alt-End; macOS: Command-Ctrl-*; MATLAB: Ctrl-+; VI/VIM: z Shift-R; Visual Studio: Alt-End;

XCode: Command-Ctrl-*

fold-expand-all-clicked ()

Expand the clicked fold point completely

fold-expand-all-current ()

Expand the current fold point completely Key Bindings: Wing: Alt-Page_Down; Brief: Alt-Page_Down;

Eclipse: Alt-Page_Down; Emacs: Alt-Page_Down; macOS: Command-*; MATLAB: Alt-Page_Down;

VI/VIM: z Shift-O; Visual Studio: Alt-Page_Down; XCode: Command-*

fold-expand-current ()

Expand the current fold point Key Bindings: Eclipse: Ctrl-+; VI/VIM: z o

fold-expand-more-clicked ()

Expand the clicked fold point one more level

fold-expand-more-current ()

Expand the current fold point one more level Key Bindings: Wing: Alt-Down; Brief: Alt-Down; Eclipse:

Alt-Down; Emacs: Alt-Down; macOS: Command-+; MATLAB: Alt-Down; VI/VIM: Alt-Down; Visual

Studio: Alt-Down; XCode: Command-Alt-Right

fold-toggle ()

Toggle the current fold point Key Bindings: Wing: Alt-/; Brief: Alt-/; Eclipse: Ctrl-/; Emacs: Alt-; macOS:

Command-/; MATLAB: Ctrl-.; VI/VIM: Alt-/; Visual Studio: Alt-/; XCode: Command-/

Command Reference

452

fold-toggle-clicked ()

Toggle the clicked fold point

force-indent-style-to-match-file ()

Force the indent style of the editor to match the indent style found in the majority of the file

force-indent-style-to-mixed ()

Force the indent style of the editor to mixed use of tabs and spaces, regardless of the file contents

force-indent-style-to-spaces-only ()

Force the indent style of the editor to use spaces only, regardless of file contents

force-indent-style-to-tabs-only ()

Force the indent style of the editor to use tabs only, regardless of file contents

goto-column (column=<numeric modifier; default=0>)

Move cursor to given column Key Bindings: VI/VIM: |

goto-line (lineno=<numeric modifier>)

Position cursor at start of given line number Key Bindings: Wing: Ctrl-L; Brief: Alt-G; Eclipse: Ctrl-L;

Emacs: Alt-g; macOS: Command-L; MATLAB: Ctrl-G; Visual Studio: Ctrl-G; XCode: Command-L

goto-line-select (lineno=<numeric modifier>)

Scroll to and select the given line number

goto-nth-line (lineno=<numeric modifier; default=1>, cursor='start')

Position cursor at start of given line number (1=first, -1 = last). This differs from goto-line in that it never

prompts for a line number but instead uses the previously entered numeric modifier or defaults to going

to line one. The cursor can be positioned at 'start', 'end', or 'fnb' for first non-blank character. Key

Bindings: VI/VIM: g g invokes goto-nth-line(cursor="fnb")

goto-nth-line-default-end (lineno=<numeric modifier; default=0>, cursor='start')

Same as goto_nth_line but defaults to end of file if no lineno is given Key Bindings: VI/VIM: Shift-G

invokes goto-nth-line-default-end(cursor="fnb")

goto-percent-line (percent=<numeric modifier; default=0>, cursor='start')

Position cursor at start of line at given percent in file. This uses the previously entered numeric modifier

or defaults to going to line one. The cursor can be positioned at 'start', 'end', or 'fnb' for first non-blank

character, or in VI mode it will do brace matching operation to reflect how VI overrides this command.

Key Bindings: VI/VIM: % invokes goto-percent-line(cursor="fnb")

hide-all-whitespace ()

Command Reference

453

Turn off all special marks for displaying white space and end-of-line

hide-eol ()

Turn off special marks for displaying end-of-line chars

hide-indent-guides ()

Turn off special marks for displaying indent level

hide-whitespace ()

Turn off special marks for displaying white space

indent-lines (lines=None, levels=<numeric modifier; default=1>)

Indent selected number of lines from cursor position. Set lines to None to indent all the lines in current

selection. Set levels to indent more than one level at a time. Key Bindings: Eclipse: Ctrl-| invokes

indent-lines(lines=1); MATLAB: Ctrl-]; VI/VIM: >

indent-next-move (num=<numeric modifier; default=1>)

Indent lines spanned by next cursor move Key Bindings: VI/VIM: >

indent-region (sel=None)

Indent the selected region one level of indentation. Set sel to None to use preference to determine

selection behavior, or "never-select" to unselect after indent, "always-select" to always select after

indent, or "retain-select" to retain current selection after indent. Key Bindings: Wing: Ctrl->; Eclipse:

Ctrl->; Emacs: Ctrl-C >; macOS: Command-]; MATLAB: Ctrl->; VI/VIM: Ctrl-T; Visual Studio: Ctrl->;

XCode: Command-]

indent-to-match-next-move (num=<numeric modifier; default=1>)

Indent lines spanned by next cursor move to match, based on the preceding line Key Bindings: VI/VIM:

=

insert-command (cmd)

Insert the output for the given command at current cursor position. Some special characters in the

command line (if not escaped with) will be replaced as follows:

% -- Current file's full path name
-- Previous file's full path name

insert-file (filename)

Insert a file at current cursor position, prompting user for file selection Key Bindings: Brief: Alt-R; Emacs:

Ctrl-X I

join-lines (delim=' ', num=<numeric modifier; default=2>)

Command Reference

454

Join together specified number of lines after current line (replace newlines with the given delimiter

(single space by default) Key Bindings: VI/VIM: g Shift-J invokes join-lines(delim="")

join-selection (delim=' ')

Join together all lines in given selection (replace newlines with the given delimiter (single space by

default) Key Bindings: VI/VIM: g Shift-J invokes join-selection(delim="")

kill-buffer ()

Close the current text file Key Bindings: Brief: Ctrl--; Emacs: Ctrl-X K

outdent-lines (lines=None, levels=<numeric modifier; default=1>)

Outdent selected number of lines from cursor position. Set lines to None to indent all the lines in current

selection. Set levels to outdent more than one level at a time. Key Bindings: MATLAB: Ctrl-[; VI/VIM: <

outdent-next-move (num=<numeric modifier; default=1>)

Outdent lines spanned by next cursor move Key Bindings: VI/VIM: <

outdent-region (sel=None)

Outdent the selected region one level of indentation. Set sel to None to use preference to determine

selection behavior, or "never-select" to unselect after indent, "always-select" to always select after

indent, or "retain-select" to retain current selection after indent. Key Bindings: Wing: Ctrl-<; Eclipse:

Shift-Tab; Emacs: Ctrl-C <; macOS: Command-[; MATLAB: Ctrl-<; VI/VIM: Ctrl-D; Visual Studio: Ctrl-<;

XCode: Command-[

page-setup ()

Show printing page setup dialog

pep8-file (indentation=None, timeout=None)

Reformat the current file to comply with PEP 8 formatting conventions. Indentation is left unchanged

unless indentation=True or indentation=None and the Editor > PEP 8 > Reindent All Lines preference is

enabled. Indentation within logical lines is always updated. The command will time out after the given

number of seconds, or if timeout is None the timeout configured with the Editor > Auto-formatting >

Reformat Timeout preference.

pep8-selection (start=None, end=None)

Reformat the current selection, or current line if there is no selection, to comply with PEP 8 formatting

conventions. Reformats the given range if start and end are given.

print-view ()

Print active editor document Key Bindings: Wing: Ctrl-P; Eclipse: Ctrl-P; macOS: Command-P;

MATLAB: Ctrl-P; Visual Studio: Ctrl-P; XCode: Command-P

Command Reference

455

query-replace (search_string, replace_string)

Initiate incremental mini-search query/replace from the cursor position. Key Bindings: Wing: Alt-comma;

Eclipse: Alt-comma; Emacs: Alt-%; macOS: Ctrl-R; MATLAB: Alt-comma; Visual Studio: Alt-comma;

XCode: Ctrl-R

query-replace-regex (search_string, replace_string)

Initiate incremental mini-search query/replace from the cursor position. The search string is treated as a

regular expression. Key Bindings: Wing: Ctrl-Alt-Comma; Eclipse: Ctrl-Alt-Comma; Emacs: Ctrl-Alt-%;

MATLAB: Ctrl-Alt-Comma; Visual Studio: Ctrl-Alt-Comma

range-replace (search_string, replace_string, confirm, range_limit, match_limit, regex)

Initiate incremental mini-search query/replace within the given selection. This is similar to query_replace

but allows some additional options:

confirm -- True to confirm each replace
range_limit -- None to replace between current selection start and end of document,
 1 to limit operation to current selection or to current line if selection is empty,
 (start, end) to limit operation to within given selection range, or "first|last"
 to limit operating withing given range of lines (1=first).
match_limit -- None to replace any number of matches, or limit of number of replaces.
 When set to "l" plus a number, limits to that number of matches per line,
 rather than as a whole.
regex -- Treat search string as a regular expression

repeat-replace (repeat=<numeric modifier; default=1>)

Repeat the last query replace or range replace operation on the current line. The first match is replaced

without confirmation. Key Bindings: VI/VIM: &

replace-char (line_mode='multiline', num=<numeric modifier; default=1>)

Replace num characters with given character. Set line_mode to multiline to allow replacing across lines,

extend to replace on current line and then extend the line length, and restrict to replace only if enough

characters exist on current line after cursor position. Key Bindings: VI/VIM: r

replace-string (search_string, replace_string)

Replace all occurrences of a string from the cursor position to end of file. Key Bindings: Wing: Alt-.;

Eclipse: Alt-.; Emacs: Alt-@; MATLAB: Alt-.; Visual Studio: Alt-.

replace-string-regex (search_string, replace_string)

Replace all occurrences of a string from the cursor position to end of file. The search string is treated as

a regular expression. Key Bindings: Wing: Ctrl-Alt-.; Eclipse: Ctrl-Alt-.; Emacs: Ctrl-Alt-@; MATLAB:

Ctrl-Alt-.; Visual Studio: Ctrl-Alt-.

save-buffer ()

Command Reference

456

Save the current text file to disk

set-readonly ()

Set editor to be readonly. This cannot be done if the editor contains any unsaved edits.

set-visit-history-anchor ()

Set anchor in the visit history to go back to

set-writable ()

Set editor to be writable. This can be used to override the read-only state used initially for editors

displaying files that are read-only on disk.

show-all-whitespace ()

Turn on all special marks for displaying white space and end-of-line

show-eol ()

Turn on special marks for displaying end-of-line chars

show-indent-guides ()

Turn on special marks for displaying indent level

show-indent-manager ()

Display the indentation manager for this editor file

show-whitespace ()

Turn on special marks for displaying white space

start-kbd-macro (register='a')

Start definition of a keyboard macro. If register=None then the user is prompted to enter a letter a-z

under which to file the macro. Otherwise, register 'a' is used by default. Key Bindings: Wing: Ctrl-(; Brief:

F7; Eclipse: Ctrl-(; Emacs: Ctrl-X (; macOS: Command-Shift-M; MATLAB: Ctrl-(; VI/VIM: q invokes

start-kbd-macro(register=None); Visual Studio: Ctrl-(; XCode: Command-Shift-M

stop-kbd-macro ()

Stop definition of a keyboard macro Key Bindings: Wing: Ctrl-); Brief: Shift-F7; Eclipse: Ctrl-); Emacs:

Ctrl-X); macOS: Command-Shift-M; MATLAB: Ctrl-); VI/VIM: q; Visual Studio: Ctrl-); XCode:

Command-Shift-M

toggle-auto-editing ()

Toggle the global auto-editing switch. When enabled, the editor performs the auto-edits that have been

selected in the Editor > Auto-Editing preferences group.

toggle-line-wrapping ()

Command Reference

457

Toggles line wrapping preference for all editors

toggle-overtype ()

Toggle status of overtyping mode Key Bindings: Wing: Insert; Brief: Alt-I; Eclipse: Ctrl-Shift-Insert;

Emacs: Insert; MATLAB: Insert; VI/VIM: Insert; Visual Studio: Insert

uncomment-out-region (one_level=True)

Uncomment out the selected region if commented out. If one_level is True then each call removes only

one level of commenting. Key Bindings: Wing: Ctrl-?; Eclipse: Ctrl-; Emacs: Ctrl-C U; macOS:

Command-"; MATLAB: Ctrl-?; Visual Studio: Ctrl-K Ctrl-U; XCode: Command-"

uncomment-out-toggle (style=None)

Remove commenting from the selected lines, if any. This command is not available if the lines are not

commented out.

use-lexer-ada ()

Force syntax highlighting Ada source

use-lexer-apache-conf ()

Force syntax highlighting for Apache configuration file format

use-lexer-asm ()

Force syntax highlighting for Masm assembly language

use-lexer-ave ()

Force syntax highlighting for Avenue GIS language

use-lexer-baan ()

Force syntax highlighting for Baan

use-lexer-bash ()

Force syntax highlighting for bash scripts

use-lexer-bullant ()

Force syntax highlighting for Bullant

use-lexer-by-doctype ()

Use syntax highlighting appropriate to the file type

use-lexer-cmake ()

Force syntax highlighting for CMake file

use-lexer-coffee-script ()

Command Reference

458

Force syntax highlighting for Coffee Script source file

use-lexer-cpp ()

Force syntax highlighting for C/C++ source Key Bindings: Wing: Ctrl-7 C; Eclipse: Ctrl-7 C; Emacs:

Ctrl-X L C; macOS: Command-7 C; MATLAB: Ctrl-7 C; Visual Studio: Ctrl-7 C; XCode: Command-7 C

use-lexer-css2 ()

Force syntax highlighting for CSS2

use-lexer-cython ()

Force syntax highlighting for Cython source

use-lexer-diff ()

Force syntax highlighting for diff/cdiff files

use-lexer-django ()

Force syntax highlighting for Django template file

use-lexer-dos-batch ()

Force syntax highlighting for DOS batch files

use-lexer-eiffel ()

Force syntax highlighting for Eiffel source

use-lexer-errlist ()

Force syntax highlighting for error list format

use-lexer-escript ()

Force syntax highlighting for EScript

use-lexer-fortran ()

Force syntax highlighting for Fortran

use-lexer-hss ()

Force syntax highlighting for HSS CSS extension language

use-lexer-html ()

Force syntax highlighting for HTML Key Bindings: Wing: Ctrl-7 H; Eclipse: Ctrl-7 H; Emacs: Ctrl-X L H;

macOS: Command-7 H; MATLAB: Ctrl-7 H; Visual Studio: Ctrl-7 H; XCode: Command-7 H

use-lexer-idl ()

Force syntax highlighting for XP IDL

Command Reference

459

use-lexer-java ()

Force syntax highlighting for Java source

use-lexer-javascript ()

Force syntax highlighting for Javascript

use-lexer-latex ()

Force syntax highlighting for LaTeX

use-lexer-less ()

Force syntax highlighting for Less CSS extension language

use-lexer-lisp ()

Force syntax highlighting for Lisp source

use-lexer-lout ()

Force syntax highlighting for LOUT typesetting language

use-lexer-lua ()

Force syntax highlighting for Lua

use-lexer-makefile ()

Force syntax highlighting for make files Key Bindings: Wing: Ctrl-7 M; Eclipse: Ctrl-7 M; Emacs: Ctrl-X L

M; macOS: Command-7 M; MATLAB: Ctrl-7 M; Visual Studio: Ctrl-7 M; XCode: Command-7 M

use-lexer-mako ()

Force syntax highlighting for Mako template file

use-lexer-matlab ()

Force syntax highlighting for Matlab

use-lexer-mmixal ()

Force syntax highlighting for MMIX assembly language

use-lexer-msidl ()

Force syntax highlighting for MS IDL

use-lexer-nncrontab ()

Force syntax highlighting for NNCrontab files

use-lexer-none ()

Command Reference

460

Use no syntax highlighting Key Bindings: Wing: Ctrl-7 N; Eclipse: Ctrl-7 N; Emacs: Ctrl-X L N; macOS:

Command-7 N; MATLAB: Ctrl-7 N; Visual Studio: Ctrl-7 N; XCode: Command-7 N

use-lexer-nsis ()

Force syntax highlighting for NSIS

use-lexer-pascal ()

Force syntax highlighting for Pascal source

use-lexer-perl ()

Force syntax highlighting for Perl source

use-lexer-php ()

Force syntax highlighting for PHP source

use-lexer-plsql ()

Force syntax highlighting for PL/SQL files

use-lexer-pov ()

Force syntax highlighting for POV ray tracer scene description language

use-lexer-properties ()

Force syntax highlighting for properties files

use-lexer-ps ()

Force syntax highlighting for Postscript

use-lexer-python ()

Force syntax highlighting for Python source Key Bindings: Wing: Ctrl-7 P; Eclipse: Ctrl-7 P; Emacs:

Ctrl-X L P; macOS: Command-7 P; MATLAB: Ctrl-7 P; Visual Studio: Ctrl-7 P; XCode: Command-7 P

use-lexer-qss ()

Force syntax highlighting for QSS (Qt Style sheets)

use-lexer-r ()

Force syntax highlighting for R source file

use-lexer-rc ()

Force syntax highlighting for RC file format

use-lexer-ruby ()

Force syntax highlighting for Ruby source

Command Reference

461

use-lexer-scriptol ()

Force syntax highlighting for Scriptol

use-lexer-scss ()

Force syntax highlighting for SCSS formatted SASS

use-lexer-sql ()

Force syntax highlighting for SQL Key Bindings: Wing: Ctrl-7 S; Eclipse: Ctrl-7 S; Emacs: Ctrl-X L S;

macOS: Command-7 S; MATLAB: Ctrl-7 S; Visual Studio: Ctrl-7 S; XCode: Command-7 S

use-lexer-tcl ()

Force syntax highlighting for TCL

use-lexer-vb ()

Force syntax highlighting for Visual Basic

use-lexer-vxml ()

Force syntax highlighting for VXML

use-lexer-xcode ()

Force syntax highlighting for XCode files

use-lexer-xml ()

Force syntax highlighting for XML files Key Bindings: Wing: Ctrl-7 X; Eclipse: Ctrl-7 X; macOS:

Command-7 X; MATLAB: Ctrl-7 X; Visual Studio: Ctrl-7 X; XCode: Command-7 X

use-lexer-yaml ()

Force syntax highlighting for YAML

wrap-selection ()

Re-wrap the selected text or current line to the configured text wrap column. When there is no selection,

wrappable regions are delineated by surrounding blank lines. Otherwise, when there is a selection,

wrapping is constrained to occur only within that selection. Wrapping behavior depends on context; for

example, wrapping Python code is different than wrapping plain text or the contents of comments and

docstrings. A shared leading prefix found on all lines is retained and only the content after the prefix is

wrapped.

yapf-file (timeout=None)

Reformat the current file with YAPF, if installed in the active Python. The command will time out after

the given number of seconds, or if timeout is None the timeout configured with the Editor >

Auto-formatting > Reformat Timeout preference.

Command Reference

462

yapf-selection (start=None, end=None)

Reformat the current selection, or current line if there is no selection with YAPF. Reformats the given

range if start and end are given.

zoom-in ()

Zoom in, increasing the text display size temporarily by one font size Key Binding: Ctrl-+

zoom-out ()

Zoom out, increasing the text display size temporarily by one font size Key Binding: Ctrl--

zoom-reset ()

Reset font zoom factor back to zero Key Binding: Ctrl-_

Shell Or Editor Commands

Commands available when working either in the shell or editor

goto-clicked-symbol-defn (other_split=None)

Goto the definition of the source symbol that was last clicked on. If other_split is true, the definition will

be displayed if a split other than the current split; if other_split is false, it will be displayed in the current

editor; if other_split is not specified or None, the split to be used is determined by the Split Reuse Policy

preference value. Key Bindings: Wing: Ctrl-left-button-click; Brief: Ctrl-left-button-click; Eclipse:

Ctrl-left-button-click; Emacs: Ctrl-left-button-click; macOS: Command-left-button-click; MATLAB:

Ctrl-left-button-click; VI/VIM: Ctrl-left-button-click; Visual Studio: Ctrl-left-button-click; XCode:

Command-left-button-click

goto-selected-symbol-defn (other_split=None)

Goto the definition of the selected source symbol. If other_split is true, the definition will be displayed if a

split other than the current split; if other_split is false, it will be displayed in the current editor; if

other_split is not specified or None, the split to be used is determined by the Split Reuse Policy

preference value. Key Bindings: Wing: F4; Brief: Alt-H; Eclipse: Ctrl-G; Emacs: Alt-.; macOS: F4;

MATLAB: F4; VI/VIM: g Shift-D; Visual Studio: F4; XCode: F4

Source Assistant Commands

Commands for source assistant

hide-assistant-resolution-steps (path='')

Hide the steps used to determine likely types in the source assistant

show-assistant-resolution-steps (path='')

Show the steps used to determine likely types in the source assistant

Command Reference

463

Bookmark View Commands

Commands available on a specific instance of the bookmark manager tool

bookmarks-export-selected (filename)

Export the selected bookmarks

bookmarks-export-visible (filename)

Export all visible bookmarks

bookmarks-import (filename)

Not documented

bookmarks-remove-all (confirm=1)

Remove all bookmarks

bookmarks-selected-edit ()

Edit the selected bookmark

bookmarks-selected-goto ()

Goto the selected bookmarks

bookmarks-selected-remove (confirm=1)

Remove the selected bookmark

bookmarks-show-docs ()

Show the Wing documentation section for the bookmarks manager

Snippet Commands

Top-level commands for code snippets

snippet (snippet_name)

Insert given snippet into current editor, selecting the snippet appropriate for that file type from universal

snippets if not found. This will preprocess the snippet to match indentation style to the target file, adjusts

indentation based on context, and starts inline argument collection..

snippet-file (snippet_name, mime_type='', context='all')

Create a new file with given snippet and start inline snippet argument collection. If mime type is given, a

file of that type is created. Otherwise, all snippets are searched and the first found snippet of given

name is used, and file type matches the type of the snippet

Command Reference

464

Snippet View Commands

Commands available on a specific instance of the snippet manager tool

snippet-add (new_snippet_name, ttype='')

Add a new snippet to the current Snippets tool page or the given page

snippet-add-file-type (file_extension)

Add a file type to the snippet manager. The file type is the file extension. It is added to the last directory

on the snippet path.

snippet-assign-key-binding ()

Assign/reassign/unassign the key binding associated with the given snippet by name.

snippet-clear-key-binding ()

Clear the key binding associated with the given snippet

snippet-reload-all ()

Reload all the snippet files. The snippet manager does this automatically most of the time, but reload

can be useful to cause the snippet panel display to update when snippets are added or removed from

outside of Wing.

snippet-remove-file-type ()

Remove a file type from the snippet manager, including any snippets defined for it. This operates only

on the last directory on the snippet path.

snippet-rename-file-type (new_file_extension)

Rename a file type to the snippet manager. The file type is the file extension. This operates on the last

directory on the snippet path.

snippet-restore-defaults (delete=False)

Restore the factory default snippets. If delete is True, this will completely remove all snippets first so any

changes made to to snippets will be lost. If delete is False, only missing snippet files will be restored.

snippet-selected-copy (new_name)

Copy the selected snippet to a new name in the same context

snippet-selected-edit ()

Edit the selected snippet

snippet-selected-new-file ()

Paste the currently selected snippet into a new editor

Command Reference

465

snippet-selected-paste ()

Paste the currently selected snippet into the current editor

snippet-selected-remove ()

Remove the selected snippet

snippet-selected-rename (new_name)

Rename the selected snippet

snippet-show-docs ()

Show the Wing documentation section for the snippet manager

24.4. Search Manager Commands

Toolbar Search Commands

Commands available when the tool bar search entry area has the keyboard focus.

backward-char ()

Move backward one character Key Bindings: Wing: Left; Brief: Left; Eclipse: Left; Emacs: Ctrl-B;

macOS: Ctrl-b; MATLAB: Left; VI/VIM: Ctrl-h; Visual Studio: Left; XCode: Ctrl-b

backward-char-extend ()

Move backward one character, extending the selection Key Binding: Shift-Left

backward-delete-char ()

Delete character behind the cursor Key Bindings: Wing: Shift-BackSpace; Brief: Shift-BackSpace;

Eclipse: Shift-BackSpace; Emacs: Ctrl-H; macOS: Ctrl-h; MATLAB: Shift-BackSpace; VI/VIM: Ctrl-H;

Visual Studio: Shift-BackSpace; XCode: Ctrl-h

backward-delete-word ()

Delete word behind the cursor Key Bindings: Wing: Alt-Delete; Brief: Alt-Delete; Eclipse: Alt-Delete;

Emacs: Alt-Delete; macOS: Option-Backspace; MATLAB: Alt-Delete; VI/VIM: Ctrl-W; Visual Studio:

Alt-Delete; XCode: Option-Backspace

backward-word ()

Move backward one word Key Bindings: Wing: Ctrl-Left; Brief: Ctrl-Left; Eclipse: Ctrl-Left; Emacs: Alt-B;

macOS: Ctrl-Left invokes backward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn"); MATLAB:

Ctrl-Left; VI/VIM: Ctrl-W; Visual Studio: Ctrl-Left; XCode: Ctrl-Left invokes

backward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

backward-word-extend ()

Command Reference

466

Move backward one word, extending the selection Key Bindings: Wing: Ctrl-Shift-Left; Brief:

Ctrl-Shift-Left; Eclipse: Ctrl-Shift-Left; Emacs: Ctrl-Shift-Left; macOS: Option-Shift-Left; MATLAB:

Ctrl-Shift-Left; VI/VIM: Ctrl-Shift-Left; Visual Studio: Ctrl-Shift-Left; XCode: Option-Shift-Left

beginning-of-line ()

Move to the beginning of the toolbar search entry Key Bindings: Brief: Shift-Home; Emacs: Ctrl-A;

macOS: Ctrl-a; VI/VIM: 0 invokes beginning-of-line(toggle=0); XCode: Ctrl-a

beginning-of-line-extend ()

Move to the beginning of the toolbar search entry, extending the selection Key Bindings: Emacs:

Shift-Home; macOS: Command-Shift-Left; XCode: Command-Shift-Left

copy ()

Cut selection Key Bindings: Wing: Ctrl-C; Brief: Ctrl-C; Eclipse: Ctrl-C; Emacs: Alt-W; macOS:

Command-C; MATLAB: Ctrl-C; VI/VIM: Ctrl-Insert; Visual Studio: Ctrl-C; XCode: Command-C

cut ()

Cut selection Key Bindings: Wing: Ctrl-X; Brief: Ctrl-X; Eclipse: Ctrl-X; Emacs: Ctrl-W; macOS:

Command-X; MATLAB: Ctrl-X; VI/VIM: Shift-Delete; Visual Studio: Ctrl-X; XCode: Command-X

end-of-line ()

Move to the end of the toolbar search entry Key Bindings: Wing: End; Brief: Shift-End; Eclipse: End;

Emacs: Ctrl-E; macOS: Ctrl-e; MATLAB: Ctrl-E; VI/VIM: $; Visual Studio: End; XCode: Ctrl-e

end-of-line-extend ()

Move to the end of the toolbar search entry, extending the selection Key Bindings: Wing: Shift-End;

Brief: Shift-End; Eclipse: Shift-End; Emacs: Shift-End; macOS: Command-Shift-Right; MATLAB:

Shift-End; VI/VIM: Shift-End; Visual Studio: Shift-End; XCode: Command-Shift-Right

forward-char ()

Move forward one character Key Bindings: Wing: Right; Brief: Right; Eclipse: Right; Emacs: Ctrl-F;

macOS: Ctrl-f; MATLAB: Right; VI/VIM: l invokes forward-char(wrap=0); Visual Studio: Right; XCode:

Ctrl-f

forward-char-extend ()

Move forward one character, extending the selection Key Binding: Shift-Right

forward-delete-char ()

Delete character in front of the cursor Key Bindings: Wing: Delete; Brief: Delete; Eclipse: Delete;

Emacs: Ctrl-D; macOS: Ctrl-d; MATLAB: Delete; VI/VIM: Delete; Visual Studio: Delete; XCode: Ctrl-d

forward-delete-word ()

Command Reference

467

Delete word in front of the cursor Key Bindings: Wing: Ctrl-Delete; Brief: Ctrl-K; Eclipse: Ctrl-Delete;

Emacs: Alt-D; macOS: Option-Delete; MATLAB: Ctrl-Delete; VI/VIM: Ctrl-Delete; Visual Studio:

Ctrl-Delete; XCode: Option-Delete

forward-word ()

Move forward one word Key Bindings: Wing: Ctrl-Right; Brief: Ctrl-Right; Eclipse: Ctrl-Right; Emacs:

Alt-F; macOS: Option-Right; MATLAB: Ctrl-Right; VI/VIM: Shift-E invokes forward-word(delimiters="

tnr", gravity="endm1"); Visual Studio: Ctrl-Right; XCode: Option-Right

forward-word-extend ()

Move forward one word, extending the selection Key Bindings: Wing: Ctrl-Shift-Right; Brief:

Ctrl-Shift-Right; Eclipse: Ctrl-Shift-Right; Emacs: Ctrl-Shift-Right; macOS: Ctrl-Shift-Right invokes

forward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn"); MATLAB: Ctrl-Shift-Right;

VI/VIM: Ctrl-Shift-Right; Visual Studio: Ctrl-Shift-Right; XCode: Ctrl-Shift-Right invokes

forward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

paste ()

Paste from clipboard Key Bindings: Wing: Ctrl-V; Brief: Ctrl-V; Eclipse: Ctrl-V; Emacs: Ctrl-Y; macOS:

Command-V; MATLAB: Ctrl-V; VI/VIM: Shift-Insert; Visual Studio: Ctrl-V; XCode: Command-V

Search Manager Commands

Globally available commands defined for the search manager. These commands are available

regardless of whether a search manager is visible or has keyboard focus.

batch-replace (look_in=None, use_selection=True)

Display search and replace in files tool. Key Bindings: Wing: Ctrl-Shift-H; Eclipse: Ctrl-Shift-H; Emacs:

Ctrl-); macOS: Command-Shift-R; MATLAB: Ctrl-Shift-H; VI/VIM: Ctrl-Shift-G; Visual Studio:

Ctrl-Shift-H; XCode: Command-Alt-Shift-F

batch-search (look_in=None, use_selection=True, search_text=None)

Search on current selection using the Search in Files tool. The look_in argument gets entered in the

look in field if not None or ''. The current selection is put into the search field if it doesn't span multiple

lines and either use_selection is true or there's nothing in the search field. The given search text is used

instead, if provided Key Bindings: Wing: Ctrl-Shift-F; Eclipse: Ctrl-Shift-U invokes

batch-search(look_in="Current File"); Emacs: Ctrl-(; macOS: Command-Shift-F; MATLAB: Ctrl-H;

VI/VIM: Ctrl-Shift-F; Visual Studio: Ctrl-Shift-F; XCode: Command-Shift-F

batch-search-backward ()

Move to the previous found match in the Search in Files tool.

batch-search-forward ()

Command Reference

468

Move to the next found match in the Search in Files tool.

batch-search-pause ()

Pause the currently running batch search, if any

replace ()

Bring up the search manager in replace mode. Key Bindings: Wing: Ctrl-H; Brief: Alt-T; Eclipse: Ctrl-H;

Emacs: Ctrl-0; macOS: Command-R; MATLAB: Ctrl-H; Visual Studio: Ctrl-H; XCode: Command-Alt-F

replace-again ()

Replace current selection with the search manager.

replace-and-search ()

Replace current selection and search again. Key Bindings: Wing: Ctrl-I; Brief: Shift-F6; Eclipse: Ctrl-I;

macOS: Command-Ctrl-R; MATLAB: Ctrl-I; XCode: Command-Ctrl-R

search ()

Bring up the search manager in search mode. Key Bindings: Wing: Ctrl-F; Brief: F5; Eclipse: Ctrl-F;

Emacs: Ctrl-9; macOS: Command-F; MATLAB: Ctrl-F; VI/VIM: Alt-F3; Visual Studio: Ctrl-F; XCode:

Command-F

search-again (search_string='', direction=1)

Search again using the search manager's current settings.

search-backward (search_string=None)

Search again using the search manager's current settings in backward direction Key Bindings: Wing:

Ctrl-Shift-G; Brief: Shift-F3; Eclipse: Ctrl-Shift-K; Emacs: Shift-F3; macOS: Command-Shift-G; MATLAB:

Ctrl-Shift-G; VI/VIM: Shift-F3; Visual Studio: Ctrl-Shift-G; XCode: Command-Shift-G

search-forward (search_string='')

Search again using the search manager's current settings in forward direction Key Bindings: Wing:

Ctrl-G; Brief: Shift-F5; Eclipse: Ctrl-K; Emacs: F3; macOS: Command-G; MATLAB: Ctrl-G; VI/VIM: F3;

Visual Studio: F3; XCode: Command-G

search-sel ()

Search forward using current selection

search-sel-backward ()

Search backward using current selection Key Bindings: Wing: Ctrl-Alt-B; Brief: Alt-F5; Eclipse:

Ctrl-Alt-B; Emacs: Ctrl-Alt-B; macOS: Command-Shift-F3; MATLAB: Ctrl-Alt-B; VI/VIM: Ctrl-Shift-F3;

Visual Studio: Ctrl-Alt-B; XCode: Command-Shift-F3

search-sel-forward ()

Command Reference

469

Search forward using current selection Key Bindings: Wing: Ctrl-Alt-F; Brief: Ctrl-F3; Eclipse: Ctrl-Alt-F;

Emacs: Ctrl-Alt-F; macOS: Command-E; MATLAB: Ctrl-Alt-F; VI/VIM: Ctrl-F3; Visual Studio: Ctrl-Alt-F;

XCode: Command-E

Search Manager Instance Commands

Commands for a particular search manager instance. These are only available when the search

manager has they keyboard focus.

clear ()

Clear selected text

copy ()

Copy selected text Key Bindings: Wing: Ctrl-C; Brief: Ctrl-C; Eclipse: Ctrl-C; Emacs: Alt-W; macOS:

Command-C; MATLAB: Ctrl-C; VI/VIM: Ctrl-Insert; Visual Studio: Ctrl-C; XCode: Command-C

cut ()

Cut selected text Key Bindings: Wing: Ctrl-X; Brief: Ctrl-X; Eclipse: Ctrl-X; Emacs: Ctrl-W; macOS:

Command-X; MATLAB: Ctrl-X; VI/VIM: Shift-Delete; Visual Studio: Ctrl-X; XCode: Command-X

forward-tab ()

Place a forward tab at the current cursor position in search or replace string Key Bindings: Wing: Ctrl-T;

Brief: Ctrl-T; Eclipse: Ctrl-T; Emacs: Ctrl-T; macOS: Ctrl-T; MATLAB: Tab; VI/VIM: Ctrl-T; Visual Studio:

Ctrl-T; XCode: Ctrl-T

paste ()

Paste text from clipboard Key Bindings: Wing: Ctrl-V; Brief: Ctrl-V; Eclipse: Ctrl-V; Emacs: Ctrl-Y;

macOS: Command-V; MATLAB: Ctrl-V; VI/VIM: Shift-Insert; Visual Studio: Ctrl-V; XCode: Command-V

24.5. Refactoring Commands

Refactoring Commands

Not documented

delete-symbol (symbol=None, clicked=False)

Start delete symbol refactoring. Uses given symbol if not None, name clicked if clicked is true, or name

at cursor in current editor

extract-def (new_name=None)

Extract selected lines to a new function or method. The new_name argument is used as the default for

the name field if specified. Key Bindings: Eclipse: Alt-Shift-M

introduce-variable (pos_range=None, new_name=None)

Command Reference

470

Introduce named variable set to the current selected expression or to the range in the active editor

specified by pos_range. The new_name argument is used as the default variable name if it is specified.

Key Bindings: Eclipse: Alt-Shift-L

move-symbol (symbol=None, new_filename=None, new_scope_name=None)

Move the currently selected symbol to another module, class, or function. The new_filename and

new_scope_name arguments are used as default values in the filename and scope name fields if

specified. Key Bindings: Eclipse: Alt-Shift-V

move-symbol-clicked ()

Move last symbol clicked to another module, class, or function.

refactoring-symbol-menu-items (clicked=False)

Internal command to generate items for refactoring menu

rename-module (new_name=None)

Rename module currently open in the editor. The new_filename argument is used as the default new

filename if it is specified. Renaming packages is not supported

rename-symbol (fully_scoped=None, new_name=None, transform=None)

Rename currently selected symbol. The new_name argument is used as the default for the name field if

specified. Aternatively, the transform argument may be set to camel-upper for UpperCamelCase,

camel-lower for lowerCamelCase, under-lower for under_scored_name, or under-upper for

UNDER_SCORED_NAME. Key Bindings: Eclipse: Alt-Shift-R; XCode: Command-Ctrl-E

rename-symbol-clicked (new_name=None, transform=None)

Rename last symbol clicked. See rename_symbol for details on arguments.

24.6. Unit Testing Commands

Unit Testing Commands

Globally available commands defined for the unit testing manager. These commands are available

regardless of whether a testing manager is visible or has keyboard focus.

abort-tests ()

Abort any running tests.

add-testing-file (add_current=False)

Add a file to the set of unit tests. Adds the current editor file if add_current=True. Otherwise, asks the

user to select a file.

add-testing-files (locs=None)

Command Reference

471

Add a file or files to the set of unit tests. locs can be a list of filenames or locations or a single filename

or location. Adds the current editor file if locs is None.

clear-test-results ()

Not documented

debug-all-tests ()

Debug all the tests in testing panel. Key Bindings: Wing: Ctrl-Shift-F6; Brief: Ctrl-Shift-F6; Eclipse:

Ctrl-Shift-F6; Emacs: Ctrl-Shift-F6; macOS: Command-Shift-F6; MATLAB: Ctrl-Shift-F6; VI/VIM:

Ctrl-Shift-F6; Visual Studio: Ctrl-Shift-F6; XCode: Command-Shift-F6

debug-clicked-tests ()

Runs the clicked test or tests, if possible. The tests are determined by the last clicked position in the

active view.

debug-current-tests ()

Runs the current test or tests, if possible. The current tests are determined by the current position in the

active view. Key Bindings: Wing: Ctrl-Shift-F7; Brief: Ctrl-Shift-F7; Eclipse: Ctrl-Shift-F7; Emacs:

Ctrl-Shift-F7; macOS: Command-Shift-F7; MATLAB: Ctrl-Shift-F7; VI/VIM: Ctrl-Shift-F7; Visual Studio:

Ctrl-Shift-F7; XCode: Command-Shift-F7

debug-failed-tests ()

Re-run all the previously failed tests in the debugger. Key Bindings: Wing: Ctrl-Alt-F6; Brief: Ctrl-Alt-F6;

Eclipse: Ctrl-Alt-F6; Emacs: Ctrl-Alt-F6; macOS: Command-Option-F6; MATLAB: Ctrl-Alt-F6; VI/VIM:

Ctrl-Alt-F6; Visual Studio: Ctrl-Alt-F6; XCode: Command-Option-F6

debug-last-tests ()

Debug the last group of tests that were run. Key Bindings: Wing: Ctrl-Alt-F7; Brief: Ctrl-Alt-F7; Eclipse:

Ctrl-Alt-F7; Emacs: Ctrl-Alt-F7; macOS: Command-Option-F7; MATLAB: Ctrl-Alt-F7; VI/VIM: Ctrl-Alt-F7;

Visual Studio: Ctrl-Alt-F7; XCode: Command-Option-F7

debug-selected-tests ()

Debug the tests currently selected in the testing panel.

debug-test-files (locs=None)

Debug the tests in the current editor. Uses the given file or files if locs is not None. The locations can be

a list of filenames or locations or a single filename or location.

internal-testing-logging-start ()

Start verbose logging of test results

internal-testing-logging-stop ()

Command Reference

472

Stop verbose logging of test results

load-test-results (filename)

Load all test results from a file.

remove-individually-added-testing-files ()

Remove all files added individually

run-all-tests (debug=False)

Runs all the tests in testing panel. Key Bindings: Wing: Shift-F6; Brief: Shift-F6; Eclipse: Shift-F6;

Emacs: Shift-F6; macOS: Shift-F6; MATLAB: Shift-F6; VI/VIM: Shift-F6; Visual Studio: Shift-F6; XCode:

Command-U

run-clicked-tests (debug=False)

Runs the clicked test or tests, if possible. The tests are determined by the last clicked position in the

active view. The tests are debugged when debug is True.

run-current-tests (debug=False)

Runs the current test or tests, if possible. The current tests are determined by the current position in the

active view. The tests are debugged when debug is True. Key Binding: Shift-F7

run-failed-tests (debug=False)

Re-run all the previously failed tests. The tests are debugged when debug is True. Key Bindings: Wing:

Alt-F6; Brief: Alt-F6; Eclipse: Alt-F6; Emacs: Alt-F6; macOS: Option-F6; MATLAB: Alt-F6; VI/VIM:

Alt-F6; Visual Studio: Alt-F6; XCode: Option-F6

run-last-tests (debug=False)

Run again the last group of tests that were run. The tests are debugged when debug is True. Key

Bindings: Wing: Alt-F7; Brief: Alt-F7; Eclipse: Alt-F7; Emacs: Alt-F7; macOS: Option-F7; MATLAB:

Alt-F7; VI/VIM: Alt-F7; Visual Studio: Alt-F7; XCode: Option-F7

run-selected-tests (debug=False)

Run the tests currently selected in the testing panel. The tests are debugged when debug is True.

run-test-files (locs=None, debug=False)

Run or debug the tests in the current editor. Uses the given file or files instead if locs is not None. The

locations list may be a list of locations or filenames or a single location or filename. The tests are

debugged if debug=True.

save-all-test-results (filename)

Save all test results to a file.

Command Reference

473

24.7. Version Control Commands

Subversion Commands

Subversion revision control system commands

svn-checkout ()

Start the initial checkout from svn repository. Repository and working directory must be entered before

the checkout.

svn-update ()

Update the selected files from the Subversion repository

svn-resolved ()

Indicate that any conflicts are resolved

svn-diff-recent ()

Show diffs for most recent checkin

svn-log ()

Show the revision log for the selected files in the Subversion repository

svn-blame ()

Show blame / praise / annotate for selected files.

svn-update-project ()

Update files in project

svn-remove ()

Remove files

svn-add ()

Add the files to %(label)s

svn-commit ()

Not documented

svn-commit-project ()

Commit all project files

svn-diff ()

Show differences between files in working directory and last committed version

svn-status ()

Command Reference

474

View status of the selected files in the working directory

svn-project-status ()

View status for entire project

svn-revert ()

Revert selected files

svn-configure ()

Show preferences page for selected VCS

Git Commands

git revision control system commands

git-list ()

Show the status of the given files in the git repository

git-log ()

Show the revision log for the selected files in the git repository

git-blame ()

Show the annotated blame/praise for the selected files in the git repository

git-fetch-repository ()

Pull from repository.

git-create-branch ()

Create a new branch and switch to it

git-list-branches ()

List all branches

git-switch-branch ()

Switch to another branch

git-pull-branch ()

Pull branch from other git repository

git-push-branch ()

Push branch to other git repository

git-stash-push ()

Command Reference

475

Run stash push

git-stash-pop ()

Run stash pop

git-stash-list ()

Run stash list

git-diff ()

Show differences between files in working directory and last committed version

git-status ()

View status of the selected files in the working directory

git-project-status ()

View status for entire project

git-commit ()

Not documented

git-commit-project ()

Commit all project files

git-add ()

Add the files to %(label)s

git-remove ()

Remove files

git-revert ()

Revert selected files

git-configure ()

Show preferences page for selected VCS

C V S Commands

CVS revision control system commands

cvs-checkout ()

Start the initial checkout from cvs repository. Repository and working directory must be entered before

the checkout.

cvs-status ()

Command Reference

476

View the CVS repository status for the selected files

cvs-commit ()

Commit the selected files to the CVS repository

cvs-diff ()

Show the differences between working version of given files and the corresponding revision in the CVS

repository

cvs-update ()

Update the selected files from the CVS repository

cvs-revert ()

Revert the selected files

cvs-remove ()

Remove the selected files

cvs-log ()

Show the revision log for the selected files in the CVS repository

cvs-add ()

Add the files to cvs

cvs-update-project ()

Update files in project

cvs-configure ()

Configure the CVS integration

cvs-commit-project ()

Commit files in project

cvs-project-status ()

Run status for entire project.

Mercurial Commands

Mercurial revision control system commands

hg-pull-entire-repository ()

Pull all changes from remote repository to local repository

hg-push-entire-repository ()

Command Reference

477

Update the selected files from the hg repository

hg-log ()

Show the revision log for the selected files in the hg repository

hg-annotate ()

Show user and revision for every line in the file(s)

hg-update ()

Update working directory from repository

hg-merge ()

Merge working directory with changes in repository

hg-resolve ()

Indicate that any conflicts have been resolved

hg-rebase ()

Run rebase

hg-shelve ()

Run shelve

hg-unshelve ()

Run unshelve

hg-list-shelves ()

List shelves

hg-create-branch ()

Create a new branch and switch to it

hg-list-branches ()

List all branches

hg-merge-branch ()

Merge another branch into the current branch

hg-switch-branch ()

Switch to another branch

hg-remove ()

Remove files

Command Reference

478

hg-add ()

Add the files to %(label)s

hg-commit ()

Not documented

hg-commit-project ()

Commit all project files

hg-diff ()

Show differences between files in working directory and last committed version

hg-status ()

View status of the selected files in the working directory

hg-project-status ()

View status for entire project

hg-revert ()

Revert selected files

hg-configure ()

Show preferences page for selected VCS

Perforce Commands

Perforce revision control system commands

perforce-status ()

View the Perforce repository status for the selected files

perforce-commit ()

Commit the selected files to the Perforce repository

perforce-diff ()

Show the differences between working version of given files and the corresponding revision in the

Perforce repository

perforce-sync ()

Copy the selected files from the Perforce repository

perforce-edit ()

Copy the selected files from the Perforce repository

Command Reference

479

perforce-revert ()

Revert the selected files

perforce-remove ()

Remove the selected files

perforce-resolved ()

Indicate that any conflicts are resolved

perforce-log ()

Show the revision log for the selected files in the Perforce repository

perforce-blame ()

Show blame / praise / annotate for selected files.

perforce-add ()

Add the files to perforce

perforce-sync-project ()

Update files in project

perforce-commit-project ()

Commit files in project

perforce-project-status ()

Run status for entire project.

perforce-annotate ()

Show blame / praise / annotate for selected files

perforce-configure ()

Show preferences page for selected VCS

24.8. Debugger Commands

Debugger Commands

Commands that control the debugger and current debug process, if any.

break-clear ()

Clear the breakpoint on the current line Key Bindings: Wing: F9; Brief: F9; Eclipse: Ctrl-Shift-B; Emacs:

Ctrl-X Space; macOS: F9; MATLAB: F9; VI/VIM: F9; Visual Studio: F9; XCode: F9

Command Reference

480

break-clear-all ()

Clear all breakpoints Key Bindings: Wing: Ctrl-F9; Brief: Ctrl-F9; Eclipse: Ctrl-F9; Emacs: Ctrl-F9;

macOS: Command-F9; MATLAB: Ctrl-F9; VI/VIM: Ctrl-F9; Visual Studio: Ctrl-F9; XCode: Command-F9

break-clear-clicked ()

Clear the breakpoint at current click location

break-disable ()

Disable the breakpoint on current line Key Binding: Shift-F9

break-disable-all ()

Disable all breakpoints Key Bindings: Wing: Ctrl-Shift-F9; Brief: Ctrl-Shift-F9; Eclipse: Ctrl-Shift-F9;

Emacs: Ctrl-Shift-F9; MATLAB: Ctrl-Shift-F9; VI/VIM: Ctrl-Shift-F9; Visual Studio: Ctrl-Shift-F9

break-disable-clicked ()

Disable the breakpoint at current click location

break-edit-cond ()

Edit condition for the breakpoint on current line

break-edit-cond-clicked ()

Edit condition for the breakpoint at the current mouse click location

break-enable ()

Enable the breakpoint on the current line Key Binding: Shift-F9

break-enable-all ()

Enable all breakpoints Key Bindings: Wing: Ctrl-Shift-F9; Brief: Ctrl-Shift-F9; Eclipse: Ctrl-Shift-F9;

Emacs: Ctrl-Shift-F9; MATLAB: Ctrl-Shift-F9; VI/VIM: Ctrl-Shift-F9; Visual Studio: Ctrl-Shift-F9

break-enable-clicked ()

Enable the breakpoint at current click location

break-enable-toggle ()

Toggle whether breakpoint on current line is enabled or disabled

break-ignore ()

Ignore the breakpoint on current line for N iterations

break-ignore-clicked ()

Ignore the breakpoint at the current mouse click location for N iterations

break-set ()

Command Reference

481

Set a new regular breakpoint on current line *Key Bindings: Wing: F9; Brief: F9; Eclipse: Ctrl-Shift-B;

Emacs: Ctrl-X Space; macOS: F9; MATLAB: F9; VI/VIM: F9; Visual Studio: F9; XCode: Command-*

break-set-clicked ()

Set a new regular breakpoint at the current mouse click location

break-set-cond ()

Set a new conditional breakpoint on current line

break-set-cond-clicked ()

Set a new conditional breakpoint at the current mouse click location

break-set-disabled ()

Set a disabled breakpoint on the current line Key Bindings: Wing: Shift-F9; Brief: Shift-F9; Eclipse:

Shift-F9; Emacs: Shift-F9; MATLAB: Shift-F9; VI/VIM: Shift-F9; Visual Studio: Shift-F9

break-set-temp ()

Set a new temporary breakpoint on current line

break-set-temp-clicked ()

Set a new temporary breakpoint at the current mouse click location

break-toggle ()

Toggle breakpoint at current line (creates new regular bp when one is created) Key Bindings: XCode:

Command-Y

clear-debugger-security-tokens ()

Clear the stored security tokens for accepting external debug connections

clear-exception-ignores-list ()

Clear list of exceptions being ignored during debugging

clear-var-errors ()

Clear stored variable errors so they get refetched

cluster-menu-items ()

Not documented

collapse-tree-more ()

Collapse whole selected variables display subtree one more level

create-cluster (name='', shared=False)

Create a new cluster configuration and open the cluster attribute dialog.

Command Reference

482

create-container (name='', shared=False)

Create a new container configuration and open the container attribute dialog.

create-launch-config (name)

Create a new launch configuration with the given name if it does not already exist, and then open the

launch configuration attribute dialog.

create-named-entry-point (name)

Create a new named entry point if it does not already exist, and then open the named entry point

attribute dialog.

create-remote-host (name='', shared=False)

Create a new remote host configuration and open the remote host attribute dialog.

debug-attach ()

Attach to an already-running debug process

debug-console-clear ()

Clear the Debug Console.

debug-console-evaluate-active-range ()

Evaluate the active range in the Debug Console, if any is set

debug-console-show-active-range ()

Show the active range set in the Debug Console in the editor.

debug-console-toggle-active-range ()

Toggle the active range in the Debug Console: The active range is cleared if already set, or otherwise

set using the current editor selection.

debug-continue (show_dialog=None)

Start or continue debugging to next breakpoint or exception (press Alt to continue all paused debug

processes) Key Bindings: Wing: F5; Brief: F5; Eclipse: F8; Emacs: Ctrl-C Ctrl-C; macOS: F5; MATLAB:

F5; VI/VIM: F5; Visual Studio: F5; XCode: Command-R

debug-continue-all ()

Continue all paused debug processes Key Bindings: Wing: Shift-Alt-F5; Brief: Shift-Alt-F5; Eclipse:

Shift-Alt-F5; Emacs: Shift-Alt-F5; MATLAB: Shift-Alt-F5; VI/VIM: Shift-Alt-F5; Visual Studio: Shift-Alt-F5

debug-detach ()

Detach from the debug process and let it run

Command Reference

483

debug-detach-all ()

Detach from all debug processes and let them run

debug-file (show_dialog=None)

Start debugging the current file (rather than the main entry point) Key Bindings: Wing: Shift-F5; Brief:

Shift-F5; Eclipse: Shift-F5; Emacs: Shift-F5; macOS: Shift-F5; MATLAB: Shift-F5; VI/VIM: Shift-F5;

Visual Studio: Ctrl-F5; XCode: Shift-F5

debug-hide-value-tips ()

Hide all the debug value tooltips previously shown with debug_show_value_tips() Key Binding:

Release-Shift-Space

debug-kill ()

Terminate current debug session (press Alt to terminate all debug processes) Key Bindings: Wing:

Ctrl-F5; Brief: Ctrl-F5; Eclipse: Ctrl-F5; Emacs: Ctrl-C Ctrl-K; macOS: Command-.; MATLAB: Shift-F5;

VI/VIM: Ctrl-F5; Visual Studio: Shift-F5; XCode: Command-.

debug-kill-all ()

Terminate all debug processes Key Bindings: Wing: Ctrl-Alt-F5; Brief: Ctrl-Alt-F5; Eclipse: Ctrl-Alt-F5;

Emacs: Ctrl-Alt-F5; MATLAB: Ctrl-Alt-F5; VI/VIM: Ctrl-Alt-F5; Visual Studio: Ctrl-Alt-F5

debug-move-counter ()

Move program counter to caret

debug-move-counter-clicked ()

Move program counter to click location

debug-named-entry-point (name)

Debug the named entry point

debug-new-process (show_dialog=None)

Start a new debug process running

debug-rerun ()

Re-run the latest debug session that was launched from the IDE

debug-restart ()

Stop and restart debugging (press Alt to restart all debug processes)

debug-restart-all ()

Stop and restart all debug processes that were launched from the IDE

Command Reference

484

debug-show-environment ()

Show the debug run arguments and environment configuration dialog for the main entry point or current

file

debug-show-value-tips (release_toggle=False)

Show tooltips on all visible editors indicating the current value of all visible symbols. The value of

release_toggle controls whether this command is available if the tips are already shown; this can be

used to prevent execution of fallback commands on a key binding while the tips are already visible, if

the key is pressed again or reported in key repeat events while the key is held down. Key Binding:

Shift-Space invokes debug-show-value-tips(release_toggle=True)

debug-stack-menu-items ()

Not documented

debug-stop ()

Pause debug at current program counter (press Alt to pause all debug processes) Key Bindings: Wing:

Ctrl-Shift-F5; Brief: Ctrl-Shift-F5; Eclipse: Ctrl-Shift-I; Emacs: Ctrl-C Ctrl-S; macOS: Command-Shift-F5;

MATLAB: Ctrl-C; VI/VIM: Ctrl-Shift-F5; Visual Studio: Ctrl-Shift-F5; XCode: Command-.

debug-stop-all ()

Pause all free-running debug processes at the current program counter Key Bindings: Wing:

Ctrl-Shift-Alt-F5; Brief: Ctrl-Shift-Alt-F5; Eclipse: Ctrl-Shift-Alt-F5; Emacs: Ctrl-Shift-Alt-F5; MATLAB:

Ctrl-Shift-Alt-F5; VI/VIM: Ctrl-Shift-Alt-F5; Visual Studio: Ctrl-Shift-Alt-F5

debug-to-clicked (new_process=False)

Debug to the line at the current mouse click location

exception-always-stop ()

Always stop on exceptions, even if they are handled by the code

exception-never-stop ()

Never stop on exceptions, even if they are unhandled in the code

exception-stop-when-printed ()

Stop only on exceptions when they are about to be printed

exception-unhandled-stop ()

Stop only on exceptions that are not handled by the code

execute-main ()

Execute the main entry point outside of the debugger, or the current Python file if no main entry point is

defined

Command Reference

485

execute-named-entry-point (name)

Execute (without debugging) the named entry point

expand-tree-more ()

Expand whole selected variables display subtree deeper

force-var-reload ()

Force refetch of a value from server

frame-down ()

Move down the current debug stack Key Binding: F12

frame-show ()

Show the position (thread and stack frame) where the debugger originally stopped Key Bindings: Wing:

Shift-F11; Brief: Shift-F11; Eclipse: Shift-F11; Emacs: Shift-F11; MATLAB: Shift-F11; VI/VIM: Shift-F11;

Visual Studio: Shift-F11

frame-up ()

Move up the current debug stack Key Binding: F11

hide-debug-value-detail ()

Hide the debug value detail area

internal-extra-debugger-logging-start ()

Turn on additional logging for diagnosing problems with the debugger

internal-extra-debugger-logging-stop ()

Turn off additional logging for diagnosing problems with the debugger

interrupt-debugger ()

Interupt debugger execution; equivalent to ctrl-c on command line

manage-clusters ()

Display the cluster configuration manager

manage-containers ()

Display the container configuration manager

manage-launch-configs ()

Display the launch config manager

manage-named-entry-points ()

Command Reference

486

Display the named entry point manager

manage-remote-hosts ()

Display the remote host configuration manager

python-shell-clear (show=False, focus=False, scope='all')

Clear text in the python shell, according to given scope ('all' for whole shell, 'selection' for selection and

'entry' for text entered since the last prompt). Optionally shows the Python Shell if not already visible

and/or sets focus into it.

python-shell-evaluate-active-range ()

Evaluate the active range in the Python Shell, if any is set

python-shell-kill ()

Kill python shell process.

python-shell-restart (show=False, focus=False, prompt=False)

Restart python shell, optionally showing the Python Shell tool and/or placing keyboard focus on it.

Prompts the user first when prompt is True or when prompt is 'pref' and the user has not asked to

bypass the prompt.

python-shell-show-active-range ()

Show the active range set in the Python Shell in the editor.

python-shell-toggle-active-range ()

Toggle the active range in the Python Shell: The active range is cleared if already set, or otherwise set

using the current editor selection.

run-build-command ()

Execute the build command defined in the project, if any Key Bindings: XCode: Command-B

run-to-cursor (new_process=False)

Run to current cursor position Key Bindings: Wing: Alt-F5; Brief: Alt-F5; Eclipse: Ctrl-F5; Emacs: Alt-F5;

MATLAB: Alt-F5; VI/VIM: Alt-F5; Visual Studio: Alt-F5

shell-copy-with-prompts (shell=None)

Copy text from shell, including all prompts

shell-ctrl-down ()

Not documented

shell-ctrl-return ()

Command Reference

487

Not documented Key Bindings: MATLAB: Shift-Return

shell-ctrl-up ()

Not documented

show-debug-value-as-array ()

Show the selected value as an array

show-debug-value-as-text ()

Show the selected value as text

step-into (show_dialog=None, new_process=False)

Step into current execution point, or start debugging at first line Key Bindings: Wing: F7; Brief: F7;

Eclipse: F5; Emacs: F7; macOS: F7; MATLAB: F11; VI/VIM: F7; Visual Studio: F11; XCode: F7

step-out ()

Step out of the current function or method Key Bindings: Wing: F8; Brief: F8; Eclipse: F7; Emacs: F8;

macOS: F8; MATLAB: F8; VI/VIM: F8; Visual Studio: Shift-F11; XCode: F8

step-out-to-frame (frame_idx=None)

Step out of the given frame (0=outermost) in the primary stack. Frame is None to step out to the

currently selected stack frame.

step-over ()

Step over current instruction Key Bindings: Wing: Ctrl-F6; Brief: Ctrl-F6; Eclipse: Ctrl-F6; Emacs:

Ctrl-F6; MATLAB: Ctrl-F6; VI/VIM: Ctrl-F6; Visual Studio: Ctrl-F6

step-over-block ()

Step over current block

step-over-line ()

Step over current line

step-over-statement ()

Step over current statement Key Bindings: Wing: F6; Brief: F6; Eclipse: F6; Emacs: F6; macOS: F6;

MATLAB: F10; VI/VIM: F6; Visual Studio: F10; XCode: F6

watch (style='ref')

Watch selected variable using a direct object reference to track it

watch-expression (expr=None)

Add a new expression to the watch list

Command Reference

488

watch-module-ref ()

Watch selected value relative to a module looked up by name in sys.modules

watch-parent-ref ()

Watch selected variable using a reference to the value's parent and the key slot for the value

watch-ref ()

Watch selected variable using a direct object reference to track it

watch-symbolic ()

Watch selected value using the symbolic path to it

Debugger Watch Commands

Commands for the debugger's Watch tool (Wing Pro only). These are available only when the watch

tool has key board focus.

watch-clear-all ()

Clear all entries from the watch list

watch-clear-selected ()

Clear selected entry from the watch list

Call Stack View Commands

Commands available on a specific instance of the call stack tool

callstack-copy-to-clipboard ()

Copy the call stack to the clipboard, as text

callstack-set-codeline-mode (mode)

Set the code line display mode for this call stack

callstack-show-docs ()

Show documentation for the call stack manager

Exceptions Commands

Commands available when the debugger's Exceptions tool has the keyboard focus.

clear ()

Clear the exception currently shown on the display

copy ()

Command Reference

489

Copy the exception traceback to the clipboard Key Bindings: Wing: Ctrl-C; Brief: Ctrl-C; Eclipse: Ctrl-C;

Emacs: Alt-W; macOS: Command-C; MATLAB: Ctrl-C; VI/VIM: Ctrl-Insert; Visual Studio: Ctrl-C; XCode:

Command-C

Breakpoint View Commands

Commands available on a specific instance of the breakpoint manager tool

bpmanager-clear-selected ()

Clear breakpoints currently selected on the breakpoint manager

bpmanager-show-docs ()

Show documentation for the breakpoint manager

bpmanager-show-selected ()

Show source location for breakpoint currently selected on the breakpoint manager

24.9. Script-provided Add-on Commands

Django Script

A plugin that provides Django-specific functionality when a project looks like it contains Django files.

django-migrate-app (appname)

Run manage.py makemigrations for given app name and display the output in a scratch buffer.

django-migrate-db ()

Run manage.py migrate (or syncdb in Django 1.7 and earlier)

django-restart-shell ()

Show and restart the Python Shell tool, which works in the same environment as "manage.py shell". To

show the tool without restarting it, use the Tools menu.

django-run-tests ()

Run manage.py unit tests in the Testing tool

django-run-tests-to-scratch-buffer ()

Run manage.py tests with output in a scratch buffer

django-show-docs ()

Show documentation for using Wing and Django together

django-show-migrations ()

Run manage.py showmigrations and display the output in a scratch buffer.

Command Reference

490

django-start-app (appname)

Start a new application within the current Django project and add it to the INSTALLED_APPS list in the

project's settings.py file.

django-validate ()

Run manage.py check (or validate in Django 1.5 and earlier)

Django Script

A plugin that provides Django-specific functionality when a project looks like it contains Django files.

Emacs Extensions Script

This file contains scripts that add emacs-like functionality not found in Wing's internal emacs support

layer.

add-change-log-entry (user_name=None, email=None, changelog=None, changed_file=None,

func=None, other_window=False, new_entry=False)

Add a change log entry Key Bindings: Emacs: Ctrl-X 4 A

Editor Extensions Script

Editor extensions that also serve as examples for scripting Wing.

batch-search-current-directory ()

Initial batch search for the current editor's directory

cc-checkout ()

Check the current file out of clearcase. This is best used with Wing configured to auto-reload

unchanged files.

close-all-readonly ()

Close all readonly files

comment-block-toggle ()

Toggle block comment (with ## at start) on the selected lines in editor. This is a different style of block

commenting than Wing implements by default (the default in Wing is intended to work better with some

of the other editor functionality) Key Bindings: Eclipse: Ctrl-/; MATLAB: Ctrl-T

convert-to-cr-lineends ()

Convert the current editor to use CR style line endings

convert-to-crlf-lineends ()

Convert the current editor to use CR + LF style line endings

Command Reference

491

convert-to-lf-lineends ()

Convert the current editor to use LF style line endings

copy-filename-to-clipboard ()

Copy the filename for the currently selected file to the clipboard

copy-reference (include_text=True)

Copy 'filename, lineno (scope)' optionally followed by the current line or selected lines to the clipboard.

The scope is omitted if there isn't one or in a non-Python file.

cursor-end ()

Bring cursor to end of line, to end of visible area, or to end of document each successive consecutive

invocation of this command. Key Bindings: Brief: End

cursor-home ()

Bring cursor to start of line, to start of visible area, or to start of document each successive consecutive

invocation of this command. Key Bindings: Brief: Home

delete-selected-lines ()

Delete the line or range of lines that contain the current selection. This duplicates what the editor

command delete-line does. Key Bindings: Brief: Alt-D

describe-key-briefly (key)

Display the commands that a key is bound to in the status area. Does not fully work for the vi binding.

end-of-block ()

Not documented

fold-python-classes ()

Fold up all Python classes but leave other fold points alone Key Bindings: Wing: Alt-2; Brief: Alt-2;

Eclipse: Alt-2; Emacs: Alt-2; macOS: Command-Ctrl-/; MATLAB: Alt-2; VI/VIM: Alt-2; Visual Studio:

Alt-2; XCode: Command-Ctrl-/

fold-python-classes-and-defs ()

Fold up all Python classes, methods, and functions but leave other fold points alone Key Bindings:

Wing: Alt-3; Brief: Alt-3; Eclipse: Alt-3; Emacs: Alt-3; macOS: Command-=; MATLAB: Alt-3; VI/VIM:

Alt-3; Visual Studio: Alt-3; XCode: Command-=

fold-python-methods ()

Fold up all Python methods, expand all classes, and leave other fold points alone Key Bindings: Wing:

Alt-1; Brief: Alt-1; Eclipse: Alt-1; Emacs: Alt-1; macOS: Command-Alt--; MATLAB: Alt-1; VI/VIM: Alt-1;

Visual Studio: Alt-1; XCode: Command-Alt--

Command Reference

492

hyphen-to-under ()

Change hyphens (dashes) to underscores in current selection or current word

indent-new-comment-line ()

Enter a newline, indent to match previous line and insert a comment character and a space. Assumes

that auto-indent is enabled.

insert-debug-print ()

Insert a print statement to print a selected variable name and value, along with the file and line number.

insert-spaces-to-tab-stop (tab_size=0)

Insert spaces to reach the next tab stop (units of given tab size or editor's tab size if none is given)

insert-text (text)

Insert given text at current caret location, replacing any existing selected text

kill-line-with-eol ()

Variant of emacs style kill-line command that always kills the eol characters

lower-case ()

Change current selection or current word to all lower case Key Bindings: Eclipse: Ctrl-Shift-X; MATLAB:

Ctrl-U

open-clicked-filename-from-editor ()

Open the filename being clicked in the current editor

open-clicked-url-from-editor ()

Open the url being clicked in the current editor

open-filename-from-editor ()

Open the filename at the caret in current editor Key Bindings: MATLAB: Ctrl-D

open-url-from-editor ()

Open the url at caret in the current editor

remove-prompts-and-paste ()

Paste from clipboard after removing any >>> and ... prompts

search-python-docs ()

Do a search on the Python documentation for the selected text in the current editor

set-executable-bit (set_bit=True)

Command Reference

493

Set the current file's executable bit in its permissions. If set_bit is true (the default), the executable bit is

set; if set_bit is false, the executable bit is cleared. This doesn't do anything on windows.

smart-copy ()

Implement a variant of clipboard copy that copies the whole current line if there is no selection on the

editor.

smart-cut ()

Implement a variant of clipboard cut that cuts the whole current line if there is no selection on the editor.

smart-paste ()

A variant of paste that inserts line just copied with smart-copy above current line.

sort-selected ()

Sort selected lines of text alphabetically

start-of-block ()

Not documented

surround (char)

Surround selected text with (), [], {}, "", '', <>, or ``. Arg char should be the opening character. If there is

no selection, the current word is surrounded.

title-case ()

Change current selection or current word to capitalize first letter of each word Key Bindings: Emacs:

Alt-C

toggle-case ()

Toggle current selection or current word between common name formats: my_symbol_name,

MySymbolName, and mySymbolName

toggle-mark-command (style='char', select_right=0)

Change between text-marking and non-text-marking mode. Style is "char" for stream select, "block" for

rectangular select, and "line" for line select. Set select_right=1 to select the character to right of the

cursor when marking is toggled on. Key Bindings: Brief: Alt-L invokes

toggle-mark-command(style="line")

toggle-toolbox-separate ()

Toggle between moving the toolboxes to a separate window and the default single-window mode

toggle-vertical-split ()

Command Reference

494

If editor is split, unsplit it and show the vertical tools panel. Otherwise, hide the vertical tools and split the

editor left-right Assumes default windowing policy (combined toolbox & editor windows). Thanks to

Jonathan March for this script.

under-to-hyphen ()

Change underscores to hyphens (dashes) in current selection or current word

upper-case ()

Change current selection or current word to all upper case Key Bindings: Eclipse: Ctrl-Shift-Y; MATLAB:

Shift-Ctrl-U

vi-fold-less ()

Approximation of zm key binding in vim Key Bindings: VI/VIM: z m

vi-fold-more ()

Approximation of zr key binding in vim Key Bindings: VI/VIM: z r

vs-tab ()

Modified tab indentation command that acts like tab in Visual Studio.

watch-selection ()

Add a debug watch for the selected text in the current editor

word-list-completion (word)

Provide simple word-list driven auto-completion on the current editor

Testapi Script

Tests for Wing's scripting API.

test-api (verbose=0)

Test Wing's scripting API

Debugger Extensions Script

Scripts that extend the debugger in various ways.

debug-run-to-completion ()

Run the current debug process to completion. This disables all breakpoints temporarily until the process

exits.

set-breaks-from-markers ()

Command Reference

495

Scan current file for markers in the form %BP% and places breakpoints on all lines where those

markers are found. A conditional breakpoint can be set if a condition follows the marker, for example

%BP%:x > 10. Removes all old breakpoints first.

Command Reference

496

Key Binding Reference
This chapter documents all the default key bindings found in the keyboard personalities provided by

Wing, set by the User Interface > Keyboard > Personality preference. Key bindings are listed

alphabetically. In some cases commands of the same name are provided by different implementations

that are selected according to keyboard focus.

When multiple commands are defined for a single key binding, the first available command in the list is

invoked. In this way a single binding can, for example, show or hide a tool panel.

Additional key bindings can be added as described in keyboard bindings. All available commands are

documented in the Command Reference.

25.1. Wing Personality
This section documents all the default key bindings for the Wing keyboard personality, set by the

User Interface > Keyboard > Personality preference.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and leave other fold

points alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and functions but leave

other fold points alone

Alt-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Comma: query-replace - Initiate incremental mini-search query/replace from the cursor position.

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more level

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F11: prev-points-of-use-match - Display the previous match in the active points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are debugged when debug is

True.

Key Binding Reference

497

https://wingware.com/doc/custom/key-equivalents
https://wingware.com/doc/commands/index

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests are debugged when

debug is True.

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor position

Alt-Left-button-click: find-points-of-use-clicked - Find points of use for last symbol clicked.

Alt-Page_down: fold-expand-all-current - Expand the current fold point completely

Alt-Page_up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Period: replace-string - Replace all occurrences of a string from the cursor position to end of file.

Alt-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Shift-A: diff-merge-a-b

Alt-Shift-B: diff-merge-b-a

Alt-Shift-Down: next-line-extend-rect - Move to next screen line, adjusting the rectangular selection

range to new position, optionally repositioning character within line: same' to leave in same horizontal

position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Shift-F4: find-points-of-use(search_project_files=False) - Find points of use for a symbol. The

symbol defaults to the active selection. Finds points of use in the file the symbol is located and in project

files by default.

Alt-Shift-F5: debug-continue-all - Continue all paused debug processes

Alt-Shift-Left: backward-char-extend-rect - Move cursor backward one character, adjusting the

rectangular selection range to new position

Alt-Shift-N: diff-next

Alt-Shift-P: diff-previous

Alt-Shift-Right: forward-char-extend-rect - Move cursor forward one character, adjusting the

rectangular selection range to new position

Alt-Shift-Up: previous-line-extend-rect - Move to previous screen line, adjusting the rectangular

selection range to new position, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Key Binding Reference

498

Back-button-click: visit-history-previous - Move back in history to previous visited editor position

Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Ctrl-0: next-document - Move to the next document open in the current window. If alphabetical is true,

the list traversed will be alphabetized. If all_splits is true, documents from all splits will be traversed;

otherwise, only the current split will be.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the editor.

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in the current window

or window set if in one-window-per-editor windowing mode.

Ctrl-9: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search query/replace from the cursor

position. The search string is treated as a regular expression.

Ctrl-Alt-D: evaluate-sel-in-debug-console - Evaluate the current selection from the editor within the

Debug Console tool. When whole_lines is set, the selection is rounded to whole lines before evaluation.

When unspecified (set to None), the setting from the Shell's Option menu is used instead.

Key Binding Reference

499

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next bookmark, or the first

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-E: evaluate-sel-in-shell - Evaluate the current selection from the editor within the Python Shell

tool, optionally restarting the shell first. When whole_lines is set, the selection is rounded to whole lines

before evaluation. When unspecified (set to None), the setting from the Shell's Option menu is used

instead.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the bookmark list, or the last

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark is the project-wide

textual name of the bookmark, the category is set to the current bookmark category, and notes are left

blank.

Ctrl-Alt-Period: replace-string-regex - Replace all occurrences of a string from the cursor position to

end of file. The search string is treated as a regular expression.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if no bookmark is

selected. Stays within the file in the current editor when current_file_only is True. Only bookmarks in the

current bookmark category are visited unless a category is passed.

Ctrl-Alt-Shift-F5: debug-stop-all - Pause all free-running debug processes at the current program

counter

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on the editor. When set,

the name of the bookmark is set to an auto-generated default, the category is set to the current

bookmark category, and notes are left blank. When removed, the bookmark is removed without

confirmation.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the previous bookmark in the

bookmark list, or the last one if no bookmark is selected. Stays within the file in the current editor when

current_file_only is True. Only bookmarks in the current bookmark category are visited unless a

category is passed.

Key Binding Reference

500

Ctrl-Alt-V: evaluate-file-in-shell - Run or debug the contents of the editor within the Python Shell

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, using current selection as the search string.

Set persist=False to do the search but end the interactive search session immediately.; Document

Viewer Commands: Initiate incremental mini-search forward from the cursor position, using current

selection as the search string. Set persist=False to do the search but end the interactive search session

immediately.

Ctrl-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-Bracketright: brace-match - Match brace at current cursor position, selecting all text between the

two and hilighting the braces

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Ctrl-D: selection-add-next-occurrence - Add another selection containing the text of the current

selection. If skip_current is true, the current selection will be deselected. If nothing is currently selected,

select the current word. Searches backwards if reverse is true.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: brace-match - Match brace at current cursor position, selecting all text between the two and

hilighting the braces

Ctrl-End: end-of-document - Move cursor to end of document

Key Binding Reference

501

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-F: search - Bring up the search manager in search mode.

Ctrl-F12: command-by-name - Execute given command by name, collecting any args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-F5: debug-kill - Terminate current debug session (press Alt to terminate all debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: search-forward - Search again using the search manager's current settings in forward direction

Ctrl-Greater: indent-region - Indent the selected region one level of indentation. Set sel to None to use

preference to determine selection behavior, or "never-select" to unselect after indent, "always-select" to

always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-H: replace - Bring up the search manager in replace mode.

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: replace-and-search - Replace current selection and search again.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-Iso_left_tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-J: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap column.

When there is no selection, wrappable regions are delineated by surrounding blank lines. Otherwise,

when there is a selection, wrapping is constrained to occur only within that selection. Wrapping behavior

depends on context; for example, wrapping Python code is different than wrapping plain text or the

contents of comments and docstrings. A shared leading prefix found on all lines is retained and only the

content after the prefix is wrapped.

Key Binding Reference

502

Ctrl-K: open-from-keyboard - Open a file from disk using keyboard-driven selection of the file

Ctrl-L: goto-line - Position cursor at start of given line number

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Ctrl-Left-button-click: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Less: outdent-region - Outdent the selected region one level of indentation. Set sel to None to

use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If register is None then

the user is asked to enter a letter a-z for the register where the macro is filed. Otherwise, register 'a' is

used by default.

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer Commands: Decrease

documentation font size; General Editor Commands: Zoom out, increasing the text display size

temporarily by one font size

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Ctrl-O: open-gui - Open a file from local disk or a remote host, prompting with file selection dialog if

necessary. The dialog shown depends on the default starting directory, and may be for local files or

remote files.

Ctrl-P: print-view - Print active editor document

Ctrl-Page_down: next-document - Move to the next document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Page_up: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Parenleft: start-kbd-macro - Start definition of a keyboard macro. If register=None then the user is

prompted to enter a letter a-z under which to file the macro. Otherwise, register 'a' is used by default.

Key Binding Reference

503

Ctrl-Parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-Period: comment-toggle - Toggle commenting out of the selected lines. The style of commenting

can be controlled with the style argument: 'indented' uses the default comment style indented at end of

leading white space and 'block' uses a block comment in column zero. Append '-pep8' to the style to

conform to PEP 8 comment format rules. If not given, the style configured with the Editor / Block

Comment Style preference is used.

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-Pointer_button1: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to

new position

Ctrl-Q: quit - Quit the application.

Ctrl-Question: uncomment-out-region - Uncomment out the selected region if commented out. If

one_level is True then each call removes only one level of commenting.

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True, back_key="Ctrl-Quoteleft",

forward_key="Ctrl-AsciiTilde") - Start moving between documents in the order they were visited.

Starts modal key interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: replace - Bring up the search manager in replace mode.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Commands: Move cursor

forward one word. Optionally, provide a string that contains the delimiters to define which characters are

part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the

word.; Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-B: isearch-sel-backward - Initiate incremental mini-search backward from the cursor

position, using current selection as the search string. Set persist=False to do the search but end the

interactive search session immediately.

Key Binding Reference

504

Ctrl-Shift-C: delete-line - Delete the current line or lines when the selection spans multiple lines or

given repeat is > 1

Ctrl-Shift-D: selection-add-next-occurrence(skip_current=True) - Add another selection containing

the text of the current selection. If skip_current is true, the current selection will be deselected. If nothing

is currently selected, select the current word. Searches backwards if reverse is true.

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: move-line-down - Move the current line or lines up down line, optionally indenting to

match the new position

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, adjusting the selection

range to new position

Ctrl-Shift-F: batch-search - Search on current selection using the Search in Files tool. The look_in

argument gets entered in the look in field if not None or ''. The current selection is put into the search

field if it doesn't span multiple lines and either use_selection is true or there's nothing in the search field.

The given search text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view.

Ctrl-Shift-F8: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Shift-F9: Multiple commands; first available is executed:

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: search-backward - Search again using the search manager's current settings in

backward direction

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document, adjusting the

selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to project

Ctrl-Shift-L: swap-lines - Swap the line at start of current selection with the line that follows it, or the

preceding line if previous is True.

Key Binding Reference

505

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word, extending the selection

Ctrl-Shift-O: open-from-project - Open document from the project via the Open From Project dialog.

The given fragment is used as the initial fragment filter and if it is None, the selected text or the symbol

under the cursor is used. If skip_if_unique is true, the file is opened without the dialog being displayed if

only one filename matches the fragment.

Ctrl-Shift-P: find-symbol-in-project - Allow user to visit point of definition of a source symbol in the

any file in the project by typing a fragment of the name

Ctrl-Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Ctrl-Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the

selection range to new position

Ctrl-Shift-R: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word, extending the selection

Ctrl-Shift-S: save-as - Save active document to a new file

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol in the current editor

context by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-Shift-U: isearch-backward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search backward from the cursor position, optionally entering the given search string ;

Document Viewer Commands: Initiate incremental mini-search backward from the cursor position,

optionally entering the given search string.

Ctrl-Shift-Up: move-line-up - Move the current line or lines up one line, optionally indenting to match

the new position

Ctrl-Shift-V: duplicate-line - Duplicate the current line or lines. Places the duplicate on the line

following the selection if pos is 'below' or before the selection if it is 'above'.

Key Binding Reference

506

Ctrl-Shift-Y: duplicate-line-above - Duplicate the current line or lines above the selection.

Ctrl-Shift-Z: redo - Redo last action

Ctrl-Slash: comment-out-region - Comment out the selected region. The style of commenting can be

controlled with the style argument: 'indented' uses the default comment style indented at end of leading

white space and 'block' uses a block comment in column zero. Append '-pep8' to the style to conform to

PEP 8 comment format rules. If not given, the style configured with the Editor / Block Comment Style

preference is used. Each call adds a level of commenting.

Ctrl-Space: show-autocompleter - Show the auto-completer for current cursor position

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands: Place a tab character

at the current cursor position ; Search Manager Instance Commands: Place a forward tab at the current

cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving between documents in the

order they were visited. Starts modal key interaction that ends when a key other than tab is seen or ctrl

is released.

Ctrl-U: isearch-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, optionally entering the given search string ;

Document Viewer Commands: Initiate incremental mini-search forward from the cursor position,

optionally entering the given search string.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document Viewer Commands: Reset

documentation font size to default; General Editor Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste text from clipboard ;

Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search Commands: Paste

from clipboard

Ctrl-W: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut selected text ; Search

Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Ctrl-Y: redo - Redo last action

Ctrl-Z: undo - Undo last action

Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Key Binding Reference

507

Down: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Escape: exit-visual-mode - Exit visual mode and return back to default mode

F1: Multiple commands; first available is executed:

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands; first available is executed:

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

F5: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt to continue

all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Forward-button-click: visit-history-next - Move forward in history to next visited editor position

Key Binding Reference

508

Home: beginning-of-line-text - Move to end of the leading white space, if any, on the current line. If

toggle is True, moves to the beginning of the line if already at the end of the leading white space (and

vice versa).

Insert: toggle-overtype - Toggle status of overtyping mode

Iso_left_tab: backward-tab - Outdent line at current position

Left: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Page_down: forward-page - Move cursor forward one page

Page_up: backward-page - Move cursor backward one page

Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to new

position

Release-Shift-Space: debug-hide-value-tips - Hide all the debug value tooltips previously shown with

debug_show_value_tips()

Return: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Right: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Shift-Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut selected text ;

Search Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection range to new position,

optionally repositioning character within line: same' to leave in same horizontal position, 'start' at start,

'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Commands: Move to

end of current line, adjusting the selection range to new position ; Toolbar Search Commands: Move to

the end of the toolbar search entry, extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the debugger originally

stopped

Key Binding Reference

509

Shift-F2: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Shift-F3: search-backward - Search again using the search manager's current settings in backward

direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults to the active

selection. Finds points of use in the file the symbol is located and in project files by default.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view. The tests are debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands; first available is executed:

• break-set-disabled - Set a disabled breakpoint on the current line

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white space, if any, on the

current line, adjusting the selection range to the new position. If toggle is True, moves to the beginning

of the line if already at the end of the leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands: Paste text from

clipboard ; Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor backward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move backward one character, extending the selection

Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the selection

range to new position

Shift-Return: new-line-before - Place a new line before the current line

Key Binding Reference

510

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor forward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move forward one character, extending the selection

Shift-Space: Multiple commands; first available is executed:

• debug-show-value-tips(release_toggle=True) - Show tooltips on all visible editors

indicating the current value of all visible symbols. The value of release_toggle controls

whether this command is available if the tips are already shown; this can be used to prevent

execution of fallback commands on a key binding while the tips are already visible, if the key is

pressed again or reported in key repeat events while the key is held down.

• send-keys(keys=" ") - Send one or more keys to the editor. Send a string to enter each key

in the string, or a list of strings and/or (mod, key) tuples where mod is a string containing any

of case insensitive 'shift', 'ctrl', or 'alt'. Valid examples:

"testme"
"TestMe"
["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),]

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection range to new

position, optionally repositioning character within line: same' to leave in same horizontal position, 'start'

at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line

selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

25.2. Emacs Personality
This section documents all the default key bindings for the Emacs keyboard personality, set by the

User Interface > Keyboard > Personality preference.

Alt-0: initiate-repeat-0 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-1: initiate-repeat-1 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-2: initiate-repeat-2 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Key Binding Reference

511

Alt-3: initiate-repeat-3 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-4: initiate-repeat-4 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-5: initiate-repeat-5 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-6: initiate-repeat-6 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-7: initiate-repeat-7 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-8: initiate-repeat-8 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-9: initiate-repeat-9 - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Alt-At: replace-string - Replace all occurrences of a string from the cursor position to end of file.

Alt-B: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Alt-Backslash: fold-toggle - Toggle the current fold point

Alt-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Braceleft: previous-blank-line(threshold=1) - Move to the previous blank line in the file, if any. If

threshold>0 then a line is considered blank if it contains less than that many characters after leading

and trailing whitespace are removed.

Alt-Braceright: next-blank-line(threshold=1) - Move to the next blank line in the file, if any. If

threshold>0 then a line is considered blank if it contains less than that many characters after leading

and trailing whitespace are removed.

Alt-C: title-case - Change current selection or current word to capitalize first letter of each word

Alt-D: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete one

word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more level

Key Binding Reference

512

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-Exclam: execute-process - Execute the given command line in the OS Commands tool using

default run directory and environment as defined in project properties, or the values set in an existing

command with the same command line in the OS Commands tool.

Alt-F: forward-word - Action varies according to focus: Active Editor Commands: Move cursor forward

one word. Optionally, provide a string that contains the delimiters to define which characters are part of

a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the word.;

Toolbar Search Commands: Move forward one word

Alt-F11: prev-points-of-use-match - Display the previous match in the active points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are debugged when debug is

True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests are debugged when

debug is True.

Alt-G: goto-line - Position cursor at start of given line number

Alt-Greater: end-of-document - Move cursor to end of document

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-L: goto-line - Position cursor at start of given line number

Alt-Left: visit-history-previous - Move back in history to previous visited editor position

Alt-Left-button-click: find-points-of-use-clicked - Find points of use for last symbol clicked.

Alt-Less: start-of-document - Move cursor to start of document

Alt-Page_down: fold-expand-all-current - Expand the current fold point completely

Alt-Page_up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Percent: query-replace - Initiate incremental mini-search query/replace from the cursor position.

Alt-Period: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If

other_split is true, the definition will be displayed if a split other than the current split; if other_split is

false, it will be displayed in the current editor; if other_split is not specified or None, the split to be used

is determined by the Split Reuse Policy preference value.

Key Binding Reference

513

Alt-Q: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap column.

When there is no selection, wrappable regions are delineated by surrounding blank lines. Otherwise,

when there is a selection, wrapping is constrained to occur only within that selection. Wrapping behavior

depends on context; for example, wrapping Python code is different than wrapping plain text or the

contents of comments and docstrings. A shared leading prefix found on all lines is retained and only the

content after the prefix is wrapped.

Alt-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Shift-A: diff-merge-a-b

Alt-Shift-B: diff-merge-b-a

Alt-Shift-Down: next-line-extend-rect - Move to next screen line, adjusting the rectangular selection

range to new position, optionally repositioning character within line: same' to leave in same horizontal

position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Shift-F4: find-points-of-use(search_project_files=False) - Find points of use for a symbol. The

symbol defaults to the active selection. Finds points of use in the file the symbol is located and in project

files by default.

Alt-Shift-F5: debug-continue-all - Continue all paused debug processes

Alt-Shift-Left: backward-char-extend-rect - Move cursor backward one character, adjusting the

rectangular selection range to new position

Alt-Shift-N: diff-next

Alt-Shift-P: diff-previous

Alt-Shift-Right: forward-char-extend-rect - Move cursor forward one character, adjusting the

rectangular selection range to new position

Alt-Shift-Up: previous-line-extend-rect - Move to previous screen line, adjusting the rectangular

selection range to new position, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Slash: show-autocompleter - Show the auto-completer for current cursor position

Alt-Tab: show-autocompleter - Show the auto-completer for current cursor position

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Alt-V: backward-page - Move cursor backward one page

Key Binding Reference

514

Alt-W: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Alt-X: command-by-name - Execute given command by name, collecting any args as needed

Back-button-click: visit-history-previous - Move back in history to previous visited editor position

Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Ctrl-0: replace - Bring up the search manager in replace mode.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the editor.

Ctrl-9: search - Bring up the search manager in search mode.

Ctrl-A: beginning-of-line - Action varies according to focus: Active Editor Commands: Move to

beginning of current line. When toggle is True, moves to the end of the leading white space if already at

the beginning of the line (and vice versa).; Toolbar Search Commands: Move to the beginning of the

toolbar search entry

Ctrl-Alt-At: replace-string-regex - Replace all occurrences of a string from the cursor position to end

of file. The search string is treated as a regular expression.

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next bookmark, or the first

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Key Binding Reference

515

Ctrl-Alt-Greater: selection-add-next-occurrence(skip_current=True) - Add another selection

containing the text of the current selection. If skip_current is true, the current selection will be

deselected. If nothing is currently selected, select the current word. Searches backwards if reverse is

true.

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the bookmark list, or the last

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-Percent: query-replace-regex - Initiate incremental mini-search query/replace from the cursor

position. The search string is treated as a regular expression.

Ctrl-Alt-R: isearch-backward-regex - Action varies according to focus: Active Editor Commands:

Initiate incremental regular expression mini-search backward from the cursor position, optionally

entering the given search string ; Document Viewer Commands: Initiate incremental regular expression

mini-search backward from the cursor position, optionally entering the given search string.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if no bookmark is

selected. Stays within the file in the current editor when current_file_only is True. Only bookmarks in the

current bookmark category are visited unless a category is passed.

Ctrl-Alt-S: isearch-forward-regex - Action varies according to focus: Active Editor Commands: Initiate

incremental regular expression mini-search forward from the cursor position, optionally entering the

given search string ; Document Viewer Commands: Initiate incremental regular expression mini-search

forward from the cursor position, optionally entering the given search string.

Ctrl-Alt-Shift-F5: debug-stop-all - Pause all free-running debug processes at the current program

counter

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the previous bookmark in the

bookmark list, or the last one if no bookmark is selected. Stays within the file in the current editor when

current_file_only is True. Only bookmarks in the current bookmark category are visited unless a

category is passed.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-At: set-mark-command - Set start of text marking for selection at current cursor position.

Subsequently, all cursor move operations will automatically extend the text selection until

stop-mark-command is issued. Unit defines what is selected: can be one of char, line, or block

(rectangle).

Ctrl-B: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Key Binding Reference

516

Ctrl-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-C Bar: evaluate-sel-in-shell - Evaluate the current selection from the editor within the Python

Shell tool, optionally restarting the shell first. When whole_lines is set, the selection is rounded to whole

lines before evaluation. When unspecified (set to None), the setting from the Shell's Option menu is

used instead.

Ctrl-C C: comment-out-region - Comment out the selected region. The style of commenting can be

controlled with the style argument: 'indented' uses the default comment style indented at end of leading

white space and 'block' uses a block comment in column zero. Append '-pep8' to the style to conform to

PEP 8 comment format rules. If not given, the style configured with the Editor / Block Comment Style

preference is used. Each call adds a level of commenting.

Ctrl-C Ctrl-C: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt

to continue all paused debug processes)

Ctrl-C Ctrl-K: debug-kill - Terminate current debug session (press Alt to terminate all debug

processes)

Ctrl-C Ctrl-S: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-C Greater: indent-region - Indent the selected region one level of indentation. Set sel to None to

use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-C Less: outdent-region - Outdent the selected region one level of indentation. Set sel to None to

use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-C M: isearch-sel

Ctrl-C Numbersign: comment-toggle - Toggle commenting out of the selected lines. The style of

commenting can be controlled with the style argument: 'indented' uses the default comment style

indented at end of leading white space and 'block' uses a block comment in column zero. Append

'-pep8' to the style to conform to PEP 8 comment format rules. If not given, the style configured with the

Editor / Block Comment Style preference is used.

Key Binding Reference

517

Ctrl-C R: isearch-sel-backward - Initiate incremental mini-search backward from the cursor position,

using current selection as the search string. Set persist=False to do the search but end the interactive

search session immediately.

Ctrl-C S: isearch-sel-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, using current selection as the search string.

Set persist=False to do the search but end the interactive search session immediately.; Document

Viewer Commands: Initiate incremental mini-search forward from the cursor position, using current

selection as the search string. Set persist=False to do the search but end the interactive search session

immediately.

Ctrl-C U: uncomment-out-region - Uncomment out the selected region if commented out. If one_level

is True then each call removes only one level of commenting.

Ctrl-D: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-F: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Ctrl-F12: command-by-name - Execute given command by name, collecting any args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-F5: debug-kill - Terminate current debug session (press Alt to terminate all debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Key Binding Reference

518

Ctrl-G: stop-mark-command - Stop text marking for selection at current cursor position, leaving the

selection set as is. Subsequent cursor move operations will deselect the range and set selection to

cursor position. Deselect immediately when deselect is True.

Ctrl-Greater: selection-add-next-occurrence - Add another selection containing the text of the current

selection. If skip_current is true, the current selection will be deselected. If nothing is currently selected,

select the current word. Searches backwards if reverse is true.

Ctrl-H: backward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character behind the cursor, or the current selection if not empty. ; Toolbar Search Commands: Delete

character behind the cursor

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-Iso_left_tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-J: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap column.

When there is no selection, wrappable regions are delineated by surrounding blank lines. Otherwise,

when there is a selection, wrapping is constrained to occur only within that selection. Wrapping behavior

depends on context; for example, wrapping Python code is different than wrapping plain text or the

contents of comments and docstrings. A shared leading prefix found on all lines is retained and only the

content after the prefix is wrapped.

Ctrl-K: kill-line - Kill rest of line from cursor to end of line, and place it into the clipboard with any other

contiguously removed lines. End-of-line is removed only if there is nothing between the cursor and the

end of the line.

Ctrl-L: center-cursor - Scroll so cursor is centered on display

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Ctrl-Left-button-click: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Key Binding Reference

519

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-M: brace-match - Match brace at current cursor position, selecting all text between the two and

hilighting the braces

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer Commands: Decrease

documentation font size; General Editor Commands: Zoom out, increasing the text display size

temporarily by one font size

Ctrl-N: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Ctrl-O: open-line - Open the current line by inserting a newline after the caret

Ctrl-P: previous-line - Move to previous screen line, optionally repositioning character within line:

same' to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Page_down: next-document - Move to the next document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Page_up: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Parenleft: batch-search - Search on current selection using the Search in Files tool. The look_in

argument gets entered in the look in field if not None or ''. The current selection is put into the search

field if it doesn't span multiple lines and either use_selection is true or there's nothing in the search field.

The given search text is used instead, if provided

Ctrl-Parenright: batch-replace - Display search and replace in files tool.

Ctrl-Period: redo - Redo last action

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-Pointer_button1: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Key Binding Reference

520

Ctrl-Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to

new position

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True, back_key="Ctrl-Quoteleft",

forward_key="Ctrl-AsciiTilde") - Start moving between documents in the order they were visited.

Starts modal key interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: isearch-backward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search backward from the cursor position, optionally entering the given search string ;

Document Viewer Commands: Initiate incremental mini-search backward from the cursor position,

optionally entering the given search string.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word(gravity="end") - Action varies according to focus: Active Editor Commands:

Move cursor forward one word. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word.; Toolbar Search Commands: Move forward one word

Ctrl-S: isearch-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, optionally entering the given search string ;

Document Viewer Commands: Initiate incremental mini-search forward from the cursor position,

optionally entering the given search string.

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's relative position on

screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to

leave cursor in current position within the source, otherwise it is moved so the cursor remains on same

screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, adjusting the selection

range to new position

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view.

Key Binding Reference

521

Ctrl-Shift-F8: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Shift-F9: Multiple commands; first available is executed:

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document, adjusting the

selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to project

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word, extending the selection

Ctrl-Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Ctrl-Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the

selection range to new position

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word, extending the selection

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative position on screen.

Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to leave

cursor in current position within the source, otherwise it is moved so the cursor remains on same screen

line.

Ctrl-Slash: undo - Undo last action

Ctrl-Space: set-mark-command - Set start of text marking for selection at current cursor position.

Subsequently, all cursor move operations will automatically extend the text selection until

stop-mark-command is issued. Unit defines what is selected: can be one of char, line, or block

(rectangle).

Key Binding Reference

522

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands: Place a tab character

at the current cursor position ; Search Manager Instance Commands: Place a forward tab at the current

cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving between documents in the

order they were visited. Starts modal key interaction that ends when a key other than tab is seen or ctrl

is released.

Ctrl-U: initiate-repeat - Enter a sequence of digits indicating number of times to repeat the subsequent

command or keystroke.

Ctrl-Underscore: undo - Undo last action

Ctrl-Up: select-more - Select more code on either the current line or larger multi-line blocks.

Ctrl-V: forward-page - Move cursor forward one page

Ctrl-W: cut - Action varies according to focus: Active Editor Commands: Cut selected text ; Search

Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Ctrl-X 1: unsplit - Unsplit all editors so there's only one. Action specifies how to choose the remaining

displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

Ctrl-X 2: split-vertically - Split current view vertically. Create new editor in new view when new==1.

Ctrl-X 3: split-horizontally - Split current view horizontally.

Ctrl-X 4 A: add-change-log-entry - Add a change log entry

Ctrl-X 5 0: close-window - Close the current window and all documents and panels in it

Ctrl-X 5 2: new-document-window - Create a new document window with same documents and

panels as in the current document window (if any; otherwise empty with default panels)

Ctrl-X 5 3: new-document-window - Create a new document window with same documents and

panels as in the current document window (if any; otherwise empty with default panels)

Ctrl-X 5 O: next-window - Switch to the next window alphabetically by title

Ctrl-X B: switch-document - Switches to named document. Name may either be the complete name or

the last path component of a path name.

Ctrl-X Bracketleft: start-of-document - Move cursor to start of document

Key Binding Reference

523

Ctrl-X Bracketright: end-of-document - Move cursor to end of document

Ctrl-X Ctrl-C: quit - Quit the application.

Ctrl-X Ctrl-F: open-from-keyboard - Open a file from disk using keyboard-driven selection of the file

Ctrl-X Ctrl-G: find-symbol-in-project - Allow user to visit point of definition of a source symbol in the

any file in the project by typing a fragment of the name

Ctrl-X Ctrl-O: open-from-project - Open document from the project via the Open From Project dialog.

The given fragment is used as the initial fragment filter and if it is None, the selected text or the symbol

under the cursor is used. If skip_if_unique is true, the file is opened without the dialog being displayed if

only one filename matches the fragment.

Ctrl-X Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-X Ctrl-T: swap-lines(previous=True) - Swap the line at start of current selection with the line that

follows it, or the preceding line if previous is True.

Ctrl-X Ctrl-W: write-file - Write current file to a new location, optionally omitting all but the lines in the

given range. The editor is changed to point to the new location when follow is True. If follow is 'untitled'

then the editor is changed to point to the new location only if starting with an untitled buffer and saving

the whole file. Note that the editor contents will be truncated to the given start/end lines when follow is

True.

Ctrl-X Ctrl-X: exchange-point-and-mark - When currently marking text, this exchanges the current

position and mark ends of the current selection

Ctrl-X D: recent-document - Switches to previous document most recently visited in the current

window or window set if in one-window-per-editor windowing mode.

Ctrl-X E: execute-kbd-macro - Execute most recently recorded keyboard macro. If register is None

then the user is asked to enter a letter a-z for the register where the macro is filed. Otherwise, register

'a' is used by default.

Ctrl-X G: find-symbol - Allow user to visit point of definition of a source symbol in the current editor

context by typing a fragment of the name

Ctrl-X I: insert-file - Insert a file at current cursor position, prompting user for file selection

Ctrl-X K: kill-buffer - Close the current text file

Ctrl-X L C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-X L H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-X L M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-X L N: use-lexer-none - Use no syntax highlighting

Ctrl-X L P: use-lexer-python - Force syntax highlighting for Python source

Key Binding Reference

524

Ctrl-X L S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-X L X: use-lexer-Xml

Ctrl-X N: next-document - Move to the next document open in the current window. If alphabetical is

true, the list traversed will be alphabetized. If all_splits is true, documents from all splits will be

traversed; otherwise, only the current split will be.

Ctrl-X O: move-editor-focus - Move focus to next or previous editor split, optionally wrapping when the

end is reached.

Ctrl-X P: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-X Parenleft: start-kbd-macro - Start definition of a keyboard macro. If register=None then the user

is prompted to enter a letter a-z under which to file the macro. Otherwise, register 'a' is used by default.

Ctrl-X Parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-X R B: goto-bookmark - Goto named bookmark

Ctrl-X R M: set-bookmark - Set a bookmark at current location on the editor. Mark is the project-wide

textual name of the bookmark, the category is set to the current bookmark category, and notes are left

blank.

Ctrl-X R Return: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-X R T: toggle-bookmark - Set or remove a bookmark at current location on the editor. When set,

the name of the bookmark is set to an auto-generated default, the category is set to the current

bookmark category, and notes are left blank. When removed, the bookmark is removed without

confirmation.

Ctrl-X Space: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Ctrl-X U: undo - Undo last action

Ctrl-Y: Multiple commands; first available is executed:

• yank-line - Yank contents of kill buffer created with kill-line into the edit buffer

• paste - Action varies according to focus: Active Editor Commands: Paste text from clipboard ;

Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Key Binding Reference

525

Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Escape: exit-visual-mode - Exit visual mode and return back to default mode

Escape X: command-by-name - Execute given command by name, collecting any args as needed

F1: Multiple commands; first available is executed:

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands; first available is executed:

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

F5: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt to continue

all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Key Binding Reference

526

Forward-button-click: visit-history-next - Move forward in history to next visited editor position

Home: beginning-of-line - Action varies according to focus: Active Editor Commands: Move to

beginning of current line. When toggle is True, moves to the end of the leading white space if already at

the beginning of the line (and vice versa).; Toolbar Search Commands: Move to the beginning of the

toolbar search entry

Insert: toggle-overtype - Toggle status of overtyping mode

Iso_left_tab: backward-tab - Outdent line at current position

Left: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Page_down: forward-page - Move cursor forward one page

Page_up: backward-page - Move cursor backward one page

Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to new

position

Release-Shift-Space: debug-hide-value-tips - Hide all the debug value tooltips previously shown with

debug_show_value_tips()

Return: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Right: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Shift-Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut selected text ;

Search Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection range to new position,

optionally repositioning character within line: same' to leave in same horizontal position, 'start' at start,

'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Commands: Move to

end of current line, adjusting the selection range to new position ; Toolbar Search Commands: Move to

the end of the toolbar search entry, extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the next editable area

Key Binding Reference

527

Shift-F11: frame-show - Show the position (thread and stack frame) where the debugger originally

stopped

Shift-F2: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Shift-F3: search-backward - Search again using the search manager's current settings in backward

direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults to the active

selection. Finds points of use in the file the symbol is located and in project files by default.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view. The tests are debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands; first available is executed:

• break-set-disabled - Set a disabled breakpoint on the current line

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-extend - Action varies according to focus: Active Editor Commands:

Move to beginning of current line, adjusting the selection range to the new position. When toggle is

True, moves to the end of the leading white space if already at the beginning of the line (and vice

versa).; Toolbar Search Commands: Move to the beginning of the toolbar search entry, extending the

selection

Shift-Insert: paste - Action varies according to focus: Active Editor Commands: Paste text from

clipboard ; Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor backward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move backward one character, extending the selection

Key Binding Reference

528

Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the selection

range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor forward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move forward one character, extending the selection

Shift-Space: Multiple commands; first available is executed:

• debug-show-value-tips(release_toggle=True) - Show tooltips on all visible editors

indicating the current value of all visible symbols. The value of release_toggle controls

whether this command is available if the tips are already shown; this can be used to prevent

execution of fallback commands on a key binding while the tips are already visible, if the key is

pressed again or reported in key repeat events while the key is held down.

• send-keys(keys=" ") - Send one or more keys to the editor. Send a string to enter each key

in the string, or a list of strings and/or (mod, key) tuples where mod is a string containing any

of case insensitive 'shift', 'ctrl', or 'alt'. Valid examples:

"testme"
"TestMe"
["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),]

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection range to new

position, optionally repositioning character within line: same' to leave in same horizontal position, 'start'

at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line

selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

25.3. VI/VIM Personality
This section documents all the default key bindings for the VI/VIM keyboard personality, set by the

User Interface > Keyboard > Personality preference.

Key Binding Reference

529

0: beginning-of-line(toggle=0) - Action varies according to focus: Active Editor Commands: Move to

beginning of current line. When toggle is True, moves to the end of the leading white space if already at

the beginning of the line (and vice versa).; Toolbar Search Commands: Move to the beginning of the

toolbar search entry

0: beginning-of-line(toggle=0) - Action varies according to focus: Active Editor Commands: Move to

beginning of current line. When toggle is True, moves to the end of the leading white space if already at

the beginning of the line (and vice versa).; Toolbar Search Commands: Move to the beginning of the

toolbar search entry

1: initiate-numeric-modifier(digit=1) - VI style repeat/numeric modifier for following command

1: initiate-numeric-modifier(digit=1) - VI style repeat/numeric modifier for following command

2: initiate-numeric-modifier(digit=2) - VI style repeat/numeric modifier for following command

2: initiate-numeric-modifier(digit=2) - VI style repeat/numeric modifier for following command

3: initiate-numeric-modifier(digit=3) - VI style repeat/numeric modifier for following command

3: initiate-numeric-modifier(digit=3) - VI style repeat/numeric modifier for following command

4: initiate-numeric-modifier(digit=4) - VI style repeat/numeric modifier for following command

4: initiate-numeric-modifier(digit=4) - VI style repeat/numeric modifier for following command

5: initiate-numeric-modifier(digit=5) - VI style repeat/numeric modifier for following command

5: initiate-numeric-modifier(digit=5) - VI style repeat/numeric modifier for following command

6: initiate-numeric-modifier(digit=6) - VI style repeat/numeric modifier for following command

6: initiate-numeric-modifier(digit=6) - VI style repeat/numeric modifier for following command

7: initiate-numeric-modifier(digit=7) - VI style repeat/numeric modifier for following command

7: initiate-numeric-modifier(digit=7) - VI style repeat/numeric modifier for following command

8: initiate-numeric-modifier(digit=8) - VI style repeat/numeric modifier for following command

8: initiate-numeric-modifier(digit=8) - VI style repeat/numeric modifier for following command

9: initiate-numeric-modifier(digit=9) - VI style repeat/numeric modifier for following command

9: initiate-numeric-modifier(digit=9) - VI style repeat/numeric modifier for following command

A: enter-insert-mode(pos="after") - Enter editor insert mode

A: select-inner(extend=True) - Select a text object based on the following key press

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and leave other fold

points alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points alone

Key Binding Reference

530

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and functions but leave

other fold points alone

Alt-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more level

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F11: prev-points-of-use-match - Display the previous match in the active points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are debugged when debug is

True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests are debugged when

debug is True.

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor position

Alt-Left-button-click: find-points-of-use-clicked - Find points of use for last symbol clicked.

Alt-Page_down: fold-expand-all-current - Expand the current fold point completely

Alt-Page_up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Shift-A: diff-merge-a-b

Alt-Shift-B: diff-merge-b-a

Alt-Shift-Down: next-line-extend-rect - Move to next screen line, adjusting the rectangular selection

range to new position, optionally repositioning character within line: same' to leave in same horizontal

position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Key Binding Reference

531

Alt-Shift-F4: find-points-of-use(search_project_files=False) - Find points of use for a symbol. The

symbol defaults to the active selection. Finds points of use in the file the symbol is located and in project

files by default.

Alt-Shift-F5: debug-continue-all - Continue all paused debug processes

Alt-Shift-Left: backward-char-extend-rect - Move cursor backward one character, adjusting the

rectangular selection range to new position

Alt-Shift-N: diff-next

Alt-Shift-P: diff-previous

Alt-Shift-Right: forward-char-extend-rect - Move cursor forward one character, adjusting the

rectangular selection range to new position

Alt-Shift-Up: previous-line-extend-rect - Move to previous screen line, adjusting the rectangular

selection range to new position, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Ampersand: repeat-replace - Repeat the last query replace or range replace operation on the current

line. The first match is replaced without confirmation.

Apostrophe: vi-goto-bookmark - Goto bookmark using single character name defined by the next

pressed key

Asciicircum: beginning-of-line-text(toggle=0) - Move to end of the leading white space, if any, on the

current line. If toggle is True, moves to the beginning of the line if already at the end of the leading white

space (and vice versa).

Asciicircum: beginning-of-line-text(toggle=0) - Move to end of the leading white space, if any, on the

current line. If toggle is True, moves to the beginning of the line if already at the end of the leading white

space (and vice versa).

Asciitilde: case-swap - Change case of the current selection, or character ahead of the cursor if there

is no selection, so each letter is the opposite of its current case

Asterisk: isearch-sel-forward(persist=0, whole_word=1) - Action varies according to focus: Active

Editor Commands: Initiate incremental mini-search forward from the cursor position, using current

selection as the search string. Set persist=False to do the search but end the interactive search session

immediately.; Document Viewer Commands: Initiate incremental mini-search forward from the cursor

position, using current selection as the search string. Set persist=False to do the search but end the

interactive search session immediately.

Key Binding Reference

532

At: execute-kbd-macro(register=None) - Execute most recently recorded keyboard macro. If register

is None then the user is asked to enter a letter a-z for the register where the macro is filed. Otherwise,

register 'a' is used by default.

B: backward-word - Action varies according to focus: Active Editor Commands: Move cursor backward

one word. Optionally, provide a string that contains the delimiters to define which characters are part of

a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the word.;

Toolbar Search Commands: Move backward one word

Back-button-click: visit-history-previous - Move back in history to previous visited editor position

Backspace: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Bar: goto-column - Move cursor to given column

Braceleft: backward-paragraph - Move cursor backward one paragraph (to next all-whitespace line).

Braceright: forward-paragraph - Move cursor forward one paragraph (to next all-whitespace line).

Bracketleft P: paste-register(pos=-1, indent=1) - Paste text from register as before or after the

current position. If the register contains only lines, then the lines are pasted before or after current line

(rather than at cursor). If the register contains fragments of lines, the text is pasted over the current

selection or either before or after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set

indent=1 to indent the pasted text to match current line. Set cursor=-1 to place cursor before lines or

cursor=1 to place it after lines after paste completes.

Bracketright P: paste-register(indent=1) - Paste text from register as before or after the current

position. If the register contains only lines, then the lines are pasted before or after current line (rather

than at cursor). If the register contains fragments of lines, the text is pasted over the current selection or

either before or after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent

the pasted text to match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it

after lines after paste completes.

C: delete-next-move-insert - Delete the text covered by the next cursor move command and then

enter insert mode (when working in a modal editor key binding)

C: enter-insert-mode(pos="delete-sel") - Enter editor insert mode

Colon: vi-command-by-name - Execute a VI command by name. This implements ":" commands for

the VI/Vim keyboard personality. The following subset of VI/Vim : commands are supported:

Key Binding Reference

533

r[!], e[dit], e!, e#, ene[w], w[rite], up[date], wa[ll], q[uit], q[!], qall, wq,
x[it], xall, wqall, sp[lit], vs[plit], new, on[ly], buffers, files, !, s[ubstitute],
d, delm, reg, marks, n[ext], N, p[revious], rew[ind], last, m[ove], co[py], cl[ose]
(an approximation), and set.

The supported directives for 'set' are:

ic, ignorecase, noic, noignorecase, ai, autoindent, noai, noautoindent, nu, number,
nonu, nonumber, ro, readonly, noro, noreadonly, sm, showmatch, nosm, and noshowmatch.

Colon: vi-command-by-name - Execute a VI command by name. This implements ":" commands for

the VI/Vim keyboard personality. The following subset of VI/Vim : commands are supported:

r[!], e[dit], e!, e#, ene[w], w[rite], up[date], wa[ll], q[uit], q[!], qall, wq,
x[it], xall, wqall, sp[lit], vs[plit], new, on[ly], buffers, files, !, s[ubstitute],
d, delm, reg, marks, n[ext], N, p[revious], rew[ind], last, m[ove], co[py], cl[ose]
(an approximation), and set.

The supported directives for 'set' are:

ic, ignorecase, noic, noignorecase, ai, autoindent, noai, noautoindent, nu, number,
nonu, nonumber, ro, readonly, noro, noreadonly, sm, showmatch, nosm, and noshowmatch.

Comma: repeat-search-char(opposite=1) - Repeat the last search_char operation, optionally in the

opposite direction.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the editor.

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next bookmark, or the first

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Key Binding Reference

534

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the bookmark list, or the last

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if no bookmark is

selected. Stays within the file in the current editor when current_file_only is True. Only bookmarks in the

current bookmark category are visited unless a category is passed.

Ctrl-Alt-Shift-F5: debug-stop-all - Pause all free-running debug processes at the current program

counter

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the previous bookmark in the

bookmark list, or the last one if no bookmark is selected. Stays within the file in the current editor when

current_file_only is True. Only bookmarks in the current bookmark category are visited unless a

category is passed.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-Asciicircum: nth-document - Move to the nth document open in the current window. If

alphabetical is true, the list of documents will be alphabetized. If all_splits is true, documents from all

splits will be in list; otherwise, only the current split will be.

Ctrl-B: backward-page - Move cursor backward one page

Ctrl-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-Bracketleft: enter-browse-mode - Enter editor browse mode

Ctrl-Bracketleft: enter-browse-mode - Enter editor browse mode

Ctrl-Bracketleft: exit-visual-mode - Exit visual mode and return back to default mode

Ctrl-C: enter-browse-mode - Enter editor browse mode

Ctrl-C: vi-ctrl-c

Ctrl-C: vi-ctrl-c

Key Binding Reference

535

Ctrl-D: outdent-region - Outdent the selected region one level of indentation. Set sel to None to use

preference to determine selection behavior, or "never-select" to unselect after indent, "always-select" to

always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-D: outdent-region - Outdent the selected region one level of indentation. Set sel to None to use

preference to determine selection behavior, or "never-select" to unselect after indent, "always-select" to

always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-D: scroll-text-down(repeat=0.5) - Scroll text down a line w/o moving cursor's relative position on

screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to

leave cursor in current position within the source, otherwise it is moved so the cursor remains on same

screen line.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: scroll-text-down(move_cursor=False) - Scroll text down a line w/o moving cursor's relative

position on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor

to False to leave cursor in current position within the source, otherwise it is moved so the cursor

remains on same screen line.

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-F: forward-page - Move cursor forward one page

Ctrl-F12: command-by-name - Execute given command by name, collecting any args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-F5: debug-kill - Terminate current debug session (press Alt to terminate all debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-H: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Key Binding Reference

536

Ctrl-H: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Ctrl-H: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Ctrl-H: backward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character behind the cursor, or the current selection if not empty. ; Toolbar Search Commands: Delete

character behind the cursor

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: visit-history-next - Move forward in history to next visited editor position

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-Iso_left_tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-J: new-line - Place a new line at the current cursor position. Override the auto-indent preference by

setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent only

on blank lines.

Ctrl-J: new-line - Place a new line at the current cursor position. Override the auto-indent preference by

setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent only

on blank lines.

Ctrl-J: next-line - Move to screen next line, optionally repositioning character within line: 'same' to leave

in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Ctrl-Left-button-click: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Key Binding Reference

537

Ctrl-M: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Ctrl-M: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Ctrl-M: next-line-in-file(cursor="fnb") - Move to next line in file, repositioning character within line:

'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer Commands: Decrease

documentation font size; General Editor Commands: Zoom out, increasing the text display size

temporarily by one font size

Ctrl-N: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-N: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Ctrl-O: enter-browse-mode(provisional=True) - Enter editor browse mode

Ctrl-O: visit-history-previous - Move back in history to previous visited editor position

Ctrl-P: previous-line - Move to previous screen line, optionally repositioning character within line:

same' to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-P: previous-line - Move to previous screen line, optionally repositioning character within line:

same' to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Page_down: next-document - Move to the next document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Page_up: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Key Binding Reference

538

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-Pointer_button1: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to

new position

Ctrl-Q: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Q: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True, back_key="Ctrl-Quoteleft",

forward_key="Ctrl-AsciiTilde") - Start moving between documents in the order they were visited.

Starts modal key interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: redo - Redo last action

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Commands: Move cursor

forward one word. Optionally, provide a string that contains the delimiters to define which characters are

part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the

word.; Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's relative position on

screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to

leave cursor in current position within the source, otherwise it is moved so the cursor remains on same

screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, adjusting the selection

range to new position

Ctrl-Shift-F: batch-search - Search on current selection using the Search in Files tool. The look_in

argument gets entered in the look in field if not None or ''. The current selection is put into the search

Key Binding Reference

539

field if it doesn't span multiple lines and either use_selection is true or there's nothing in the search field.

The given search text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view.

Ctrl-Shift-F8: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Shift-F9: Multiple commands; first available is executed:

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document, adjusting the

selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to project

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word, extending the selection

Ctrl-Shift-O: open-from-project - Open document from the project via the Open From Project dialog.

The given fragment is used as the initial fragment filter and if it is None, the selected text or the symbol

under the cursor is used. If skip_if_unique is true, the file is opened without the dialog being displayed if

only one filename matches the fragment.

Ctrl-Shift-P: find-symbol-in-project - Allow user to visit point of definition of a source symbol in the

any file in the project by typing a fragment of the name

Ctrl-Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Ctrl-Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the

selection range to new position

Key Binding Reference

540

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word, extending the selection

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol in the current editor

context by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative position on screen.

Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to leave

cursor in current position within the source, otherwise it is moved so the cursor remains on same screen

line.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands: Place a tab character

at the current cursor position ; Search Manager Instance Commands: Place a forward tab at the current

cursor position in search or replace string

Ctrl-T: indent-region - Indent the selected region one level of indentation. Set sel to None to use

preference to determine selection behavior, or "never-select" to unselect after indent, "always-select" to

always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-T: indent-region - Indent the selected region one level of indentation. Set sel to None to use

preference to determine selection behavior, or "never-select" to unselect after indent, "always-select" to

always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving between documents in the

order they were visited. Starts modal key interaction that ends when a key other than tab is seen or ctrl

is released.

Ctrl-U: delete-to-start-of-line - Delete everything between the cursor and start of line

Ctrl-U: delete-to-start-of-line - Delete everything between the cursor and start of line

Ctrl-U: scroll-text-up(repeat=0.5) - Scroll text up a line w/o moving cursor's relative position on screen.

Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to leave

cursor in current position within the source, otherwise it is moved so the cursor remains on same screen

line.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document Viewer Commands: Reset

documentation font size to default; General Editor Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger multi-line blocks.

Key Binding Reference

541

Ctrl-V: enter-browse-mode - Enter editor browse mode

Ctrl-V: vi-ctrl-v

Ctrl-V: vi-ctrl-v

Ctrl-W: backward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Ctrl-W: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Ctrl-W B: move-editor-focus-last - Move focus to last editor split

Ctrl-W C: unsplit(action="recent-or-close") - Unsplit all editors so there's only one. Action specifies

how to choose the remaining displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

Ctrl-W Ctrl-Asciicircum: vi-split-edit-alternate

Ctrl-W Ctrl-W: move-editor-focus - Move focus to next or previous editor split, optionally wrapping

when the end is reached.

Ctrl-W Down: move-editor-focus(wrap=False) - Move focus to next or previous editor split, optionally

wrapping when the end is reached.

Ctrl-W J: move-editor-focus(wrap=False) - Move focus to next or previous editor split, optionally

wrapping when the end is reached.

Ctrl-W K: move-editor-focus(dir=-1, wrap=False) - Move focus to next or previous editor split,

optionally wrapping when the end is reached.

Ctrl-W Minus: shrink-split-vertically - Decrease height of this split

Ctrl-W N: split-vertically(new=1) - Split current view vertically. Create new editor in new view when

new==1.

Ctrl-W O: unsplit - Unsplit all editors so there's only one. Action specifies how to choose the remaining

displayed editor. One of:

Key Binding Reference

542

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

Ctrl-W P: move-editor-focus-previous - Move focus to previous editor split

Ctrl-W Plus: grow-split-vertically - Increase height of this split

Ctrl-W Q: Multiple commands; first available is executed:

• unsplit(action="close") - Unsplit all editors so there's only one. Action specifies how to

choose the remaining displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

• close(close_window=1) - Close active document. Abandon any changes when

ignore_changes is True. Close empty windows when close_window is true and quit if all

document windows closed when can_quit is true.

Ctrl-W S: split-vertically - Split current view vertically. Create new editor in new view when new==1.

Ctrl-W T: move-editor-focus-first - Move focus to first editor split

Ctrl-W Up: move-editor-focus(dir=-1, wrap=False) - Move focus to next or previous editor split,

optionally wrapping when the end is reached.

Ctrl-W V: split-horizontally - Split current view horizontally.

Ctrl-W W: move-editor-focus(dir=-1) - Move focus to next or previous editor split, optionally wrapping

when the end is reached.

Ctrl-X: vi-ctrl-x

Ctrl-X: vi-ctrl-x

Ctrl-Y: scroll-text-up(move_cursor=False) - Scroll text up a line w/o moving cursor's relative position

on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False

to leave cursor in current position within the source, otherwise it is moved so the cursor remains on

same screen line.

Key Binding Reference

543

D: delete-next-move - Delete the text covered by the next cursor move command.

D: move-to-register(unit="sel", cut=1) - Cut or copy a specified number of characters or lines, or the

current selection. Set cut=1 to remove the range of text from the editor after moving to register

(otherwise it is just copied). Unit should be one of 'char' or 'line' or 'sel' for current selection.

Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Dollar: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Dollar: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Down: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

E: forward-word(gravity="endm1") - Action varies according to focus: Active Editor Commands: Move

cursor forward one word. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word.; Toolbar Search Commands: Move forward one word

End: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Equal: indent-to-match-next-move - Indent lines spanned by next cursor move to match, based on

the preceding line

Escape: clear-move-command - Clear any pending move command action, as for VI mode

Escape: enter-browse-mode - Enter editor browse mode

Escape: enter-browse-mode - Enter editor browse mode

Escape: exit-visual-mode - Exit visual mode and return back to default mode

Exclam: filter-next-move - Filter the lines covered by the next cursor move command through an

external command and replace the lines with the result

Exclam: filter-selection - Filter the current selection through an external command and replace the

lines with the result

F: search-char(dir=1, single_line=1) - Search for the given character. Searches to right if dir > 0 and

to left if dir < 0. Optionally place cursor pos characters to left or right of the target (e.g., use -1 to place

one to left). If repeat > 1, the Nth match is found. Set single_line=1 to search only within the current line.

F1: Multiple commands; first available is executed:

• show-horizontal-tools - Show the horizontal tool area

Key Binding Reference

544

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands; first available is executed:

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

F5: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt to continue

all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Forward-button-click: visit-history-next - Move forward in history to next visited editor position

G 0: beginning-of-screen-line - Move to beginning of current wrapped line

G 0: beginning-of-screen-line - Move to beginning of current wrapped line

G Asciicircum: beginning-of-screen-line-text - Move to first non-blank character at beginning of

current wrapped line

G Asciicircum: beginning-of-screen-line-text - Move to first non-blank character at beginning of

current wrapped line

G Asciitilde: case-swap-next-move - Change case of text spanned by next cursor movement so each

letter is the opposite of its current case

Key Binding Reference

545

G D: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

G Dollar: end-of-screen-line - Move to end of current wrapped line

G Dollar: end-of-screen-line - Move to end of current wrapped line

G E: backward-word(gravity="endm1") - Action varies according to focus: Active Editor Commands:

Move cursor backward one word. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word.; Toolbar Search Commands: Move backward one word

G G: goto-nth-line(cursor="fnb") - Position cursor at start of given line number (1=first, -1 = last). This

differs from goto-line in that it never prompts for a line number but instead uses the previously entered

numeric modifier or defaults to going to line one. The cursor can be positioned at 'start', 'end', or 'fnb' for

first non-blank character.

G J: next-line - Move to screen next line, optionally repositioning character within line: 'same' to leave

in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

G K: previous-line - Move to previous screen line, optionally repositioning character within line: same'

to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

G M: middle-of-screen-line - Move to middle of current wrapped line

G P: paste-register(cursor=1) - Paste text from register as before or after the current position. If the

register contains only lines, then the lines are pasted before or after current line (rather than at cursor).

If the register contains fragments of lines, the text is pasted over the current selection or either before or

after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent the pasted text

to match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it after lines after

paste completes.

G Q: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap column.

When there is no selection, wrappable regions are delineated by surrounding blank lines. Otherwise,

when there is a selection, wrapping is constrained to occur only within that selection. Wrapping behavior

depends on context; for example, wrapping Python code is different than wrapping plain text or the

contents of comments and docstrings. A shared leading prefix found on all lines is retained and only the

content after the prefix is wrapped.

G Q Q: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap column.

When there is no selection, wrappable regions are delineated by surrounding blank lines. Otherwise,

when there is a selection, wrapping is constrained to occur only within that selection. Wrapping behavior

depends on context; for example, wrapping Python code is different than wrapping plain text or the

Key Binding Reference

546

contents of comments and docstrings. A shared leading prefix found on all lines is retained and only the

content after the prefix is wrapped.

G R: replace-char(line_mode="extend") - Replace num characters with given character. Set

line_mode to multiline to allow replacing across lines, extend to replace on current line and then extend

the line length, and restrict to replace only if enough characters exist on current line after cursor

position.

G Shift-D: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If

other_split is true, the definition will be displayed if a split other than the current split; if other_split is

false, it will be displayed in the current editor; if other_split is not specified or None, the split to be used

is determined by the Split Reuse Policy preference value.

G Shift-E: backward-word(delimiters=" tnr", gravity="endm1") - Action varies according to focus:

Active Editor Commands: Move cursor backward one word. Optionally, provide a string that contains

the delimiters to define which characters are part of a word. Gravity may be "start" or "end" to indicate

whether cursor is placed at start or end of the word.; Toolbar Search Commands: Move backward one

word

G Shift-I: enter-insert-mode(pos="sol") - Enter editor insert mode

G Shift-J: join-lines(delim="") - Join together specified number of lines after current line (replace

newlines with the given delimiter (single space by default)

G Shift-J: join-selection(delim="") - Join together all lines in given selection (replace newlines with the

given delimiter (single space by default)

G Shift-P: paste-register(pos=-1, cursor=1) - Paste text from register as before or after the current

position. If the register contains only lines, then the lines are pasted before or after current line (rather

than at cursor). If the register contains fragments of lines, the text is pasted over the current selection or

either before or after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent

the pasted text to match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it

after lines after paste completes.

G Shift-T: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

G Shift-U: case-upper-next-move - Change case of text spanned by next cursor movement to upper

case

G T: next-document - Move to the next document open in the current window. If alphabetical is true,

the list traversed will be alphabetized. If all_splits is true, documents from all splits will be traversed;

otherwise, only the current split will be.

G U: case-lower-next-move - Change case of text spanned by next cursor movement to lower case

Key Binding Reference

547

G V: previous-select - Turn on auto-select using previous mode and selection

Grave: vi-goto-bookmark - Goto bookmark using single character name defined by the next pressed

key

Greater: indent-lines - Indent selected number of lines from cursor position. Set lines to None to indent

all the lines in current selection. Set levels to indent more than one level at a time.

Greater: indent-next-move - Indent lines spanned by next cursor move

H: backward-char(wrap=0) - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

H: backward-char(wrap=0) - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Home: beginning-of-line-text - Move to end of the leading white space, if any, on the current line. If

toggle is True, moves to the beginning of the line if already at the end of the leading white space (and

vice versa).

I: enter-insert-mode(pos="before") - Enter editor insert mode

I: select-inner - Select a text object based on the following key press

Insert: enter-insert-mode(pos="before") - Enter editor insert mode

Insert: toggle-overtype - Toggle status of overtyping mode

Iso_left_tab: backward-tab - Outdent line at current position

J: next-line - Move to screen next line, optionally repositioning character within line: 'same' to leave in

same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

K: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

L: forward-char(wrap=0) - Action varies according to focus: Active Editor Commands: Move cursor

forward one character ; Toolbar Search Commands: Move forward one character

L: forward-char(wrap=0) - Action varies according to focus: Active Editor Commands: Move cursor

forward one character ; Toolbar Search Commands: Move forward one character

Left: backward-char(wrap=0) - Action varies according to focus: Active Editor Commands: Move

cursor backward one character ; Toolbar Search Commands: Move backward one character

Less: outdent-lines - Outdent selected number of lines from cursor position. Set lines to None to indent

all the lines in current selection. Set levels to outdent more than one level at a time.

Less: outdent-next-move - Outdent lines spanned by next cursor move

Key Binding Reference

548

M: vi-set-bookmark - Set a bookmark at current location on the editor using the next key press as the

name of the bookmark.

Minus: previous-line-in-file(cursor="fnb") - Move to previous line in file, repositioning character

within line: 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

N: isearch-repeat - Repeat the most recent isearch, using same string and regex/text. Reverse

direction when reverse is True.

Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Numbersign: isearch-sel-backward(persist=0, whole_word=1) - Initiate incremental mini-search

backward from the cursor position, using current selection as the search string. Set persist=False to do

the search but end the interactive search session immediately.

O: enter-insert-mode(pos="new-below") - Enter editor insert mode

O: exchange-point-and-mark - When currently marking text, this exchanges the current position and

mark ends of the current selection

P: paste-register - Paste text from register as before or after the current position. If the register

contains only lines, then the lines are pasted before or after current line (rather than at cursor). If the

register contains fragments of lines, the text is pasted over the current selection or either before or after

the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent the pasted text to

match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it after lines after

paste completes.

Page_down: forward-page - Move cursor forward one page

Page_up: backward-page - Move cursor backward one page

Percent: goto-percent-line(cursor="fnb") - Position cursor at start of line at given percent in file. This

uses the previously entered numeric modifier or defaults to going to line one. The cursor can be

positioned at 'start', 'end', or 'fnb' for first non-blank character, or in VI mode it will do brace matching

operation to reflect how VI overrides this command.

Period: repeat-command - Repeat the last editor command

Plus: next-line-in-file(cursor="fnb") - Move to next line in file, repositioning character within line: 'start'

at start, 'end' at end, or 'fnb' for first non-blank char.

Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to new

position

Q: Multiple commands; first available is executed:

Key Binding Reference

549

• start-kbd-macro(register=None) - Start definition of a keyboard macro. If register=None then

the user is prompted to enter a letter a-z under which to file the macro. Otherwise, register 'a'

is used by default.

• stop-kbd-macro - Stop definition of a keyboard macro

Question: isearch-backward-regex - Action varies according to focus: Active Editor Commands:

Initiate incremental regular expression mini-search backward from the cursor position, optionally

entering the given search string ; Document Viewer Commands: Initiate incremental regular expression

mini-search backward from the cursor position, optionally entering the given search string.

Quotedbl: set-register - Set the register to use for subsequent cut/copy/paste operations

R: replace-char - Replace num characters with given character. Set line_mode to multiline to allow

replacing across lines, extend to replace on current line and then extend the line length, and restrict to

replace only if enough characters exist on current line after cursor position.

R: replace-char(line_mode="restrict") - Replace num characters with given character. Set line_mode

to multiline to allow replacing across lines, extend to replace on current line and then extend the line

length, and restrict to replace only if enough characters exist on current line after cursor position.

Release-Shift-Space: debug-hide-value-tips - Hide all the debug value tooltips previously shown with

debug_show_value_tips()

Return: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Return: next-line(cursor="start") - Move to screen next line, optionally repositioning character within

line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank

char.

Right: forward-char(wrap=0) - Action varies according to focus: Active Editor Commands: Move

cursor forward one character ; Toolbar Search Commands: Move forward one character

S: enter-insert-mode(pos="delete-sel") - Enter editor insert mode

S: forward-delete-char-insert - Delete one char in front of the cursor and enter insert mode (when

working in modal key bindings)

Semicolon: repeat-search-char - Repeat the last search_char operation, optionally in the opposite

direction.

Shift-A: enter-insert-mode(pos="after") - Enter editor insert mode

Shift-A: enter-insert-mode(pos="eol") - Enter editor insert mode

Shift-B: backward-word(delimiters=" tnr") - Action varies according to focus: Active Editor

Commands: Move cursor backward one word. Optionally, provide a string that contains the delimiters to

Key Binding Reference

550

define which characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is

placed at start or end of the word.; Toolbar Search Commands: Move backward one word

Shift-Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Shift-C: delete-to-end-of-line-insert - Delete everything between the cursor and end of line and enter

insert move (when working in a modal editor key binding)

Shift-D: delete-to-end-of-line(post_offset=-1) - Delete everything between the cursor and end of line

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut selected text ;

Search Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Shift-Down: forward-page - Move cursor forward one page

Shift-E: forward-word(delimiters=" tnr", gravity="endm1") - Action varies according to focus: Active

Editor Commands: Move cursor forward one word. Optionally, provide a string that contains the

delimiters to define which characters are part of a word. Gravity may be "start" or "end" to indicate

whether cursor is placed at start or end of the word.; Toolbar Search Commands: Move forward one

word

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Commands: Move to

end of current line, adjusting the selection range to new position ; Toolbar Search Commands: Move to

the end of the toolbar search entry, extending the selection

Shift-F: search-char(dir=-1, single_line=1) - Search for the given character. Searches to right if dir > 0

and to left if dir < 0. Optionally place cursor pos characters to left or right of the target (e.g., use -1 to

place one to left). If repeat > 1, the Nth match is found. Set single_line=1 to search only within the

current line.

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the debugger originally

stopped

Shift-F2: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Shift-F3: search-backward - Search again using the search manager's current settings in backward

direction

Key Binding Reference

551

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults to the active

selection. Finds points of use in the file the symbol is located and in project files by default.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view. The tests are debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands; first available is executed:

• break-set-disabled - Set a disabled breakpoint on the current line

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-G: goto-nth-line-default-end(cursor="fnb") - Same as goto_nth_line but defaults to end of file if

no lineno is given

Shift-H: cursor-move-to-top - Move cursor to top of display (without scrolling), optionally at an offset of

given number of lines below top

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white space, if any, on the

current line, adjusting the selection range to the new position. If toggle is True, moves to the beginning

of the line if already at the end of the leading white space (and vice versa).

Shift-I: enter-insert-mode(pos="before") - Enter editor insert mode

Shift-I: enter-insert-mode(pos="fnb") - Enter editor insert mode

Shift-Insert: paste - Action varies according to focus: Active Editor Commands: Paste text from

clipboard ; Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Shift-J: join-lines - Join together specified number of lines after current line (replace newlines with the

given delimiter (single space by default)

Shift-J: join-selection - Join together all lines in given selection (replace newlines with the given

delimiter (single space by default)

Shift-L: cursor-move-to-bottom - Move cursor to bottom of display (without scrolling), optionally at an

offset of given number of lines before bottom

Shift-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

Key Binding Reference

552

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Shift-M: cursor-move-to-center - Move cursor to center of display (without scrolling)

Shift-N: isearch-repeat(reverse=1) - Repeat the most recent isearch, using same string and

regex/text. Reverse direction when reverse is True.

Shift-O: enter-insert-mode(pos="new-above") - Enter editor insert mode

Shift-O: exchange-point-and-mark - When currently marking text, this exchanges the current position

and mark ends of the current selection

Shift-P: paste-register(pos=-1) - Paste text from register as before or after the current position. If the

register contains only lines, then the lines are pasted before or after current line (rather than at cursor).

If the register contains fragments of lines, the text is pasted over the current selection or either before or

after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent the pasted text

to match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it after lines after

paste completes.

Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the selection

range to new position

Shift-R: enter-insert-mode(pos="delete-lines") - Enter editor insert mode

Shift-R: enter-replace-mode - Enter editor replace mode

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-word - Action varies according to focus: Active Editor Commands: Move cursor

forward one word. Optionally, provide a string that contains the delimiters to define which characters are

part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the

word.; Toolbar Search Commands: Move forward one word

Shift-S: delete-line-insert - Delete the current line or lines when the selection spans multiple lines or

given repeat is > 1. Enters insert mode (when working with modal key bindings).

Shift-Space: Multiple commands; first available is executed:

• debug-show-value-tips(release_toggle=True) - Show tooltips on all visible editors

indicating the current value of all visible symbols. The value of release_toggle controls

whether this command is available if the tips are already shown; this can be used to prevent

execution of fallback commands on a key binding while the tips are already visible, if the key is

pressed again or reported in key repeat events while the key is held down.

Key Binding Reference

553

• send-keys(keys=" ") - Send one or more keys to the editor. Send a string to enter each key

in the string, or a list of strings and/or (mod, key) tuples where mod is a string containing any

of case insensitive 'shift', 'ctrl', or 'alt'. Valid examples:

"testme"
"TestMe"
["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),]

Shift-T: search-char(dir=-1, pos=1, single_line=1) - Search for the given character. Searches to right

if dir > 0 and to left if dir < 0. Optionally place cursor pos characters to left or right of the target (e.g., use

-1 to place one to left). If repeat > 1, the Nth match is found. Set single_line=1 to search only within the

current line.

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: backward-page - Move cursor backward one page

Shift-V: enter-browse-mode - Enter editor browse mode

Shift-V: start-select-line - Turn on auto-select mode line by line

Shift-W: forward-word(delimiters=" tnr") - Action varies according to focus: Active Editor Commands:

Move cursor forward one word. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word.; Toolbar Search Commands: Move forward one word

Shift-X: backward-delete-char - Action varies according to focus: Active Editor Commands: Delete

one character behind the cursor, or the current selection if not empty. ; Toolbar Search Commands:

Delete character behind the cursor

Shift-Y: move-to-register(unit="line") - Cut or copy a specified number of characters or lines, or the

current selection. Set cut=1 to remove the range of text from the editor after moving to register

(otherwise it is just copied). Unit should be one of 'char' or 'line' or 'sel' for current selection.

Shift-Y: move-to-register(unit="line") - Cut or copy a specified number of characters or lines, or the

current selection. Set cut=1 to remove the range of text from the editor after moving to register

(otherwise it is just copied). Unit should be one of 'char' or 'line' or 'sel' for current selection.

Shift-Z Shift-Q: close(ignore_changes=1, close_window=1) - Close active document. Abandon any

changes when ignore_changes is True. Close empty windows when close_window is true and quit if all

document windows closed when can_quit is true.

Shift-Z Shift-Z: write-file-and-close(filename=None) - Write current document to given location and

close it. Saves to current file name if the given filename is None.

Key Binding Reference

554

Slash: isearch-forward-regex - Action varies according to focus: Active Editor Commands: Initiate

incremental regular expression mini-search forward from the cursor position, optionally entering the

given search string ; Document Viewer Commands: Initiate incremental regular expression mini-search

forward from the cursor position, optionally entering the given search string.

Space: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

T: search-char(dir=1, pos=1, single_line=1) - Search for the given character. Searches to right if dir >

0 and to left if dir < 0. Optionally place cursor pos characters to left or right of the target (e.g., use -1 to

place one to left). If repeat > 1, the Nth match is found. Set single_line=1 to search only within the

current line.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Timeout-J J: enter-browse-mode - Enter editor browse mode

Timeout-J K: enter-browse-mode - Enter editor browse mode

U: undo - Undo last action

Underscore: beginning-of-line-text - Move to end of the leading white space, if any, on the current

line. If toggle is True, moves to the beginning of the line if already at the end of the leading white space

(and vice versa).

Underscore: beginning-of-line-text - Move to end of the leading white space, if any, on the current

line. If toggle is True, moves to the beginning of the line if already at the end of the leading white space

(and vice versa).

Up: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

V: enter-browse-mode - Enter editor browse mode

V: start-select-char - Turn on auto-select mode character by character

W: forward-word - Action varies according to focus: Active Editor Commands: Move cursor forward

one word. Optionally, provide a string that contains the delimiters to define which characters are part of

a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the word.;

Toolbar Search Commands: Move forward one word

X: forward-delete-char-within-line - Delete one character in front of the cursor unless at end of line, in

which case delete backward. Do nothing if the line is empty. This is VI style 'x' in browser mode.

X: move-to-register(unit="sel", cut=1) - Cut or copy a specified number of characters or lines, or the

current selection. Set cut=1 to remove the range of text from the editor after moving to register

(otherwise it is just copied). Unit should be one of 'char' or 'line' or 'sel' for current selection.

Key Binding Reference

555

Y: move-to-register(unit="sel") - Cut or copy a specified number of characters or lines, or the current

selection. Set cut=1 to remove the range of text from the editor after moving to register (otherwise it is

just copied). Unit should be one of 'char' or 'line' or 'sel' for current selection.

Y: move-to-register-next-move - Move the text spanned by the next cursor motion to a register

Z B: cursor-to-bottom - Scroll so cursor is centered at bottom of display

Z C: fold-collapse-current - Collapse the current fold point

Z H: scroll-text-right - Scroll text right a column w/o moving cursor's relative position on screen.

Repeat is number of columns or if >0 and <1.0 then percent of screen.

Z L: scroll-text-left - Scroll text left a column w/o moving cursor's relative position on screen. Repeat is

number of columns or if >0 and <1.0 then percent of screen.

Z M: vi-fold-less - Approximation of zm key binding in vim

Z Minus: cursor-to-bottom - Scroll so cursor is centered at bottom of display

Z O: fold-expand-current - Expand the current fold point

Z Period: center-cursor - Scroll so cursor is centered on display

Z Plus: cursor-to-top - Scroll so cursor is centered at top of display

Z R: vi-fold-more - Approximation of zr key binding in vim

Z Return: cursor-to-top - Scroll so cursor is centered at top of display

Z Shift-H: scroll-text-right(repeat=0.5) - Scroll text right a column w/o moving cursor's relative position

on screen. Repeat is number of columns or if >0 and <1.0 then percent of screen.

Z Shift-L: scroll-text-left(repeat=0.5) - Scroll text left a column w/o moving cursor's relative position on

screen. Repeat is number of columns or if >0 and <1.0 then percent of screen.

Z Shift-M: fold-collapse-all - Collapse all fold points in the current file

Z Shift-O: fold-expand-all-current - Expand the current fold point completely

Z Shift-R: fold-expand-all - Expand all fold points in the current file

Z T: cursor-to-top - Scroll so cursor is centered at top of display

Z Z: center-cursor - Scroll so cursor is centered on display

25.4. Visual Studio Personality
This section documents all the default key bindings for the Visual Studio keyboard personality, set by

the User Interface > Keyboard > Personality preference.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and leave other fold

points alone

Key Binding Reference

556

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and functions but leave

other fold points alone

Alt-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Comma: query-replace - Initiate incremental mini-search query/replace from the cursor position.

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more level

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F11: prev-points-of-use-match - Display the previous match in the active points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are debugged when debug is

True.

Alt-F7: view-project-properties - View or change project-wide properties

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor position

Alt-Left-button-click: find-points-of-use-clicked - Find points of use for last symbol clicked.

Alt-Page_down: fold-expand-all-current - Expand the current fold point completely

Alt-Page_up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Period: replace-string - Replace all occurrences of a string from the cursor position to end of file.

Alt-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Shift-A: diff-merge-a-b

Alt-Shift-B: diff-merge-b-a

Key Binding Reference

557

Alt-Shift-Down: next-line-extend-rect - Move to next screen line, adjusting the rectangular selection

range to new position, optionally repositioning character within line: same' to leave in same horizontal

position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Shift-F4: find-points-of-use(search_project_files=False) - Find points of use for a symbol. The

symbol defaults to the active selection. Finds points of use in the file the symbol is located and in project

files by default.

Alt-Shift-F5: debug-continue-all - Continue all paused debug processes

Alt-Shift-Left: backward-char-extend-rect - Move cursor backward one character, adjusting the

rectangular selection range to new position

Alt-Shift-N: diff-next

Alt-Shift-P: diff-previous

Alt-Shift-Right: forward-char-extend-rect - Move cursor forward one character, adjusting the

rectangular selection range to new position

Alt-Shift-Up: previous-line-extend-rect - Move to previous screen line, adjusting the rectangular

selection range to new position, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Back-button-click: visit-history-previous - Move back in history to previous visited editor position

Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Ctrl-0: next-document - Move to the next document open in the current window. If alphabetical is true,

the list traversed will be alphabetized. If all_splits is true, documents from all splits will be traversed;

otherwise, only the current split will be.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the editor.

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Key Binding Reference

558

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in the current window

or window set if in one-window-per-editor windowing mode.

Ctrl-9: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search query/replace from the cursor

position. The search string is treated as a regular expression.

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next bookmark, or the first

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the bookmark list, or the last

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark is the project-wide

textual name of the bookmark, the category is set to the current bookmark category, and notes are left

blank.

Ctrl-Alt-Period: replace-string-regex - Replace all occurrences of a string from the cursor position to

end of file. The search string is treated as a regular expression.

Key Binding Reference

559

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if no bookmark is

selected. Stays within the file in the current editor when current_file_only is True. Only bookmarks in the

current bookmark category are visited unless a category is passed.

Ctrl-Alt-Shift-F5: debug-stop-all - Pause all free-running debug processes at the current program

counter

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on the editor. When set,

the name of the bookmark is set to an auto-generated default, the category is set to the current

bookmark category, and notes are left blank. When removed, the bookmark is removed without

confirmation.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the previous bookmark in the

bookmark list, or the last one if no bookmark is selected. Stays within the file in the current editor when

current_file_only is True. Only bookmarks in the current bookmark category are visited unless a

category is passed.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, using current selection as the search string.

Set persist=False to do the search but end the interactive search session immediately.; Document

Viewer Commands: Initiate incremental mini-search forward from the cursor position, using current

selection as the search string. Set persist=False to do the search but end the interactive search session

immediately.

Ctrl-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-Bracketright: brace-match - Match brace at current cursor position, selecting all text between the

two and hilighting the braces

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Key Binding Reference

560

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Ctrl-D: selection-add-next-occurrence - Add another selection containing the text of the current

selection. If skip_current is true, the current selection will be deselected. If nothing is currently selected,

select the current word. Searches backwards if reverse is true.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: brace-match - Match brace at current cursor position, selecting all text between the two and

hilighting the braces

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-F: search - Bring up the search manager in search mode.

Ctrl-F10: debug-to-cursor

Ctrl-F12: command-by-name - Execute given command by name, collecting any args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-F5: debug-file - Start debugging the current file (rather than the main entry point)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: goto-line - Position cursor at start of given line number

Ctrl-Greater: indent-region - Indent the selected region one level of indentation. Set sel to None to use

preference to determine selection behavior, or "never-select" to unselect after indent, "always-select" to

always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-H: replace - Bring up the search manager in replace mode.

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: isearch-forward - Action varies according to focus: Active Editor Commands: Initiate incremental

mini-search forward from the cursor position, optionally entering the given search string ; Document

Key Binding Reference

561

Viewer Commands: Initiate incremental mini-search forward from the cursor position, optionally entering

the given search string.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-Iso_left_tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-J: show-autocompleter - Show the auto-completer for current cursor position

Ctrl-K Ctrl-C: comment-out-region - Comment out the selected region. The style of commenting can

be controlled with the style argument: 'indented' uses the default comment style indented at end of

leading white space and 'block' uses a block comment in column zero. Append '-pep8' to the style to

conform to PEP 8 comment format rules. If not given, the style configured with the Editor / Block

Comment Style preference is used. Each call adds a level of commenting.

Ctrl-K Ctrl-D: toolbar-search-focus - Move focus to toolbar search entry.

Ctrl-K Ctrl-F: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap

column. When there is no selection, wrappable regions are delineated by surrounding blank lines.

Otherwise, when there is a selection, wrapping is constrained to occur only within that selection.

Wrapping behavior depends on context; for example, wrapping Python code is different than wrapping

plain text or the contents of comments and docstrings. A shared leading prefix found on all lines is

retained and only the content after the prefix is wrapped.

Ctrl-K Ctrl-K: toggle-bookmark - Set or remove a bookmark at current location on the editor. When

set, the name of the bookmark is set to an auto-generated default, the category is set to the current

bookmark category, and notes are left blank. When removed, the bookmark is removed without

confirmation.

Ctrl-K Ctrl-N: goto-next-bookmark - Go to the next bookmark, or the first one if no bookmark is

selected. Stays within the file in the current editor when current_file_only is True. Only bookmarks in the

current bookmark category are visited unless a category is passed.

Ctrl-K Ctrl-O: open-from-keyboard - Open a file from disk using keyboard-driven selection of the file

Ctrl-K Ctrl-P: goto-previous-bookmark - Go to the previous bookmark in the bookmark list, or the last

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-K Ctrl-S: switch-document - Switches to named document. Name may either be the complete

name or the last path component of a path name.

Key Binding Reference

562

Ctrl-K Ctrl-T: comment-toggle - Toggle commenting out of the selected lines. The style of commenting

can be controlled with the style argument: 'indented' uses the default comment style indented at end of

leading white space and 'block' uses a block comment in column zero. Append '-pep8' to the style to

conform to PEP 8 comment format rules. If not given, the style configured with the Editor / Block

Comment Style preference is used.

Ctrl-K Ctrl-U: uncomment-out-region - Uncomment out the selected region if commented out. If

one_level is True then each call removes only one level of commenting.

Ctrl-L: cut-line - Cut the current line(s) to clipboard.

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Ctrl-Left-button-click: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Less: outdent-region - Outdent the selected region one level of indentation. Set sel to None to

use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If register is None then

the user is asked to enter a letter a-z for the register where the macro is filed. Otherwise, register 'a' is

used by default.

Ctrl-Minus: visit-history-previous - Move back in history to previous visited editor position

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Ctrl-O: open-gui - Open a file from local disk or a remote host, prompting with file selection dialog if

necessary. The dialog shown depends on the default starting directory, and may be for local files or

remote files.

Ctrl-P: print-view - Print active editor document

Ctrl-Page_down: next-document - Move to the next document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Key Binding Reference

563

Ctrl-Page_up: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Parenleft: start-kbd-macro - Start definition of a keyboard macro. If register=None then the user is

prompted to enter a letter a-z under which to file the macro. Otherwise, register 'a' is used by default.

Ctrl-Parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-Pointer_button1: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to

new position

Ctrl-Q: quit - Quit the application.

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True, back_key="Ctrl-Quoteleft",

forward_key="Ctrl-AsciiTilde") - Start moving between documents in the order they were visited.

Starts modal key interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: replace - Bring up the search manager in replace mode.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Commands: Move cursor

forward one word. Optionally, provide a string that contains the delimiters to define which characters are

part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the

word.; Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-B: isearch-sel-backward - Initiate incremental mini-search backward from the cursor

position, using current selection as the search string. Set persist=False to do the search but end the

interactive search session immediately.

Key Binding Reference

564

Ctrl-Shift-D: selection-add-next-occurrence(skip_current=True) - Add another selection containing

the text of the current selection. If skip_current is true, the current selection will be deselected. If nothing

is currently selected, select the current word. Searches backwards if reverse is true.

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's relative position on

screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to

leave cursor in current position within the source, otherwise it is moved so the cursor remains on same

screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, adjusting the selection

range to new position

Ctrl-Shift-F: batch-search - Search on current selection using the Search in Files tool. The look_in

argument gets entered in the look in field if not None or ''. The current selection is put into the search

field if it doesn't span multiple lines and either use_selection is true or there's nothing in the search field.

The given search text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view.

Ctrl-Shift-F8: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Shift-F9: Multiple commands; first available is executed:

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: search-backward - Search again using the search manager's current settings in

backward direction

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document, adjusting the

selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to project

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

Key Binding Reference

565

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word, extending the selection

Ctrl-Shift-O: open-from-project - Open document from the project via the Open From Project dialog.

The given fragment is used as the initial fragment filter and if it is None, the selected text or the symbol

under the cursor is used. If skip_if_unique is true, the file is opened without the dialog being displayed if

only one filename matches the fragment.

Ctrl-Shift-P: find-symbol-in-project - Allow user to visit point of definition of a source symbol in the

any file in the project by typing a fragment of the name

Ctrl-Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Ctrl-Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the

selection range to new position

Ctrl-Shift-R: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word, extending the selection

Ctrl-Shift-S: save-all - Save all unsaved items, prompting for names for any new items that don't have

a filename already.

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol in the current editor

context by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-Shift-U: case-upper - Change case of the current selection, or character ahead of the cursor if

there is no selection, to upper case

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative position on screen.

Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to leave

cursor in current position within the source, otherwise it is moved so the cursor remains on same screen

line.

Ctrl-Shift-Z: redo - Redo last action

Ctrl-Slash: command-by-name - Execute given command by name, collecting any args as needed

Key Binding Reference

566

Ctrl-Space: show-autocompleter - Show the auto-completer for current cursor position

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands: Place a tab character

at the current cursor position ; Search Manager Instance Commands: Place a forward tab at the current

cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving between documents in the

order they were visited. Starts modal key interaction that ends when a key other than tab is seen or ctrl

is released.

Ctrl-U: case-lower - Change case of the current selection, or character ahead of the cursor if there is

no selection, to lower case

Ctrl-Underscore: visit-history-next - Move forward in history to next visited editor position

Ctrl-Up: select-more - Select more code on either the current line or larger multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste text from clipboard ;

Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search Commands: Paste

from clipboard

Ctrl-W: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut selected text ; Search

Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Ctrl-Y: redo - Redo last action

Ctrl-Z: undo - Undo last action

Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Escape: exit-visual-mode - Exit visual mode and return back to default mode

F1: Multiple commands; first available is executed:

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F10: step-over-statement - Step over current statement

Key Binding Reference

567

F11: step-into - Step into current execution point, or start debugging at first line

F12: frame-down - Move down the current debug stack

F2: Multiple commands; first available is executed:

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

F5: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt to continue

all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Forward-button-click: visit-history-next - Move forward in history to next visited editor position

Home: beginning-of-line-text - Move to end of the leading white space, if any, on the current line. If

toggle is True, moves to the beginning of the line if already at the end of the leading white space (and

vice versa).

Insert: toggle-overtype - Toggle status of overtyping mode

Iso_left_tab: backward-tab - Outdent line at current position

Left: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Page_down: forward-page - Move cursor forward one page

Page_up: backward-page - Move cursor backward one page

Key Binding Reference

568

Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to new

position

Release-Shift-Space: debug-hide-value-tips - Hide all the debug value tooltips previously shown with

debug_show_value_tips()

Return: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Right: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Shift-Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Shift-Delete: cut-selection-or-line - Cut the current selection or current line if there is no selection. The

text is placed on the clipboard.

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection range to new position,

optionally repositioning character within line: same' to leave in same horizontal position, 'start' at start,

'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Commands: Move to

end of current line, adjusting the selection range to new position ; Toolbar Search Commands: Move to

the end of the toolbar search entry, extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the next editable area

Shift-F11: step-out - Step out of the current function or method

Shift-F2: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Shift-F3: search-backward - Search again using the search manager's current settings in backward

direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults to the active

selection. Finds points of use in the file the symbol is located and in project files by default.

Shift-F5: debug-kill - Terminate current debug session (press Alt to terminate all debug processes)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Key Binding Reference

569

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view. The tests are debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands; first available is executed:

• break-set-disabled - Set a disabled breakpoint on the current line

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white space, if any, on the

current line, adjusting the selection range to the new position. If toggle is True, moves to the beginning

of the line if already at the end of the leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands: Paste text from

clipboard ; Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor backward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move backward one character, extending the selection

Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the selection

range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor forward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move forward one character, extending the selection

Shift-Space: Multiple commands; first available is executed:

• debug-show-value-tips(release_toggle=True) - Show tooltips on all visible editors

indicating the current value of all visible symbols. The value of release_toggle controls

whether this command is available if the tips are already shown; this can be used to prevent

execution of fallback commands on a key binding while the tips are already visible, if the key is

pressed again or reported in key repeat events while the key is held down.

• send-keys(keys=" ") - Send one or more keys to the editor. Send a string to enter each key

in the string, or a list of strings and/or (mod, key) tuples where mod is a string containing any

of case insensitive 'shift', 'ctrl', or 'alt'. Valid examples:

Key Binding Reference

570

"testme"
"TestMe"
["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),]

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection range to new

position, optionally repositioning character within line: same' to leave in same horizontal position, 'start'

at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line

selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

25.5. macOS Personality
This section documents all the default key bindings for the macOS keyboard personality, set by the

User Interface > Keyboard > Personality preference.

Alt-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Delete: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Alt-Down: next-line(cursor="end") - Move to screen next line, optionally repositioning character within

line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank

char.

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are debugged when debug is

True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests are debugged when

debug is True.

Alt-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Alt-Left-button-click: find-points-of-use-clicked - Find points of use for last symbol clicked.

Key Binding Reference

571

Alt-Page_down: forward-page - Move cursor forward one page

Alt-Page_up: backward-page - Move cursor backward one page

Alt-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Alt-Right: forward-word - Action varies according to focus: Active Editor Commands: Move cursor

forward one word. Optionally, provide a string that contains the delimiters to define which characters are

part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the

word.; Toolbar Search Commands: Move forward one word

Alt-Shift-Down: next-line-extend(cursor="xcode") - Move to next screen line, adjusting the selection

range to new position, optionally repositioning character within line: same' to leave in same horizontal

position, 'start' at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style

Shift-Alt line selection.

Alt-Shift-Left: backward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word, extending the selection

Alt-Shift-Right: forward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word, extending the selection

Alt-Shift-Up: previous-line-extend(cursor="xcode") - Move to previous screen line, adjusting the

selection range to new position, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode

style Shift-Alt line selection.

Alt-Up: previous-line(cursor="start") - Move to previous screen line, optionally repositioning

character within line: same' to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for

first non-blank char.

Back-button-click: visit-history-previous - Move back in history to previous visited editor position

Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Key Binding Reference

572

Command-0: next-document - Move to the next document open in the current window. If alphabetical

is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits will be

traversed; otherwise, only the current split will be.

Command-1: activate-file-option-menu - Activate the file menu for the editor.

Command-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the editor.

Command-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the editor.

Command-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the editor.

Command-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the editor.

Command-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the editor.

Command-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Command-7 H: use-lexer-html - Force syntax highlighting for HTML

Command-7 M: use-lexer-makefile - Force syntax highlighting for make files

Command-7 N: use-lexer-none - Use no syntax highlighting

Command-7 P: use-lexer-python - Force syntax highlighting for Python source

Command-7 S: use-lexer-sql - Force syntax highlighting for SQL

Command-7 X: use-lexer-xml - Force syntax highlighting for XML files

Command-8: recent-document - Switches to previous document most recently visited in the current

window or window set if in one-window-per-editor windowing mode.

Command-9: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Command-A: select-all - Select all text in the editor

Command-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the debugger.

Command-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Command-Alt-Minus: fold-python-methods - Fold up all Python methods, expand all classes, and

leave other fold points alone

Command-Apostrophe: comment-out-region - Comment out the selected region. The style of

commenting can be controlled with the style argument: 'indented' uses the default comment style

indented at end of leading white space and 'block' uses a block comment in column zero. Append

'-pep8' to the style to conform to PEP 8 comment format rules. If not given, the style configured with the

Editor / Block Comment Style preference is used. Each call adds a level of commenting.

Command-Asterisk: fold-expand-all-current - Expand the current fold point completely

Key Binding Reference

573

Command-B: set-bookmark - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Command-Backslash: indent-to-match - Indent the current line or selected region to match

indentation of preceding non-blank line. Set toggle=True to indent instead of one level higher if already

at the matching position.

Command-Bracketleft: outdent-region - Outdent the selected region one level of indentation. Set sel

to None to use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Command-Bracketright: indent-region - Indent the selected region one level of indentation. Set sel to

None to use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Command-C: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Command-Comma: show-preferences-gui - Edit the preferences file using the preferences GUI,

optionally opening to the section that contains the given preference by name

Command-D: selection-add-next-occurrence - Add another selection containing the text of the

current selection. If skip_current is true, the current selection will be deselected. If nothing is currently

selected, select the current word. Searches backwards if reverse is true.

Command-Down: end-of-document - Move cursor to end of document

Command-E: search-sel-forward - Search forward using current selection

Command-Equal: fold-python-classes-and-defs - Fold up all Python classes, methods, and functions

but leave other fold points alone

Command-F: search - Bring up the search manager in search mode.

Command-F12: command-by-name - Execute given command by name, collecting any args as

needed

Command-F3: search-sel-forward - Search forward using current selection

Command-F4: close - Close active document. Abandon any changes when ignore_changes is True.

Close empty windows when close_window is true and quit if all document windows closed when

can_quit is true.

Command-F5: debug-kill - Terminate current debug session (press Alt to terminate all debug

processes)

Key Binding Reference

574

Command-F8: start-select-line - Turn on auto-select mode line by line

Command-F9: break-clear-all - Clear all breakpoints

Command-G: search-forward - Search again using the search manager's current settings in forward

direction

Command-I: view-file-properties - View project properties for a particular file (current file if none is

given)

Command-J: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap

column. When there is no selection, wrappable regions are delineated by surrounding blank lines.

Otherwise, when there is a selection, wrapping is constrained to occur only within that selection.

Wrapping behavior depends on context; for example, wrapping Python code is different than wrapping

plain text or the contents of comments and docstrings. A shared leading prefix found on all lines is

retained and only the content after the prefix is wrapped.

Command-L: goto-line - Position cursor at start of given line number

Command-Left: beginning-of-line - Action varies according to focus: Active Editor Commands: Move

to beginning of current line. When toggle is True, moves to the end of the leading white space if already

at the beginning of the line (and vice versa).; Toolbar Search Commands: Move to the beginning of the

toolbar search entry

Command-Left-button-click: goto-clicked-symbol-defn - Goto the definition of the source symbol

that was last clicked on. If other_split is true, the definition will be displayed if a split other than the

current split; if other_split is false, it will be displayed in the current editor; if other_split is not specified or

None, the split to be used is determined by the Split Reuse Policy preference value.

Command-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If register is

None then the user is asked to enter a letter a-z for the register where the macro is filed. Otherwise,

register 'a' is used by default.

Command-Minus: fold-collapse-all-current - Collapse the current fold point completely

Command-N: new-file - Create a new file

Command-O: open-gui - Open a file from local disk or a remote host, prompting with file selection

dialog if necessary. The dialog shown depends on the default starting directory, and may be for local

files or remote files.

Command-P: print-view - Print active editor document

Command-Parenright: brace-match - Match brace at current cursor position, selecting all text

between the two and hilighting the braces

Command-Period: debug-kill - Terminate current debug session (press Alt to terminate all debug

processes)

Key Binding Reference

575

Command-Plus: fold-expand-more-current - Expand the current fold point one more level

Command-Pointer_button1: goto-clicked-symbol-defn - Goto the definition of the source symbol

that was last clicked on. If other_split is true, the definition will be displayed if a split other than the

current split; if other_split is false, it will be displayed in the current editor; if other_split is not specified or

None, the split to be used is determined by the Split Reuse Policy preference value.

Command-Q: quit - Quit the application.

Command-Question: show-document - Show the given documentation section

Command-Quotedbl: uncomment-out-region - Uncomment out the selected region if commented

out. If one_level is True then each call removes only one level of commenting.

Command-R: replace - Bring up the search manager in replace mode.

Command-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Command-Right: end-of-line - Action varies according to focus: Active Editor Commands: Move to

end of current line; Toolbar Search Commands: Move to the end of the toolbar search entry

Command-S: save - Save active document. Also close it if close is True.

Command-Semicolon: comment-toggle - Toggle commenting out of the selected lines. The style of

commenting can be controlled with the style argument: 'indented' uses the default comment style

indented at end of leading white space and 'block' uses a block comment in column zero. Append

'-pep8' to the style to conform to PEP 8 comment format rules. If not given, the style configured with the

Editor / Block Comment Style preference is used.

Command-Shift-B: toggle-bookmark - Set or remove a bookmark at current location on the editor.

When set, the name of the bookmark is set to an auto-generated default, the category is set to the

current bookmark category, and notes are left blank. When removed, the bookmark is removed without

confirmation.

Command-Shift-D: selection-add-next-occurrence(skip_current=True) - Add another selection

containing the text of the current selection. If skip_current is true, the current selection will be

deselected. If nothing is currently selected, select the current word. Searches backwards if reverse is

true.

Command-Shift-Down: end-of-document-extend - Move cursor to end of document, adjusting the

selection range to new position

Command-Shift-F: batch-search - Search on current selection using the Search in Files tool. The

look_in argument gets entered in the look in field if not None or ''. The current selection is put into the

search field if it doesn't span multiple lines and either use_selection is true or there's nothing in the

search field. The given search text is used instead, if provided

Key Binding Reference

576

Command-Shift-F3: search-sel-backward - Search backward using current selection

Command-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to pause all

debug processes)

Command-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Command-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The current tests

are determined by the current position in the active view.

Command-Shift-F8: start-select-rectangle - Turn on auto-select rectangle mode

Command-Shift-G: search-backward - Search again using the search manager's current settings in

backward direction

Command-Shift-I: add-current-file-to-project - Add the frontmost currently open file to project

Command-Shift-K: show-bookmarks - Show a list of all currently defined bookmarks

Command-Shift-Left: beginning-of-line-extend - Action varies according to focus: Active Editor

Commands: Move to beginning of current line, adjusting the selection range to the new position. When

toggle is True, moves to the end of the leading white space if already at the beginning of the line (and

vice versa).; Toolbar Search Commands: Move to the beginning of the toolbar search entry, extending

the selection

Command-Shift-M: Multiple commands; first available is executed:

• start-kbd-macro - Start definition of a keyboard macro. If register=None then the user is

prompted to enter a letter a-z under which to file the macro. Otherwise, register 'a' is used by

default.

• stop-kbd-macro - Stop definition of a keyboard macro

Command-Shift-O: open-from-project - Open document from the project via the Open From Project

dialog. The given fragment is used as the initial fragment filter and if it is None, the selected text or the

symbol under the cursor is used. If skip_if_unique is true, the file is opened without the dialog being

displayed if only one filename matches the fragment.

Command-Shift-P: find-symbol-in-project - Allow user to visit point of definition of a source symbol in

the any file in the project by typing a fragment of the name

Command-Shift-R: batch-replace - Display search and replace in files tool.

Command-Shift-Right: end-of-line-extend - Action varies according to focus: Active Editor

Commands: Move to end of current line, adjusting the selection range to new position ; Toolbar Search

Commands: Move to the end of the toolbar search entry, extending the selection

Command-Shift-S: save-as - Save active document to a new file

Key Binding Reference

577

Command-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol in the current

editor context by typing a fragment of the name

Command-Shift-U: isearch-backward - Action varies according to focus: Active Editor Commands:

Initiate incremental mini-search backward from the cursor position, optionally entering the given search

string ; Document Viewer Commands: Initiate incremental mini-search backward from the cursor

position, optionally entering the given search string.

Command-Shift-Up: start-of-document-extend - Move cursor to start of document, adjusting the

selection range to new position

Command-Shift-W: close - Close active document. Abandon any changes when ignore_changes is

True. Close empty windows when close_window is true and quit if all document windows closed when

can_quit is true.

Command-Shift-Z: redo - Redo last action

Command-Slash: fold-toggle - Toggle the current fold point

Command-T: search - Bring up the search manager in search mode.

Command-U: isearch-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, optionally entering the given search string ;

Document Viewer Commands: Initiate incremental mini-search forward from the cursor position,

optionally entering the given search string.

Command-Underscore: fold-collapse-more-current - Collapse the current fold point one more level

Command-Up: start-of-document - Move cursor to start of document

Command-V: paste - Action varies according to focus: Active Editor Commands: Paste text from

clipboard ; Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Command-W: close - Close active document. Abandon any changes when ignore_changes is True.

Close empty windows when close_window is true and quit if all document windows closed when

can_quit is true.

Command-X: cut - Action varies according to focus: Active Editor Commands: Cut selected text ;

Search Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Command-Y: redo - Redo last action

Command-Z: undo - Undo last action

Ctrl-A: beginning-of-line - Action varies according to focus: Active Editor Commands: Move to

beginning of current line. When toggle is True, moves to the end of the leading white space if already at

the beginning of the line (and vice versa).; Toolbar Search Commands: Move to the beginning of the

toolbar search entry

Key Binding Reference

578

Ctrl-Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Ctrl-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the rectangular selection

range to new position, optionally repositioning character within line: same' to leave in same horizontal

position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Alt-Left: backward-char-extend-rect - Move cursor backward one character, adjusting the

rectangular selection range to new position

Ctrl-Alt-Right: forward-char-extend-rect - Move cursor forward one character, adjusting the

rectangular selection range to new position

Ctrl-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting the rectangular

selection range to new position, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-B: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Ctrl-Comma: visit-history-previous - Move back in history to previous visited editor position

Ctrl-Command-Asterisk: fold-expand-all - Expand all fold points in the current file

Ctrl-Command-B: goto-bookmark - Goto named bookmark

Ctrl-Command-Minus: fold-collapse-all - Collapse all fold points in the current file

Ctrl-Command-R: replace-and-search - Replace current selection and search again.

Ctrl-Command-Slash: fold-python-classes - Fold up all Python classes but leave other fold points

alone

Ctrl-D: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Ctrl-Down: forward-page - Move cursor forward one page

Ctrl-E: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-F: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Ctrl-F12: command-by-name - Execute given command by name, collecting any args as needed

Key Binding Reference

579

Ctrl-H: backward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character behind the cursor, or the current selection if not empty. ; Toolbar Search Commands: Delete

character behind the cursor

Ctrl-Iso_left_tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-K: kill-line - Kill rest of line from cursor to end of line, and place it into the clipboard with any other

contiguously removed lines. End-of-line is removed only if there is nothing between the cursor and the

end of the line.

Ctrl-Left: backward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") - Action varies

according to focus: Active Editor Commands: Move cursor backward one word. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer Commands: Decrease

documentation font size; General Editor Commands: Zoom out, increasing the text display size

temporarily by one font size

Ctrl-N: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-P: previous-line - Move to previous screen line, optionally repositioning character within line:

same' to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Ctrl-Period: visit-history-next - Move forward in history to next visited editor position

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-R: query-replace - Initiate incremental mini-search query/replace from the cursor position.

Ctrl-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Ctrl-Right: forward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") - Action varies

according to focus: Active Editor Commands: Move cursor forward one word. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word

Key Binding Reference

580

Ctrl-Shift-Left: backward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") - Action

varies according to focus: Active Editor Commands: Move cursor backward one word, adjusting the

selection range to new position. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word.; Toolbar Search Commands: Move backward one word, extending the

selection

Ctrl-Shift-Right: forward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") - Action

varies according to focus: Active Editor Commands: Move cursor forward one word, adjusting the

selection range to new position. Optionally, provide a string that contains the delimiters to define which

characters are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at

start or end of the word.; Toolbar Search Commands: Move forward one word, extending the selection

Ctrl-Space: show-autocompleter - Show the auto-completer for current cursor position

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands: Place a tab character

at the current cursor position ; Search Manager Instance Commands: Place a forward tab at the current

cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving between documents in the

order they were visited. Starts modal key interaction that ends when a key other than tab is seen or ctrl

is released.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document Viewer Commands: Reset

documentation font size to default; General Editor Commands: Reset font zoom factor back to zero

Ctrl-Up: backward-page - Move cursor backward one page

Ctrl-V: forward-page - Move cursor forward one page

Ctrl-Y: paste - Action varies according to focus: Active Editor Commands: Paste text from clipboard ;

Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search Commands: Paste

from clipboard

Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

End: scroll-to-end - Scroll to the end of the text in the editor. Set move_caret to control whether the

caret is moved.

Escape: exit-visual-mode - Exit visual mode and return back to default mode

F1: Multiple commands; first available is executed:

• show-horizontal-tools - Show the horizontal tool area

Key Binding Reference

581

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands; first available is executed:

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

F5: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt to continue

all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Forward-button-click: visit-history-next - Move forward in history to next visited editor position

Home: scroll-to-start - Scroll to the top of the text in the editor. Set move_caret to control whether the

the caret is moved.

Iso_left_tab: backward-tab - Outdent line at current position

Left: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Page_down: forward-page - Move cursor forward one page

Page_up: backward-page - Move cursor backward one page

Release-Shift-Space: debug-hide-value-tips - Hide all the debug value tooltips previously shown with

debug_show_value_tips()

Key Binding Reference

582

Return: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Right: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Shift-Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Shift-Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete

one character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection range to new position,

optionally repositioning character within line: same' to leave in same horizontal position, 'start' at start,

'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-document-extend - Move cursor to end of document, adjusting the selection range

to new position

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the next editable area

Shift-F2: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Shift-F3: search-backward - Search again using the search manager's current settings in backward

direction

Shift-F4: new-document-window - Create a new document window with same documents and panels

as in the current document window (if any; otherwise empty with default panels)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view. The tests are debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands; first available is executed:

• break-enable - Enable the breakpoint on the current line

Key Binding Reference

583

• break-disable - Disable the breakpoint on current line

Shift-Home: start-of-document-extend - Move cursor to start of document, adjusting the selection

range to new position

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor backward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move backward one character, extending the selection

Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the selection

range to new position

Shift-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor forward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move forward one character, extending the selection

Shift-Space: Multiple commands; first available is executed:

• debug-show-value-tips(release_toggle=True) - Show tooltips on all visible editors

indicating the current value of all visible symbols. The value of release_toggle controls

whether this command is available if the tips are already shown; this can be used to prevent

execution of fallback commands on a key binding while the tips are already visible, if the key is

pressed again or reported in key repeat events while the key is held down.

• send-keys(keys=" ") - Send one or more keys to the editor. Send a string to enter each key

in the string, or a list of strings and/or (mod, key) tuples where mod is a string containing any

of case insensitive 'shift', 'ctrl', or 'alt'. Valid examples:

"testme"
"TestMe"
["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),]

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection range to new

position, optionally repositioning character within line: same' to leave in same horizontal position, 'start'

Key Binding Reference

584

at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line

selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

25.6. Eclipse Personality
This section documents all the default key bindings for the Eclipse keyboard personality, set by the

User Interface > Keyboard > Personality preference.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and leave other fold

points alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and functions but leave

other fold points alone

Alt-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Comma: query-replace - Initiate incremental mini-search query/replace from the cursor position.

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Down: move-line-down(indent=True) - Move the current line or lines up down line, optionally

indenting to match the new position

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-Enter: view-file-properties - View project properties for a particular file (current file if none is given)

Alt-F11: prev-points-of-use-match - Display the previous match in the active points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are debugged when debug is

True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests are debugged when

debug is True.

Key Binding Reference

585

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor position

Alt-Left-button-click: find-points-of-use-clicked - Find points of use for last symbol clicked.

Alt-Page_down: fold-expand-all-current - Expand the current fold point completely

Alt-Page_up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Period: replace-string - Replace all occurrences of a string from the cursor position to end of file.

Alt-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Shift-A: diff-merge-a-b

Alt-Shift-B: diff-merge-b-a

Alt-Shift-Down: select-less - Select less code; undoes the last select-more command

Alt-Shift-F4: find-points-of-use(search_project_files=False) - Find points of use for a symbol. The

symbol defaults to the active selection. Finds points of use in the file the symbol is located and in project

files by default.

Alt-Shift-F5: debug-continue-all - Continue all paused debug processes

Alt-Shift-L: introduce-variable - Introduce named variable set to the current selected expression or to

the range in the active editor specified by pos_range. The new_name argument is used as the default

variable name if it is specified.

Alt-Shift-Left: previous-statement - Select the previous statement. Will ignore indented statements

under the current statements unless ignore_indented is False. Specify a count of more than 1 to go

back multiple statements.

Alt-Shift-M: extract-def - Extract selected lines to a new function or method. The new_name argument

is used as the default for the name field if specified.

Alt-Shift-N: diff-next

Alt-Shift-O: show_preferences_gui(prefname="edit.highlight-occurrences")

Alt-Shift-P: diff-previous

Alt-Shift-R: rename-symbol - Rename currently selected symbol. The new_name argument is used as

the default for the name field if specified. Aternatively, the transform argument may be set to

camel-upper for UpperCamelCase, camel-lower for lowerCamelCase, under-lower for

under_scored_name, or under-upper for UNDER_SCORED_NAME.

Key Binding Reference

586

Alt-Shift-Right: next-statement - Select the next statement. Will ignore indented statements under the

current statements unless ignore_indented is False. Specify a count of more than 1 to go forward

multiple statements.

Alt-Shift-T: show-panel(panel_type="refactoring") - Show most recently visited panel instance of

given type. If no such panel exists, add one to the primary window and show it. Returns the panel view

object or None if not shown. Focus is shifted to panel if grab_focus is specified and is true; if grab_focus

is not specified, it defaults to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**) debug-data debug-stack

debug-io debug-exceptions debug-breakpoints (**) debug-console (**) debug-watch (**) debug-modules

(**) python-shell messages (*) help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**)

snippets (**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)

versioncontrol.git (**) versioncontrol.cvs (**) versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

Alt-Shift-U: show_preferences_gui(prefname="edit.highlight-occurrences")

Alt-Shift-Up: select-more - Select more code on either the current line or larger multi-line blocks.

Alt-Shift-V: move-symbol - Move the currently selected symbol to another module, class, or function.

The new_filename and new_scope_name arguments are used as default values in the filename and

scope name fields if specified.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: move-line-up(indent=True) - Move the current line or lines up one line, optionally indenting to

match the new position

Back-button-click: visit-history-previous - Move back in history to previous visited editor position

Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Ctrl-0: next-document - Move to the next document open in the current window. If alphabetical is true,

the list traversed will be alphabetized. If all_splits is true, documents from all splits will be traversed;

otherwise, only the current split will be.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the editor.

Key Binding Reference

587

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the editor.

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in the current window

or window set if in one-window-per-editor windowing mode.

Ctrl-9: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search query/replace from the cursor

position. The search string is treated as a regular expression.

Ctrl-Alt-D: evaluate-sel-in-debug-console - Evaluate the current selection from the editor within the

Debug Console tool. When whole_lines is set, the selection is rounded to whole lines before evaluation.

When unspecified (set to None), the setting from the Shell's Option menu is used instead.

Ctrl-Alt-Down: duplicate-line - Duplicate the current line or lines. Places the duplicate on the line

following the selection if pos is 'below' or before the selection if it is 'above'.

Ctrl-Alt-E: evaluate-sel-in-shell - Evaluate the current selection from the editor within the Python Shell

tool, optionally restarting the shell first. When whole_lines is set, the selection is rounded to whole lines

before evaluation. When unspecified (set to None), the setting from the Shell's Option menu is used

instead.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Key Binding Reference

588

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the bookmark list, or the last

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark is the project-wide

textual name of the bookmark, the category is set to the current bookmark category, and notes are left

blank.

Ctrl-Alt-Period: replace-string-regex - Replace all occurrences of a string from the cursor position to

end of file. The search string is treated as a regular expression.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if no bookmark is

selected. Stays within the file in the current editor when current_file_only is True. Only bookmarks in the

current bookmark category are visited unless a category is passed.

Ctrl-Alt-Shift-F5: debug-stop-all - Pause all free-running debug processes at the current program

counter

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on the editor. When set,

the name of the bookmark is set to an auto-generated default, the category is set to the current

bookmark category, and notes are left blank. When removed, the bookmark is removed without

confirmation.

Ctrl-Alt-Up: duplicate-line-above - Duplicate the current line or lines above the selection.

Ctrl-Alt-V: evaluate-file-in-shell - Run or debug the contents of the editor within the Python Shell

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-Asterisk: fold-expand-all - Expand all fold points in the current file

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, using current selection as the search string.

Set persist=False to do the search but end the interactive search session immediately.; Document

Viewer Commands: Initiate incremental mini-search forward from the cursor position, using current

selection as the search string. Set persist=False to do the search but end the interactive search session

immediately.

Ctrl-Backslash: uncomment-out-region - Uncomment out the selected region if commented out. If

one_level is True then each call removes only one level of commenting.

Ctrl-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Key Binding Reference

589

Ctrl-Bar: indent-lines(lines=1) - Indent selected number of lines from cursor position. Set lines to None

to indent all the lines in current selection. Set levels to indent more than one level at a time.

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-Bracketright: brace-match - Match brace at current cursor position, selecting all text between the

two and hilighting the braces

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Ctrl-D: delete-line - Delete the current line or lines when the selection spans multiple lines or given

repeat is > 1

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: show-panel(panel_type="open-files") - Show most recently visited panel instance of given

type. If no such panel exists, add one to the primary window and show it. Returns the panel view object

or None if not shown. Focus is shifted to panel if grab_focus is specified and is true; if grab_focus is not

specified, it defaults to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**) debug-data debug-stack

debug-io debug-exceptions debug-breakpoints (**) debug-console (**) debug-watch (**) debug-modules

(**) python-shell messages (*) help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**)

snippets (**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)

versioncontrol.git (**) versioncontrol.cvs (**) versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Enter: new-line-before - Place a new line before the current line

Key Binding Reference

590

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-F: search - Bring up the search manager in search mode.

Ctrl-F12: command-by-name - Execute given command by name, collecting any args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-F5: run-to-cursor - Run to current cursor position

Ctrl-F6: next-document - Move to the next document open in the current window. If alphabetical is

true, the list traversed will be alphabetized. If all_splits is true, documents from all splits will be

traversed; otherwise, only the current split will be.

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

Ctrl-Greater: indent-region - Indent the selected region one level of indentation. Set sel to None to use

preference to determine selection behavior, or "never-select" to unselect after indent, "always-select" to

always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-H: batch-search - Search on current selection using the Search in Files tool. The look_in argument

gets entered in the look in field if not None or ''. The current selection is put into the search field if it

doesn't span multiple lines and either use_selection is true or there's nothing in the search field. The

given search text is used instead, if provided

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: replace-and-search - Replace current selection and search again.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Key Binding Reference

591

Ctrl-Iso_left_tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-J: isearch-forward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search forward from the cursor position, optionally entering the given search string ;

Document Viewer Commands: Initiate incremental mini-search forward from the cursor position,

optionally entering the given search string.

Ctrl-K: search-forward - Search again using the search manager's current settings in forward direction

Ctrl-L: goto-line - Position cursor at start of given line number

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Ctrl-Left-button-click: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Less: outdent-region - Outdent the selected region one level of indentation. Set sel to None to

use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Ctrl-M: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Ctrl-Minus: fold-collapse-current - Collapse the current fold point

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Ctrl-O: find-symbol - Allow user to visit point of definition of a source symbol in the current editor

context by typing a fragment of the name

Ctrl-P: print-view - Print active editor document

Key Binding Reference

592

Ctrl-Page_down: next-document - Move to the next document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Page_up: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Parenleft: start-kbd-macro - Start definition of a keyboard macro. If register=None then the user is

prompted to enter a letter a-z under which to file the macro. Otherwise, register 'a' is used by default.

Ctrl-Parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-Period: comment-toggle - Toggle commenting out of the selected lines. The style of commenting

can be controlled with the style argument: 'indented' uses the default comment style indented at end of

leading white space and 'block' uses a block comment in column zero. Append '-pep8' to the style to

conform to PEP 8 comment format rules. If not given, the style configured with the Editor / Block

Comment Style preference is used.

Ctrl-Plus: fold-expand-current - Expand the current fold point

Ctrl-Pointer_button1: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to

new position

Ctrl-Q: visit-history-previous - Move back in history to previous visited editor position

Ctrl-Question: uncomment-out-region - Uncomment out the selected region if commented out. If

one_level is True then each call removes only one level of commenting.

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True, back_key="Ctrl-Quoteleft",

forward_key="Ctrl-AsciiTilde") - Start moving between documents in the order they were visited.

Starts modal key interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: run-to-cursor - Run to current cursor position

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Commands: Move cursor

forward one word. Optionally, provide a string that contains the delimiters to define which characters are

Key Binding Reference

593

part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the

word.; Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-B: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Ctrl-Shift-C: comment-block-toggle - Toggle block comment (with ## at start) on the selected lines in

editor. This is a different style of block commenting than Wing implements by default (the default in

Wing is intended to work better with some of the other editor functionality)

Ctrl-Shift-D: selection-add-next-occurrence(skip_current=True) - Add another selection containing

the text of the current selection. If skip_current is true, the current selection will be deselected. If nothing

is currently selected, select the current word. Searches backwards if reverse is true.

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: next-scope - Select the next scope. Specify a count of more than 1 to go forward

multiple scopes. If sibling_only is true, move only to other scopes of the same parent.

Ctrl-Shift-E: focus-current-editor - Move focus back to the current editor, out of any tool, if there is an

active editor.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, adjusting the selection

range to new position

Ctrl-Shift-F: fill-paragraph - Re-wrap the selected text or current line to the configured text wrap

column. When there is no selection, wrappable regions are delineated by surrounding blank lines.

Otherwise, when there is a selection, wrapping is constrained to occur only within that selection.

Wrapping behavior depends on context; for example, wrapping Python code is different than wrapping

plain text or the contents of comments and docstrings. A shared leading prefix found on all lines is

retained and only the content after the prefix is wrapped.

Ctrl-Shift-F2: close-all - Close all documents in the current window, or in all windows if in

one-window-per-editor windowing policy. Leave currently visible documents (or active window in

one-window-per-editor-mode) if omit_current is True. Abandons changes rather than saving them when

ignore_changes is True. Close empty window and quit if all document windows closed when

close_window is True. Also closes documentation views, unless include_help is set to False.

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F4: close-all - Close all documents in the current window, or in all windows if in

one-window-per-editor windowing policy. Leave currently visible documents (or active window in

Key Binding Reference

594

one-window-per-editor-mode) if omit_current is True. Abandons changes rather than saving them when

ignore_changes is True. Close empty window and quit if all document windows closed when

close_window is True. Also closes documentation views, unless include_help is set to False.

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view.

Ctrl-Shift-F8: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Shift-F9: Multiple commands; first available is executed:

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: find-points-of-use - Find points of use for a symbol. The symbol defaults to the active

selection. Finds points of use in the file the symbol is located and in project files by default.

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document, adjusting the

selection range to new position

Ctrl-Shift-I: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-Shift-Insert: toggle-overtype - Toggle status of overtyping mode

Ctrl-Shift-J: isearch-backward - Action varies according to focus: Active Editor Commands: Initiate

incremental mini-search backward from the cursor position, optionally entering the given search string ;

Document Viewer Commands: Initiate incremental mini-search backward from the cursor position,

optionally entering the given search string.

Ctrl-Shift-K: search-backward - Search again using the search manager's current settings in

backward direction

Ctrl-Shift-L: swap-lines - Swap the line at start of current selection with the line that follows it, or the

preceding line if previous is True.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word, extending the selection

Key Binding Reference

595

Ctrl-Shift-O: open-from-project - Open document from the project via the Open From Project dialog.

The given fragment is used as the initial fragment filter and if it is None, the selected text or the symbol

under the cursor is used. If skip_if_unique is true, the file is opened without the dialog being displayed if

only one filename matches the fragment.

Ctrl-Shift-P: brace-match - Match brace at current cursor position, selecting all text between the two

and hilighting the braces

Ctrl-Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Ctrl-Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the

selection range to new position

Ctrl-Shift-R: open-from-project - Open document from the project via the Open From Project dialog.

The given fragment is used as the initial fragment filter and if it is None, the selected text or the symbol

under the cursor is used. If skip_if_unique is true, the file is opened without the dialog being displayed if

only one filename matches the fragment.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word, extending the selection

Ctrl-Shift-S: save-all - Save all unsaved items, prompting for names for any new items that don't have

a filename already.

Ctrl-Shift-Space: show-panel(panel_type="source-assistant") - Show most recently visited panel

instance of given type. If no such panel exists, add one to the primary window and show it. Returns the

panel view object or None if not shown. Focus is shifted to panel if grab_focus is specified and is true; if

grab_focus is not specified, it defaults to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**) debug-data debug-stack

debug-io debug-exceptions debug-breakpoints (**) debug-console (**) debug-watch (**) debug-modules

(**) python-shell messages (*) help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**)

snippets (**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)

versioncontrol.git (**) versioncontrol.cvs (**) versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

Ctrl-Shift-T: find-symbol-in-project - Allow user to visit point of definition of a source symbol in the

any file in the project by typing a fragment of the name

Key Binding Reference

596

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-Shift-U: batch-search(look_in="Current File") - Search on current selection using the Search in

Files tool. The look_in argument gets entered in the look in field if not None or ''. The current selection is

put into the search field if it doesn't span multiple lines and either use_selection is true or there's nothing

in the search field. The given search text is used instead, if provided

Ctrl-Shift-Up: previous-scope - Select the previous scope. Specify a count of more than 1 to go

backward multiple scopes. If sibling_only is true, move only to other scopes of the same parent.

Ctrl-Shift-V: duplicate-line - Duplicate the current line or lines. Places the duplicate on the line

following the selection if pos is 'below' or before the selection if it is 'above'.

Ctrl-Shift-W: close-all - Close all documents in the current window, or in all windows if in

one-window-per-editor windowing policy. Leave currently visible documents (or active window in

one-window-per-editor-mode) if omit_current is True. Abandons changes rather than saving them when

ignore_changes is True. Close empty window and quit if all document windows closed when

close_window is True. Also closes documentation views, unless include_help is set to False.

Ctrl-Shift-X: lower-case - Change current selection or current word to all lower case

Ctrl-Shift-Y: upper-case - Change current selection or current word to all upper case

Ctrl-Shift-Z: redo - Redo last action

Ctrl-Slash: fold-toggle - Toggle the current fold point

Ctrl-Space: show-autocompleter - Show the auto-completer for current cursor position

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands: Place a tab character

at the current cursor position ; Search Manager Instance Commands: Place a forward tab at the current

cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving between documents in the

order they were visited. Starts modal key interaction that ends when a key other than tab is seen or ctrl

is released.

Ctrl-U: execute-file - Execute the file at the given location or use the active view if loc is None.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document Viewer Commands: Reset

documentation font size to default; General Editor Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste text from clipboard ;

Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search Commands: Paste

from clipboard

Key Binding Reference

597

Ctrl-W: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut selected text ; Search

Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Ctrl-Y: redo - Redo last action

Ctrl-Z: undo - Undo last action

Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of current

line; Toolbar Search Commands: Move to the end of the toolbar search entry

Enter: new-line-after - Place a new line after the current line

Escape: exit-visual-mode - Exit visual mode and return back to default mode

F1: Multiple commands; first available is executed:

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt to

continue all paused debug processes)

F12: focus-current-editor - Move focus back to the current editor, out of any tool, if there is an active

editor.

F2: Multiple commands; first available is executed:

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

F4: show-panel(panel_type="browser") - Show most recently visited panel instance of given type. If

no such panel exists, add one to the primary window and show it. Returns the panel view object or

Key Binding Reference

598

None if not shown. Focus is shifted to panel if grab_focus is specified and is true; if grab_focus is not

specified, it defaults to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**) debug-data debug-stack

debug-io debug-exceptions debug-breakpoints (**) debug-console (**) debug-watch (**) debug-modules

(**) python-shell messages (*) help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**)

snippets (**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)

versioncontrol.git (**) versioncontrol.cvs (**) versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

F5: step-into - Step into current execution point, or start debugging at first line

F6: step-over-statement - Step over current statement

F7: step-out - Step out of the current function or method

F8: debug-continue - Start or continue debugging to next breakpoint or exception (press Alt to continue

all paused debug processes)

F9: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Forward-button-click: visit-history-next - Move forward in history to next visited editor position

Home: beginning-of-line-text - Move to end of the leading white space, if any, on the current line. If

toggle is True, moves to the beginning of the line if already at the end of the leading white space (and

vice versa).

Insert: toggle-overtype - Toggle status of overtyping mode

Iso_left_tab: backward-tab - Outdent line at current position

Left: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Page_down: forward-page - Move cursor forward one page

Page_up: backward-page - Move cursor backward one page

Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to new

position

Key Binding Reference

599

Release-Shift-Space: debug-hide-value-tips - Hide all the debug value tooltips previously shown with

debug_show_value_tips()

Return: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Right: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Shift-Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut selected text ;

Search Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection range to new position,

optionally repositioning character within line: same' to leave in same horizontal position, 'start' at start,

'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Commands: Move to

end of current line, adjusting the selection range to new position ; Toolbar Search Commands: Move to

the end of the toolbar search entry, extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the debugger originally

stopped

Shift-F2: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Shift-F3: search-backward - Search again using the search manager's current settings in backward

direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults to the active

selection. Finds points of use in the file the symbol is located and in project files by default.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view. The tests are debugged when debug is True.

Key Binding Reference

600

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands; first available is executed:

• break-set-disabled - Set a disabled breakpoint on the current line

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white space, if any, on the

current line, adjusting the selection range to the new position. If toggle is True, moves to the beginning

of the line if already at the end of the leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands: Paste text from

clipboard ; Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor backward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move backward one character, extending the selection

Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the selection

range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor forward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move forward one character, extending the selection

Shift-Space: Multiple commands; first available is executed:

• debug-show-value-tips(release_toggle=True) - Show tooltips on all visible editors

indicating the current value of all visible symbols. The value of release_toggle controls

whether this command is available if the tips are already shown; this can be used to prevent

execution of fallback commands on a key binding while the tips are already visible, if the key is

pressed again or reported in key repeat events while the key is held down.

• send-keys(keys=" ") - Send one or more keys to the editor. Send a string to enter each key

in the string, or a list of strings and/or (mod, key) tuples where mod is a string containing any

of case insensitive 'shift', 'ctrl', or 'alt'. Valid examples:

"testme"
"TestMe"

Key Binding Reference

601

["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),]

Shift-Tab: outdent-region - Outdent the selected region one level of indentation. Set sel to None to

use preference to determine selection behavior, or "never-select" to unselect after indent,

"always-select" to always select after indent, or "retain-select" to retain current selection after indent.

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection range to new

position, optionally repositioning character within line: same' to leave in same horizontal position, 'start'

at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line

selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

25.7. Brief Personality
This section documents all the default key bindings for the Brief keyboard personality, set by the

User Interface > Keyboard > Personality preference.

Alt-0: set-bookmark(mark="0") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-1: set-bookmark(mark="1") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-2: set-bookmark(mark="2") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-3: set-bookmark(mark="3") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-4: set-bookmark(mark="4") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-5: set-bookmark(mark="5") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Key Binding Reference

602

Alt-6: set-bookmark(mark="6") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-7: set-bookmark(mark="7") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-8: set-bookmark(mark="8") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-9: set-bookmark(mark="9") - Set a bookmark at current location on the editor. Mark is the

project-wide textual name of the bookmark, the category is set to the current bookmark category, and

notes are left blank.

Alt-A: toggle-mark-command(select_right=2) - Change between text-marking and non-text-marking

mode. Style is "char" for stream select, "block" for rectangular select, and "line" for line select. Set

select_right=1 to select the character to right of the cursor when marking is toggled on.

Alt-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-C: toggle-mark-command(style="block") - Change between text-marking and non-text-marking

mode. Style is "char" for stream select, "block" for rectangular select, and "line" for line select. Set

select_right=1 to select the character to right of the cursor when marking is toggled on.

Alt-D: kill-line - Kill rest of line from cursor to end of line, and place it into the clipboard with any other

contiguously removed lines. End-of-line is removed only if there is nothing between the cursor and the

end of the line.

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more level

Alt-E: open-gui - Open a file from local disk or a remote host, prompting with file selection dialog if

necessary. The dialog shown depends on the default starting directory, and may be for local files or

remote files.

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F11: prev-points-of-use-match - Display the previous match in the active points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Key Binding Reference

603

Alt-F5: search-sel-backward - Search backward using current selection

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are debugged when debug is

True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests are debugged when

debug is True.

Alt-G: goto-line - Position cursor at start of given line number

Alt-H: goto-selected-symbol-defn - Goto the definition of the selected source symbol. If other_split is

true, the definition will be displayed if a split other than the current split; if other_split is false, it will be

displayed in the current editor; if other_split is not specified or None, the split to be used is determined

by the Split Reuse Policy preference value.

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-I: toggle-overtype - Toggle status of overtyping mode

Alt-J: show-bookmarks - Show a list of all currently defined bookmarks

Alt-K: kill-line - Kill rest of line from cursor to end of line, and place it into the clipboard with any other

contiguously removed lines. End-of-line is removed only if there is nothing between the cursor and the

end of the line.

Alt-L: toggle-mark-command(style="line") - Change between text-marking and non-text-marking

mode. Style is "char" for stream select, "block" for rectangular select, and "line" for line select. Set

select_right=1 to select the character to right of the cursor when marking is toggled on.

Alt-Left: visit-history-previous - Move back in history to previous visited editor position

Alt-Left-button-click: find-points-of-use-clicked - Find points of use for last symbol clicked.

Alt-M: toggle-mark-command(select_right=1) - Change between text-marking and non-text-marking

mode. Style is "char" for stream select, "block" for rectangular select, and "line" for line select. Set

select_right=1 to select the character to right of the cursor when marking is toggled on.

Alt-Minus: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Alt-N: next-document - Move to the next document open in the current window. If alphabetical is true,

the list traversed will be alphabetized. If all_splits is true, documents from all splits will be traversed;

otherwise, only the current split will be.

Alt-Page_down: fold-expand-all-current - Expand the current fold point completely

Alt-Page_up: fold-collapse-all-current - Collapse the current fold point completely

Alt-R: insert-file - Insert a file at current cursor position, prompting user for file selection

Key Binding Reference

604

Alt-Return: new-line - Place a new line at the current cursor position. Override the auto-indent

preference by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to

auto-indent only on blank lines.

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-S: search - Bring up the search manager in search mode.

Alt-Shift-A: diff-merge-a-b

Alt-Shift-B: diff-merge-b-a

Alt-Shift-Down: next-line-extend-rect - Move to next screen line, adjusting the rectangular selection

range to new position, optionally repositioning character within line: same' to leave in same horizontal

position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Shift-F4: find-points-of-use(search_project_files=False) - Find points of use for a symbol. The

symbol defaults to the active selection. Finds points of use in the file the symbol is located and in project

files by default.

Alt-Shift-F5: debug-continue-all - Continue all paused debug processes

Alt-Shift-Left: backward-char-extend-rect - Move cursor backward one character, adjusting the

rectangular selection range to new position

Alt-Shift-N: diff-next

Alt-Shift-P: diff-previous

Alt-Shift-Right: forward-char-extend-rect - Move cursor forward one character, adjusting the

rectangular selection range to new position

Alt-Shift-Up: previous-line-extend-rect - Move to previous screen line, adjusting the rectangular

selection range to new position, optionally repositioning character within line: same' to leave in same

horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-T: replace - Bring up the search manager in replace mode.

Alt-U: undo - Undo last action

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Alt-W: save - Save active document. Also close it if close is True.

Alt-X: quit - Quit the application.

Back-button-click: visit-history-previous - Move back in history to previous visited editor position

Key Binding Reference

605

Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the editor.

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next bookmark, or the first

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the bookmark list, or the last

one if no bookmark is selected. Stays within the file in the current editor when current_file_only is True.

Only bookmarks in the current bookmark category are visited unless a category is passed.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if no bookmark is

selected. Stays within the file in the current editor when current_file_only is True. Only bookmarks in the

current bookmark category are visited unless a category is passed.

Ctrl-Alt-Shift-F5: debug-stop-all - Pause all free-running debug processes at the current program

counter

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the previous bookmark in the

bookmark list, or the last one if no bookmark is selected. Stays within the file in the current editor when

current_file_only is True. Only bookmarks in the current bookmark category are visited unless a

category is passed.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-Backspace: backward-delete-word - Action varies according to focus: Active Editor Commands:

Delete one word behind of the cursor ; Toolbar Search Commands: Delete word behind the cursor

Key Binding Reference

606

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of the current line

when there is no selection with the given start and end strings. The caret is moved to the end of the

enclosed text.

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-D: scroll-text-down - Scroll text down a line w/o moving cursor's relative position on screen.

Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to leave

cursor in current position within the source, otherwise it is moved so the cursor remains on same screen

line.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete

one word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: scroll-text-up - Scroll text up a line w/o moving cursor's relative position on screen. Repeat is

number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to leave cursor in

current position within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-F12: command-by-name - Execute given command by name, collecting any args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore_changes is True. Close

empty windows when close_window is true and quit if all document windows closed when can_quit is

true.

Ctrl-F5: debug-kill - Terminate current debug session (press Alt to terminate all debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-Home: start-of-document - Move cursor to start of document

Key Binding Reference

607

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands: Copy selected text ;

Document Viewer Commands: Copy any selected text. ; Exceptions Commands: Copy the exception

traceback to the clipboard ; Search Manager Instance Commands: Copy selected text ; Toolbar Search

Commands: Cut selection

Ctrl-Iso_left_tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-K: forward-delete-word - Action varies according to focus: Active Editor Commands: Delete one

word in front of the cursor ; Toolbar Search Commands: Delete word in front of the cursor

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Commands: Move cursor

backward one word. Optionally, provide a string that contains the delimiters to define which characters

are part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of

the word.; Toolbar Search Commands: Move backward one word

Ctrl-Left-button-click: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Minus: kill-buffer - Close the current text file

Ctrl-Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Ctrl-Page_down: next-document - Move to the next document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Page_up: previous-document - Move to the previous document open in the current window. If

alphabetical is true, the list traversed will be alphabetized. If all_splits is true, documents from all splits

will be traversed; otherwise, only the current split will be.

Ctrl-Pagedown: end-of-document - Move cursor to end of document

Ctrl-Pageup: beginning-of-document

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Key Binding Reference

608

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer Commands: Increase

documentation font size; General Editor Commands: Zoom in, increasing the text display size

temporarily by one font size

Ctrl-Pointer_button1: goto-clicked-symbol-defn - Goto the definition of the source symbol that was

last clicked on. If other_split is true, the definition will be displayed if a split other than the current split; if

other_split is false, it will be displayed in the current editor; if other_split is not specified or None, the

split to be used is determined by the Split Reuse Policy preference value.

Ctrl-Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to

new position

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of the current line when

there is no selection with the given start and end strings. The caret is moved to the end of the enclosed

text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True, back_key="Ctrl-Quoteleft",

forward_key="Ctrl-AsciiTilde") - Start moving between documents in the order they were visited.

Starts modal key interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: initiate-repeat-4 - Enter a sequence of digits indicating number of times to repeat the

subsequent command or keystroke.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Commands: Move cursor

forward one word. Optionally, provide a string that contains the delimiters to define which characters are

part of a word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or end of the

word.; Toolbar Search Commands: Move forward one word

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's relative position on

screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to

leave cursor in current position within the source, otherwise it is moved so the cursor remains on same

screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, adjusting the selection

range to new position

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to pause all debug

processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Key Binding Reference

609

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The current tests are

determined by the current position in the active view.

Ctrl-Shift-F8: start-select-rectangle - Turn on auto-select rectangle mode

Ctrl-Shift-F9: Multiple commands; first available is executed:

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document, adjusting the

selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to project

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor backward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move backward one word, extending the selection

Ctrl-Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Ctrl-Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the

selection range to new position

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active Editor Commands:

Move cursor forward one word, adjusting the selection range to new position. Optionally, provide a

string that contains the delimiters to define which characters are part of a word. Gravity may be "start" or

"end" to indicate whether cursor is placed at start or end of the word.; Toolbar Search Commands:

Move forward one word, extending the selection

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start moving between

documents in the order they were visited. Starts modal key interaction that ends when a key other than

tab is seen or ctrl is released.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative position on screen.

Repeat is number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False to leave

cursor in current position within the source, otherwise it is moved so the cursor remains on same screen

line.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands: Place a tab character

at the current cursor position ; Search Manager Instance Commands: Place a forward tab at the current

cursor position in search or replace string

Key Binding Reference

610

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving between documents in the

order they were visited. Starts modal key interaction that ends when a key other than tab is seen or ctrl

is released.

Ctrl-U: redo - Redo last action

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document Viewer Commands: Reset

documentation font size to default; General Editor Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste text from clipboard ;

Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search Commands: Paste

from clipboard

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut selected text ; Search

Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Ctrl-Z: undo - Undo last action

Delete: forward-delete-char - Action varies according to focus: Active Editor Commands: Delete one

character in front of the cursor ; Toolbar Search Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within line: 'same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

End: cursor-end - Bring cursor to end of line, to end of visible area, or to end of document each

successive consecutive invocation of this command.

End End End: end-of-document - Move cursor to end of document

Escape: exit-visual-mode - Exit visual mode and return back to default mode

F1: Multiple commands; first available is executed:

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F10: command-by-name - Execute given command by name, collecting any args as needed

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands; first available is executed:

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

Key Binding Reference

611

F3: split-vertically - Split current view vertically. Create new editor in new view when new==1.

F4: unsplit - Unsplit all editors so there's only one. Action specifies how to choose the remaining

displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

F5: search - Bring up the search manager in search mode.

F6: replace - Bring up the search manager in replace mode.

F7: start-kbd-macro - Start definition of a keyboard macro. If register=None then the user is prompted

to enter a letter a-z under which to file the macro. Otherwise, register 'a' is used by default.

F8: execute-kbd-macro - Execute most recently recorded keyboard macro. If register is None then the

user is asked to enter a letter a-z for the register where the macro is filed. Otherwise, register 'a' is used

by default.

F9: Multiple commands; first available is executed:

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Forward-button-click: visit-history-next - Move forward in history to next visited editor position

Home: cursor-home - Bring cursor to start of line, to start of visible area, or to start of document each

successive consecutive invocation of this command.

Home Home Home: start-of-document - Move cursor to start of document

Insert: paste - Action varies according to focus: Active Editor Commands: Paste text from clipboard ;

Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search Commands: Paste

from clipboard

Iso_left_tab: backward-tab - Outdent line at current position

Left: backward-char - Action varies according to focus: Active Editor Commands: Move cursor

backward one character ; Toolbar Search Commands: Move backward one character

Next: forward-page-extend - Move cursor forward one page, adjusting the selection range to new

position

Page_down: forward-page - Move cursor forward one page

Key Binding Reference

612

Page_up: backward-page - Move cursor backward one page

Prior: backward-page-extend - Move cursor backward one page, adjusting the selection range to new

position

Release-Shift-Space: debug-hide-value-tips - Hide all the debug value tooltips previously shown with

debug_show_value_tips()

Return: new-line - Place a new line at the current cursor position. Override the auto-indent preference

by setting auto_indent to 'never' to avoid indent, 'always' to auto-indent, and 'blank-only' to auto-indent

only on blank lines.

Right: forward-char - Action varies according to focus: Active Editor Commands: Move cursor forward

one character ; Toolbar Search Commands: Move forward one character

Shift-Backspace: backward-delete-char - Action varies according to focus: Active Editor Commands:

Delete one character behind the cursor, or the current selection if not empty. ; Toolbar Search

Commands: Delete character behind the cursor

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut selected text ;

Search Manager Instance Commands: Cut selected text ; Toolbar Search Commands: Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection range to new position,

optionally repositioning character within line: same' to leave in same horizontal position, 'start' at start,

'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line - Action varies according to focus: Active Editor Commands: Move to end of

current line; Toolbar Search Commands: Move to the end of the toolbar search entry

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the debugger originally

stopped

Shift-F2: Multiple commands; first available is executed:

• enter-fullscreen - Hide both the vertical and horizontal tool areas and toolbar, saving

previous state so it can be restored later with exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool bar

Shift-F3: search-backward - Search again using the search manager's current settings in backward

direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults to the active

selection. Finds points of use in the file the symbol is located and in project files by default.

Shift-F5: search-forward - Search again using the search manager's current settings in forward

direction

Key Binding Reference

613

Shift-F6: replace-and-search - Replace current selection and search again.

Shift-F7: stop-kbd-macro - Stop definition of a keyboard macro

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands; first available is executed:

• break-set-disabled - Set a disabled breakpoint on the current line

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line - Action varies according to focus: Active Editor Commands: Move to

beginning of current line. When toggle is True, moves to the end of the leading white space if already at

the beginning of the line (and vice versa).; Toolbar Search Commands: Move to the beginning of the

toolbar search entry

Shift-Insert: paste - Action varies according to focus: Active Editor Commands: Paste text from

clipboard ; Search Manager Instance Commands: Paste text from clipboard ; Toolbar Search

Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor backward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move backward one character, extending the selection

Shift-Page_down: forward-page-extend - Move cursor forward one page, adjusting the selection

range to new position

Shift-Page_up: backward-page-extend - Move cursor backward one page, adjusting the selection

range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor Commands: Move

cursor forward one character, adjusting the selection range to new position ; Toolbar Search

Commands: Move forward one character, extending the selection

Shift-Space: Multiple commands; first available is executed:

• debug-show-value-tips(release_toggle=True) - Show tooltips on all visible editors

indicating the current value of all visible symbols. The value of release_toggle controls

whether this command is available if the tips are already shown; this can be used to prevent

execution of fallback commands on a key binding while the tips are already visible, if the key is

pressed again or reported in key repeat events while the key is held down.

Key Binding Reference

614

• send-keys(keys=" ") - Send one or more keys to the editor. Send a string to enter each key

in the string, or a list of strings and/or (mod, key) tuples where mod is a string containing any

of case insensitive 'shift', 'ctrl', or 'alt'. Valid examples:

"testme"
"TestMe"
["test", ('Alt', 'X'), "m"]
[('ctrl-Shift', 'X'), ('shift','E'),]

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection range to new

position, optionally repositioning character within line: same' to leave in same horizontal position, 'start'

at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line

selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character within line: same' to

leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Key Binding Reference

615

License Information
Wing is a commercial product that is based on a number of open source technologies. Although the

product source code is available for Wing Pro users with signed non-disclosure agreement, the product

is not itself open source.

The following sections describe the licensing of the product as a whole (the End User License

Agreement), provide required legal statements for the incorporated open source components, and

describe what information Wingware may collect through this product.

26.1. Wing Pro Software License
This End User License Agreement (EULA) is a CONTRACT between you (either an individual or a

single entity) and Wingware, which covers your use of "Wing Pro" and related software components. All

such software is referred to herein as the "Software Product." A software license and a license key or

serial number ("Software Product License"), issued to a designated user, only by Wingware or its

authorized agents, is required for each user of the Software Product. If you do not agree to the terms of

this EULA, then do not install or use the Software Product or the Software Product License. By using

this software you acknowledge and agree to be bound by the following terms:

1. EXPIRING LICENSE WARNING

Some Software Product Licenses for this Software Product have an expiration date that causes most of

the features of the Software Product to be disabled after the expiration date. WINGWARE BEARS NO

LIABILITY FOR ANY DAMAGES RESULTING FROM USE OR ATTEMPTED USE OF THE

SOFTWARE PRODUCT AFTER THE EXPIRATION DATE OF AN EXPIRING SOFTWARE PRODUCT

LICENSE AND HAS NO DUTY TO PROVIDE ANY SUPPORT AFTER THE EXPIRATION DATE OF

AN EXPIRING SOFTWARE PRODUCT LICENSE.

2. GRANT OF NON-EXCLUSIVE LICENSE

Wingware grants you and your affliates the non-exclusive right for a single user to use this Software

Product for each license purchased. Each additional user of the Software Product requires an additional

Software Product License. This includes users working on operating systems where the Software

Product is compiled from source code by the user or a third party.

Wingware grants you the right to modify, alter, improve, or enhance the Software Product without

limitation, except as described in this EULA.

Although rights to modification of the Software Product are granted by this EULA, you may not tamper

with, alter, or use the Software Product in a way that disables, circumvents, or otherwise defeats its

built-in licensing verification and enforcement capabilities. The right to modification of the Software

Product also does not include the right to remove or alter any trademark, logo, copyright or other

proprietary notice, legend, symbol or label in the Software Product.

License Information

616

You may at your discretion distribute patch files containing any modifications or improvements made to

the Software Product. This right does not include the right to distribute substantial portions of the

original source, where distribution rights are limited to contextual information normally existing in

software patch files.

You may at your discretion designate license terms, open source or otherwise, for all modifications or

improvements made by you. Wingware has no special rights to any such modifications or

improvements.

You may make copies of the Software Product as reasonably necessary for its use. Each copy must

reproduce all copyright and other proprietary rights notices on or in the Software Product.

You may install your Software Product License only on computer systems and user accounts that are

used by you, the licensee. You may also make copies of the Software Product License as necessary for

backup and/or archival purposes. No other copies or installations may be made.

All rights not expressly granted to you are retained by Wingware.

2.1 NON-COMMERCIAL USE LICENSES

Wingware provides Non-Commercial Use licenses to the following types of users: (a) publicly funded

charities, (b) universities, colleges, and other educational institutions (including, but not limited to

elementary schools, middle schools, high schools, and community colleges), (c) students at any of

these types of educational institutions, (d) individuals or entities who are under contract by the

above-stated organizations and using the Software Product exclusively for such charitable or

educational clients, (d) other individual users who use the Software Product for unpaid personal use

only (for example, unpaid hobby, learning, or entertainment), and (e) individuals and entities that have

received from Wingware express written permission to use the Software Product for other purposes.

Non-Commercial Use licenses purchased by companies; organizations other than publicly funded

charities; government divisions, agencies, or offices; or any other individual or entity not described in the

preceding paragraph are invalid and may not be used until the license is upgraded by paying the price

difference between the Non-Commercial Use and Commercial Use license for the Software Product.

Wingware, a Delaware corporation, reserves the right to further clarify the terms of Non-Commercial

Use at its sole determination.

2.2 COUNTRY OR REGION OF USE

Software Product licenses that are not designated as geographically restricted are worldwide licenses

and may be used in any country or region.

Some discounted Software Product licenses issued by Wingware are designated as geographically

restricted, and may be used only within a specific country or region. These licenses are invalid and may

not be used in any other country or region. Geographically restricted licenses may fail to function

outside of the designated country or region until they are upgraded for worldwide use by paying the

price difference between the discounted geographically restricted license and worldwide license.

License Information

617

3. INTELLECTUAL PROPERTY RIGHTS RESERVED BY WINGWARE

The Software Product is owned by Wingware and is protected by United States and international

copyright laws and treaties, as well as other intellectual property laws and treaties. You must not

remove or alter any copyright notices on any copies of the Software Product. This Software Product

copy is licensed, not sold. You may not use, copy, or distribute the Software Product, except as granted

by this EULA, without written authorization from Wingware or its designated agents. Furthermore, this

EULA does not grant you any rights in connection with any trademarks or service marks of Wingware.

Wingware reserves all intellectual property rights, including copyrights, and trademark rights.

4. LIMITED RIGHTS TO TRANSFER

You may not rent, lease, lend, or in any way distribute or transfer any rights in this EULA or the Software

Product to third parties without Wingware's written approval.

However, companies that purchase a Commercial Use license may from time to time, as employees

come and go or roles change, transfer that license to another individual, provided that the prior user of

the license ceases to use the license immediately after the transfer has been made.

All transfers of a license to another individual are subject to the recipient's acceptance of the terms of

the EULA and are null and void in the event that the prior user continues to use the license or otherwise

fails to relinquish their rights to the Software Product.

5. INDEMNIFICATION

You hereby agree to indemnify Wingware against and hold harmless Wingware from any claims,

lawsuits or other losses that arise out of your breach of any provision of this EULA.

6. THIRD PARTY RIGHTS

Any software provided along with the Software Product that is associated with a separate license

agreement is licensed to you under the terms of that license agreement. This license does not apply to

those portions of the Software Product. Copies of these third party licenses are listed in the

documentation included with the Software Product.

7. SUPPORT SERVICES

Wingware may provide you with support services related to the Software Product. Use of any such

support services is governed by Wingware policies and programs described in online documentation

and/or other Wingware-provided materials.

As part of these support services, Wingware may make available bug lists, planned feature lists, and

other supplemental informational materials. WINGWARE MAKES NO WARRANTY OF ANY KIND FOR

THESE MATERIALS AND ASSUMES NO LIABILITY WHATSOEVER FOR DAMAGES RESULTING

License Information

618

FROM ANY USE OF THESE MATERIALS. FURTHERMORE, YOU MAY NOT USE ANY MATERIALS

PROVIDED IN THIS WAY TO SUPPORT ANY CLAIM MADE AGAINST WINGWARE.

Any supplemental software code or related materials that Wingware provides to you as part of the

support services, in periodic updates to the Software Product or otherwise, is to be considered part of

the Software Product and is subject to the terms and conditions of this EULA.

Wingware will keep confidential and private all technical information that you provide to obtain support

services.

8. TERMINATION WITHOUT PREJUDICE TO ANY OTHER RIGHTS

Wingware may terminate this EULA if you fail to comply with any term or condition of this EULA. In such

event, you must destroy all your copies of the Software Product and Software Product Licenses.

9. U.S. GOVERNMENT USE

If the Software Product is licensed under a U.S. Government contract, you acknowledge that the

software and related documentation are "commercial items," as defined in 48 C.F.R 2.01, consisting of

"commercial computer software" and "commercial computer software documentation," as such terms

are used in 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1. You also acknowledge that the software is

"commercial computer software" as defined in 48 C.F.R. 252.227-7014(a)(1). U.S. Government

agencies and entities and others acquiring under a U.S. Government contract shall have only those

rights, and shall be subject to all restrictions, set forth in this EULA. Contractor/manufacturer is

Wingware, P.O. Box 400527, Cambridge, MA 02140-0006, USA.

10. EXPORT RESTRICTIONS

You will not download, export, or re-export the Software Product, any part thereof, or any software, tool,

process, or service that is the direct product of the Software Product, to any country, person, or entity --

even to foreign units of your own company -- if such a transfer is in violation of U.S. export restrictions.

11. NO WARRANTIES

YOU ACCEPT THE SOFTWARE PRODUCT AND SOFTWARE PRODUCT LICENSE "AS IS," AND

WINGWARE AND ITS THIRD PARTY SUPPLIERS AND LICENSORS MAKE NO WARRANTY AS TO

ITS USE, PERFORMANCE, OR OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, WINGWARE AND ITS THIRD PARTY SUPPLIERS AND LICENSORS DISCLAIM

ALL OTHER REPRESENTATIONS, WARRANTIES, AND CONDITIONS, EXPRESS, IMPLIED,

STATUTORY, OR OTHERWISE, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR

PURPOSE, TITLE, AND NON-INFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR

PERFORMANCE OF THE SOFTWARE PRODUCT REMAINS WITH YOU.

License Information

619

12. LIMITATION OF LIABILITY

THIS LIMITATION OF LIABILITY IS TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW.

IN NO EVENT SHALL WINGWARE OR ITS THIRD PARTY SUPPLIERS AND LICENSORS BE

LIABLE FOR ANY COSTS OF SUBSTITUTE PRODUCTS OR SERVICES, OR FOR ANY SPECIAL,

INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING,

WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS

INTERRUPTION, OR LOSS OF BUSINESS INFORMATION) ARISING OUT OF THIS EULA OR THE

USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE FAILURE TO PROVIDE

SUPPORT SERVICES, EVEN IF WINGWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. IN ANY CASE, WINGWARE'S, AND ITS THIRD PARTY SUPPLIERS' AND LICENSORS',

ENTIRE LIABILITY ARISING OUT OF THIS EULA SHALL BE LIMITED TO THE LESSER OF THE

AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR THE PRODUCT LIST

PRICE; PROVIDED, HOWEVER, THAT IF YOU HAVE ENTERED INTO A WINGWARE SUPPORT

SERVICES AGREEMENT, WINGWARE'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES

SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT.

Package management and some other features in the Software Product make it possible to download,

install, and use third party packages and other software. Wingware does not control the package

repositories used by these features and has no ability to inspect or warrant the suitability, quality, safety,

or integrity of downloaded third party packages and software. You acknowledge and agree that use of

the Software Product to install third party packages and other sofware is entirely at your own risk and

discretion. Wingware is not liable for the presence or any bugs, omissions, errors, malware, or any other

deficiencies in third party packages and software downloaded through the Software Product.

13. HIGH RISK ACTIVITIES

The Software Product is not fault-tolerant and is not designed, manufactured or intended for use or

resale as on-line control equipment in hazardous environments requiring fail-safe performance, such as

in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control,

direct life support machines, or weapons systems, in which the failure of the Software Product, or any

software, tool, process, or service that was developed using the Software Product, could lead directly to

death, personal injury, or severe physical or environmental damage ("High Risk Activities"). Accordingly,

Wingware and its suppliers and licensors specifically disclaim any express or implied warranty of fitness

for High Risk Activities. You agree that Wingware and its suppliers and licensors will not be liable for

any claims or damages arising from the use of the Software Product, or any software, tool, process, or

service that was developed using the Software Product, in such applications.

14. GOVERNING LAW; ENTIRE AGREEMENT ; DISPUTE RESOLUTION

License Information

620

This EULA is governed by the laws of the Commonwealth of Massachusetts, U.S.A., excluding the

application of any conflict of law rules. The United Nations Convention on Contracts for the International

Sale of Goods shall not apply.

This EULA is the entire agreement between Wingware and you, and supersedes any other

communications or advertising with respect to the Software Product; this EULA may be modified only by

written agreement signed by authorized representatives of you and Wingware.

Unless otherwise agreed in writing, all disputes relating to this EULA (excepting any dispute relating to

intellectual property rights) shall be subject to final and binding arbitration in the State of Massachusetts,

in accordance with the Licensing Agreement Arbitration Rules of the American Arbitration Association,

with the losing party paying all costs of arbitration. Arbitration must be by a member of the American

Arbitration Association. If any dispute arises under this EULA, the prevailing party shall be reimbursed

by the other party for any and all legal fees and costs associated therewith.

15. GENERAL

If any provision of this EULA is held invalid, the remainder of this EULA shall continue in full force and

effect.

A waiver by either party of any term or condition of this EULA or any breach thereof, in any one

instance, shall not waive such term or condition or any subsequent breach thereof.

16. OUTSIDE THE U.S.

If you are located outside the U.S., then the provisions of this Section shall apply. Les parties aux

prÃ©sentes confirment leur volontÃ© que cette convention de mÃªme que tous les documents y

compris tout avis qui s'y rattache, soient redigÃ©s en langue anglaise. (translation: "The parties confirm

that this EULA and all related documentation is and will be in the English language.") You are

responsible for complying with any local laws in your jurisdiction which might impact your right to import,

export or use the Software Product, and you represent that you have complied with any regulations or

registration procedures required by applicable law to make this license enforceable.

17. TRADEMARKS

The following are trademarks or registered trademarks of Wingware: Wingware, the feather logo, Wing

Python IDE, Wing Pro, Wing Personal, Wing 101, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing

IDE Professional, Wing IDE Pro, Wing Debugger, and "The Intelligent Development Environment for

Python Programmers"

18. CONTACT INFORMATION

License Information

621

If you have any questions about this EULA, or if you want to contact Wingware for any reason, please

direct all correspondence to: Wingware, P.O. Box 400527, Cambridge, MA 02140-0006, United States

of America or send email to info at wingware.com.

26.2. Open Source License Information
Wing incorporates the following open source technologies, most of which are under OSI Certified Open

Source licenses except as indicated in the footnotes:

• Python -- The Python programming language by Guido van Rossum, PythonLabs, and many

contributors -- Python Software Foundation License version 2 [3]

• Qt5 -- Graphical user interface toolkit by many contributors -- LGPL v. 2.1 [1] [6]

• Python Imaging Library -- Library for image manipulation with Python, written by Secret Labs AB

and Fredrik Lundh -- MIT License

• Scintilla -- Source code editor component by Neil Hodgson and contributors -- MIT License

• docutils -- reStructuredText markup processing by David Goodger and contributors-- Public

Domain [2]

• Sqlite -- A self-contained, serverless, zero-configuration, transactional SQL database engine --

Public domain [5]

• pysqlite -- Python bindings for sqlite by Gerhard Haering -- BSD-like custom license [4]

• pexpect -- Process control library by Noah Spurrier, Richard Holden, Marco Molteni, Kimberley

Burchett, Robert Stone, Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids vander

Molen, George Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin, Jacques-Etienne Baudoux,

Geoffrey Marshall, Francisco Lourenco, Glen Mabey, Karthik Gurusamy, Fernando Perez, Corey

Minyard, Jon Cohen, Guillaume Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone,

Jorgen Grahn, John Spiegel, Jan Grant, Shane Kerr, and other contributors. -- ISC License

• ptyprocess -- Process control library by Noah Spurrier -- ISC License

• PyYAML -- YAML parsing library by Ingy döt Net and Kirill Simonov

• pycodestyle -- A simple Python style checker by Johann C. Rocholl, Florent Xicluna, and Ian Lee --

MIT License

• autopep8 -- A PEP 8 Python code formatter by Hideo Hattori, Steven Myint, Bill Wendling, and

contributors -- MIT License

• Pygments -- A syntax highlighter by Georg Brandl, Armin Ronacher, Tim Hatch, and contributors --

MIT License

• getmac -- A utility for obtaining MAC addresses written by Christopher Goes -- MIT License

• Positronic, Cherry Blossom, and Sun Steel -- Color palettes by Daniel Hill -- MIT License

• pipdeptree by Vineet Naik and contributors -- MIT License

• Fabric by Jeff Forcier and contributors -- BSD License

• Paramiko by Jeff Forcierk Alex Gaynor, Olle Lundberg, Scott Maxwell, and other contributors --

LGPL License [1]

License Information

622

http://www.opensource.org/
http://www.opensource.org/
https://python.org/
http://qt-project.org/
http://www.pythonware.com/products/pil/
http://scintilla.org/
https://pypi.org/project/docutils/
http://sqlite.org
https://pypi.org/project/pysqlite/
https://pypi.org/project/pexpect/
https://pypi.org/project/ptyprocess/
https://pyyaml.org/
https://github.com/PyCQA/pycodestyle
https://github.com/hhatto/autopep8
http://pygments.org/
https://pypi.org/project/get-mac/
https://github.com/RazorX/Positronic_Color_Palette_for_Python_Wing_IDE
https://github.com/RazorX/Cherry_Blossom_Color_Palette_for_Python_Wing_IDE
https://github.com/RazorX/Sun_Steel_Color_Palette_for_Python_Wing_IDE
https://github.com/naiquevin/pipdeptree
https://pypi.org/project/fabric/
https://pypi.org/project/paramiko/

• bcrypt by Paul Kehrer, Alex Gaynor, Donald Stufft, John Durfresne, and many other contributors --

Apache License 2.0

• cffi by Armin Rigo and Maciej Fijalkowsk -- MIT License

• cryptography by Paul Kehrer, Alex Gaynor, Alex Stapleton, Terry Chia, dreid, Mohamed Atti, and

many other contributors -- Multiple Licenses [7]

• invoke by Jeff Forcier and contributors -- BSD License

• pathlib2 by Matthias C. M. Troffaes, Antoine Pitrou, and contributors -- MIT License

• pycparser by Eli Bendersky, Jon Dufresne, Akira Hayakawa, and contributors -- BSD License

• pynacl by Donald Stufft, Paul Kehrer, lmctv, Alex Gaynor, David Robertson, Terry Chia, Jack Wink,

and other contributors -- Apache License 2.0

• six by Benjamin Peterson, Marc Abramowitz, Jason R. Coombs, Jon Dufresne, and many

contributors -- MIT License

Notes

[1] The LGPL requires us to redistribute the source code for all libraries linked into Wing. All of these

modules are readily available on the internet. In some cases we may have modifications that have not

yet been incorporated into the official versions; if you wish to obtain a copy of our version of the sources

of any of these modules, please email us at info at wingware.com.

[2] Docutils contains a few parts under other licenses (BSD, Python 2.1, Python 2.2, Python 2.3, and

GPL). See the COPYING.txt file in the source distribution for details.

[3] The Python Software Foundation License version 2 is an OSI Approved Open Source license. It

consists of a stack of licenses that also include other licenses that apply to older parts of the Python

code base. All of these are included in the OSI Approved license: PSF License, BeOpen Python

License, CNRI Python License, and CWI Python License. The intellectual property rights for Python are

managed by the Python Software Foundation.

[4] Not OSI Approved, but similar to other OSI approved licenses. The license grants anyone to use the

software for any purpose, including commercial applications.

[5] The source code states the author has disclaimed copyright of the source code. The sqllite.org

website states: "All of the deliverable code in SQLite has been dedicated to the public domain by the

authors. All code authors, and representatives of the companies they work for, have signed affidavits

dedicating their contributions to the public domain and originals of those signed affidavits are stored in a

firesafe at the main offices of Hwaci. Anyone is free to copy, modify, publish, use, compile, sell, or

distribute the original SQLite code, either in source code form or as a compiled binary, for any purpose,

commercial or non-commercial, and by any means."

[6] Qt is available under several licenses. The LGPL v. 2.1 version of the software was used for Wing.

License Information

623

https://pypi.org/project/bcrypt/
https://pypi.org/project/cffi/
https://pypi.org/project/cryptography/
https://pypi.org/project/invoke/
https://pypi.org/project/pathlib2/
https://pypi.org/project/pycparser/
https://github.com/pyca/pynacl/
https://pypi.org/project/six/
mailto:info@wingware.com
https://python.org/psf

[7] Contributions to cryptography have been licensed under both the BSD License and Apache License

2.0. Some portions of the code were derived from CPython and thus are licensed under the Python

Software Foundation License.

Scintilla

We are required by the license terms for Scintilla to include the following copyright notice in this

documentation:

Copyright 1998-2003 by Neil Hodgson <neilh@scintilla.org>

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

Python Imaging Library

We are required by the license terms for Scintilla to include the following copyright notice in this

documentation:

The Python Imaging Library (PIL) is

 Copyright © 1997-2011 by Secret Labs AB
 Copyright © 1995-2011 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its associated documentation, you agree
that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its associated documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of Secret Labs AB or the author not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

License Information

624

PyYAML

We are required by the license terms for PyYAML to include the following copyright notice in this

documentation:

Copyright (c) 2017-2020 Ingy döt Net
Copyright (c) 2006-2016 Kirill Simonov

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

pycodestyle

We are required by the license terms for pycodestyle to include the following copyright notice in this

documentation:

Copyright © 2006-2009 Johann C. Rocholl <johann@rocholl.net>
Copyright © 2009-2014 Florent Xicluna <florent.xicluna@gmail.com>
Copyright © 2014-2018 Ian Lee <IanLee1521@gmail.com>

Licensed under the terms of the Expat License

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

License Information

625

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

autopep8

We are required by the license terms for autopep8 to include the following copyright notice in this

documentation:

Copyright (C) 2010-2011 Hideo Hattori
Copyright (C) 2011-2013 Hideo Hattori, Steven Myint
Copyright (C) 2013-2016 Hideo Hattori, Steven Myint, Bill Wendling

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Pygments

We are required by the license terms for Pygments to include the following copyright notice in this

documentation:

Copyright (c) 2006-2019 by the respective authors (see AUTHORS file).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

License Information

626

* Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

pexpect

We are required by the license terms for pexpect to include the following copyright notice in this

documentation:

Copyright (c) 2013-2016, Pexpect development team
Copyright (c) 2012, Noah Spurrier <noah@noah.org>

PERMISSION TO USE, COPY, MODIFY, AND/OR DISTRIBUTE THIS SOFTWARE FOR ANY
PURPOSE WITH OR WITHOUT FEE IS HEREBY GRANTED, PROVIDED THAT THE ABOVE
COPYRIGHT NOTICE AND THIS PERMISSION NOTICE APPEAR IN ALL COPIES.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

ptyprocess

We are required by the license terms for ptyprocess to include the following copyright notice in this

documentation:

Copyright (c) 2013-2014, Pexpect development team
Copyright (c) 2012, Noah Spurrier <noah@noah.org>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above

License Information

627

copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

getmac

We are required by the license terms for getmac to include the following copyright notice in this

documentation:

Copyright (c) 2017 Christopher Goes

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Positronic, Cherry Blossom, and Sun Steel Display Palettes

We are required by the license terms for these colors palettes to include the following copyright notice in

this documentation:

The MIT License (MIT)

Copyright (c) 2014 Daniel Hill aka RazorX - Identity e-mail: public at RazorX.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is

License Information

628

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

pipdeptree

We are required by the license terms for pipdeptree to include the following copyright notice in this

documentation:

Copyright (c) 2015 Vineet Naik (naikvin@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Fabric

We are required by the license terms for Fabric to include the following copyright notice in this

documentation:

Copyright (c) 2020 Jeff Forcier.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

License Information

629

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

bcrypt, cryptography, and pynacl

We are required by the license terms for bcrypt, cryptography, and pynacl to include the following copy

of the Apache License 2.0 in this documentation:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,

License Information

630

 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

License Information

631

 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions

License Information

632

 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason

License Information

633

 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

cffi

We are required by the license terms for cffi to include the following in this documentation:

Copyright (c) 2015 Armin Rigo and Maciej Fijalkowsk

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

License Information

634

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

cryptography

We are required by the license terms for cryptography to include the following in this documentation:

Copyright (c) Individual contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 3. Neither the name of PyCA Cryptography nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

invoke

We are required by the license terms for invoke to include the following in this documentation:

Copyright (c) 2020 Jeff Forcier.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,

License Information

635

 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

pathlib2

We are required by the license terms for pathlib2 to include the following in this documentation:

The MIT License (MIT)

Copyright (c) 2014-2017 Matthias C. M. Troffaes Copyright (c) 2012-2014 Antoine Pitrou and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

pycparser

We are required by the license terms for pycparser to include the following in this documentation:

Copyright (c) 2008-2020, Eli Bendersky
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
* Neither the name of Eli Bendersky nor the names of its contributors may

License Information

636

 be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

six

We are required by the license terms for six to include the following in this documentation:

Copyright (c) 2010-2020 Benjamin Peterson

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

26.3. Privacy Policy
Wingware collects as little information about its customers as is reasonably necessary to conduct

business with them, and never rents or sells information about its customers to a third party. However,

customer identity and personal information may be used by Wingware to conduct its own demographic

research for marketing purposes, to comply with regulatory or legal requirements, or in confidential

applications for services such as insurance.

This product may submit certain information to Wingware, using https encrypted communication, as

follows:

License Activation

License Information

637

In products that require a license, such as Wing Pro, a license activation process takes place before you

can use the software. This is true both for trial licenses and when activating a purchased license. The

information passed to our servers includes:

1. License number

2. For trial licenses only, an SHA hash of machine identity metrics that include hardware serial

number, ethernet number, and file system IDs

3. The request code, which is an SHA hash of the license number, date, and the same machine

identity metrics listed above

4. Your IP address

5. The optional user information that you entered into the license activation dialog for the purpose of

license recovery

License activation is a requirement and cannot be disabled. However, it can be done manually via

https://wingware.com/activate if you don't want Wing to connect directly to wingware.com.

Update Check

Wing periodically checks for updates by contacting wingware.com. This check will send the following

information:

1. License number

2. Current version and patch level

3. Your IP address

Update checks can be disabled with the User Interface > Other > Auto-check for Product Updates

preference and by not using Check for Updates in the Help menu.

Bug Reports and Feedback

Wing provides a mechanism for submitting bug reports and feedback, which may send the following

information to our servers:

1. Any text entered into the bug report and feedback dialogs

2. License number

3. Your IP address

4. Basic host and installation data including product version and patch level, installation location,

settings directory, cache directory, OS type and version, CPU type, memory size, local IP

addresses, currently open project, and active Python installation location and version

5. In bug reports, you may optionally include a log of recent IDE activity, the filename of which is

given in the bug submission dialog

License Information

638

https://wingware.com/activate

To avoid submitting this information to Wingware, simply refrain from submitting any bug reports or

feedback from the Help menu.

Usage Statistics

Wing periodically submits usage statistics to help us understand which features are most used and to

help provide support. The data sent consists of:

1. Product type, version, and patch level

2. License number

3. Your IP address

4. Usage statistics consisting of (name, value) pairs where name is a code identifying an IDE feature,

such as 'debug.start', 'testing.run', and 'minutes-used', and value is an integer count

To avoid submitting usage statistics, disable the User Interface > Other > Submit Usage Stats

preference.

Special Offers

Wing periodically checks for special offers posted by Wingware and presents these to the user. This is

done as part of the product update check and sends no additional information to wingware.com.

To turn off display of special offers without disabling update checks, uncheck the User

Interface > Other > Show Discount Offers preference.

License Information

639

	Wing Pro Reference Manual
	Introduction
	1.1. Product Levels
	1.2. Licenses
	1.3. Supported Platforms
	Windows
	Mac
	Linux
	Remote Development

	1.4. Supported Python versions
	1.5. Technical Support
	1.6. Prerequisites for Installation
	1.7. Installing Wing
	1.8. Running Wing
	1.9. Installing Your License
	1.10. Settings Directory
	1.11. Upgrading
	Upgrading Without an Internet Connection
	Upgrading to a New Major Release
	Upgrading Your License
	1.11.1. Migrating From Older Versions
	Compatibility Changes in Wing 8

	1.11.2. Fixing a Failed Upgrade

	1.12. Installation Details and Options
	1.12.1. Linux Installation Notes
	1.12.2. Remote Display on Linux
	1.12.3. Source Code Installation

	1.13. Backing Up and Sharing Settings
	1.14. Removing Wing
	1.15. Command Line Usage
	Opening Files and Projects
	Command Line Options

	Customization
	2.1. High Level Configuration Options
	2.2. User Interface Options
	2.2.1. Display Style and Colors
	2.2.2. Windowing Policies
	2.2.3. User Interface Layout
	2.2.4. Text Font and Size

	2.3. Keyboard Personalities
	2.3.1. Key Bindings
	2.3.2. Key Maps
	Includes
	Examples

	2.3.3. Key Names

	2.4. Preferences
	2.4.1. Preferences File Layers
	2.4.2. Preferences File Format

	2.5. Custom Syntax Coloring
	Minor Adjustments
	Comprehensive Changes
	Overriding Preferences
	Color Palette-Specific Configuration
	Print-Only Colors
	Automatic Color Adjustment
	Color Names for Python

	2.6. Perspectives
	Perspective Manager
	Preferences
	Auto-Perspectives
	Restoring the Default Toolset

	2.7. File Filters

	Project Manager
	3.1. Creating a Project
	Select the Host
	Select the Source Directory
	Select the Python Environment
	3.1.1. Creating Python Environments
	3.1.2. About Project Configuration

	3.2. Moving Projects
	3.3. Display Options
	3.4. Opening Files
	3.5. File Operations
	3.6. Creating, Renaming, and Deleting Files
	3.7. Project Properties
	Environment
	Debug/Execute
	Options
	Extensions
	Testing
	VCS
	3.7.1. Environment Variable Expansion

	3.8. File Properties
	File Attributes
	Editor
	Debug/Execute
	Testing

	3.9. Sharing Projects
	Making Project Files More Sharable
	Changing Which Properties are Shared
	File Format

	3.10. Launch Configurations
	Python Tab
	Environment Tab
	Shared Launch Configurations
	Working on Different Machines or OSes

	Package Manager
	Configuration
	Setting up pipenv
	Setting up conda
	Packages List
	Working with Containers and Clusters
	4.1. Package Management Operations
	Installing Packages
	Upgrading/Downgrading Packages
	Removing Packages
	Other Operations
	Managing Configuration Files

	4.2. Package Manager Options
	4.3. Package Management with pipenv
	Configuring Python Executable
	Manual Configuration
	Pipenv Auto-Install
	Removing the pipenv Virtualenv
	Selecting Python Version

	4.4. Package Management with conda
	4.5. Package Management Security

	Source Code Editor
	5.1. Opening, Creating, and Closing Files
	5.2. File Status and Read-Only Files
	5.3. Transient, Sticky, and Locked Editors
	5.4. Editor Context Menu
	5.5. Navigating Source
	5.6. Source Assistant
	Docstring Type and Validity
	Source Assistant Options
	Goto Definition from Documentation
	Python Standard Library Documentation Links

	5.7. Folding
	Editor Fold Margin
	Folding Menus
	Folding Preferences

	5.8. Bookmarks
	5.9. Syntax Coloring
	5.10. Selecting Text
	5.10.1. Multiple Selections

	5.11. Copy/Paste
	5.12. Auto-completion
	5.12.1. Turbo Completion Mode for Python
	5.12.2. Auto-completion Icons
	5.12.3. How Auto-completion Works

	5.13. Auto-Editing
	5.14. Auto-Reformatting
	5.14.1. PEP 8 Reformatting Options
	5.14.2. Black Formatting Options
	5.14.3. YAPF Formatting Options
	5.14.4. Other Reformatters

	5.15. Code Snippets
	Snippets Tool
	Contexts
	Key Bindings
	Execution and Data Entry
	Scripting Snippets
	5.15.1. Snippet Syntax
	Indentation and Line Endings
	Cursor Placement

	5.15.2. Snippets Directory Layout

	5.16. Indentation
	5.16.1. How Indent Style is Determined
	5.16.2. Indent Guides, Policies, and Warnings
	5.16.3. Auto-Indent
	5.16.4. The Tab Key
	5.16.5. Adjusting Indentation
	5.16.6. Indentation Tool

	5.17. Keyboard Macros
	5.18. Auto-Reloading Changed Files
	5.19. Auto-Save
	5.20. File Sets
	5.21. Other Editor Features

	Search and Replace
	6.1. Toolbar Quick Search
	6.2. Keyboard-Driven Search and Replace
	6.3. Search Tool
	Search Type
	Search Options
	Special Characters

	6.4. Search in Files Tool
	Search Type
	Options
	Special Characters

	6.5. Find Points of Use
	6.6. Wildcard Search Syntax

	Code Warnings and Quality Inspection
	7.1. Code Warnings Tool
	7.2. Warnings on the Editor
	7.3. Warnings Types
	7.4. Advanced Configuration
	7.5. External Code Quality Checkers

	Refactoring
	8.1. Rename Symbol
	8.2. Move Symbol
	8.3. Extract Function / Method
	8.4. Delete Symbol
	8.5. Introduce Variable
	8.6. Rename Current Module
	8.7. Symbol to *

	Difference and Merge
	Session Types
	Options

	Source Code Browser
	10.1. Display Choices
	10.2. Symbol Types
	10.3. Display Filters
	10.4. Sorting the Display
	10.5. Navigating the Views

	Integrated Python Shell
	11.1. Python Shell Environment
	11.2. Active Ranges in the Python Shell
	11.3. Debugging Code in the Python Shell
	11.4. Python Shell Options

	OS Commands Tool
	12.1. OS Command Properties
	12.2. Sharing Projects with OS Commands

	Unit Testing
	13.1. Project Test Files
	13.2. Running and Debugging Tests
	Debugging
	Execution Options

	13.3. Running unittest Tests from the Command Line

	Debugger
	14.1. Debugger Quick Start
	14.2. Debug Environment
	14.3. Named Entry Points
	Named Entry Point Fields

	14.4. Specifying Main Entry Point
	14.5. Setting Breakpoints
	Breakpoint Types
	Breakpoint Attributes
	Breakpoints Tool
	Keyboard Modifiers for Breakpoint Margin

	14.6. Starting Debug
	14.7. Debugger Status
	14.8. Flow Control
	14.9. Viewing the Stack
	14.10. Viewing Debug Data
	14.10.1. Stack Data Tool
	14.10.1.1. Array, Data Frame, and Textual Data Views
	14.10.1.2. Stack Data Options Menu
	14.10.1.3. Stack Data Context Menu
	14.10.1.4. Filtering Value Display
	14.10.1.5. Advanced Data Display

	14.10.2. Viewing Data on the Editor
	Hovering Over the Editor
	Showing All Available Values

	14.10.3. Watching Values
	14.10.4. Evaluating Expressions
	14.10.5. Problems Handling Values
	Managing Value Errors

	14.11. Debug Process I/O
	Options
	14.11.1. External I/O Consoles
	14.11.2. Debug Process I/O Multiplexing

	14.12. Interactive Debug Console
	14.12.1. Managing Program State
	14.12.2. Debugging Code Recursively
	14.12.3. Debug Console Options
	14.12.4. Debug Console Limitations
	Nested Function Scope
	List Comprehensions and Generators

	14.13. Multi-Process Debugging
	14.13.1. Debugging Child Processes
	14.13.2. Process Control

	14.14. Debugging Multi-threaded Code
	14.15. Managing Exceptions
	14.16. Running Without Debug

	Advanced Debugging Topics
	15.1. Debugging Externally Launched Code
	15.1.1. Debugging Externally Launched Remote Code
	15.1.2. Externally Launched Process Behavior
	15.1.3. Debugging Embedded Python Code
	15.1.4. Configuring wingdbstub
	15.1.5. Starting Debug Automatically Using sitecustomize
	Starting Debug
	Remote Hosts and Containers
	Trouble-Shooting

	15.1.6. Debugger API

	15.2. Manually Configured Remote Debugging
	15.2.1. Manually Configuring SSH Tunneling
	15.2.2. File Location Maps
	15.2.2.1. Manually Configured File Location Maps
	15.2.2.2. Manually Configured File Location Map Examples

	15.2.3. Manually Configured Remote Debugging Example
	15.2.4. Manually Installing the Debugger

	15.3. Using wingdb to Initiate Debug
	15.4. Attaching and Detaching
	15.5. Debugging C/C++ and Python Together
	15.5.1. Debugging Extension Modules on Linux/Unix

	15.6. Debugging Non-Python Mainloops
	15.7. Debugging Code with XGrab* Calls
	15.8. Debugger Limitations

	Integrated Version Control
	16.1. Setting Up Version Control in Wing
	16.2. Version Control Tools
	16.3. Common Version Control Operations
	16.4. CVS
	16.5. Git
	16.6. Mercurial
	16.7. Perforce
	16.8. Subversion

	Source Code Analysis
	17.1. How Analysis Works
	17.2. Helping Wing Analyze Code
	17.2.1. Setting the Correct Python Environment
	17.2.2. Using Live Runtime State
	17.2.3. Adding Type Hints
	17.2.4. Defining Interface Files
	17.2.5. Helping Wing Analyze Cython Code

	17.3. Analysis Disk Cache

	Working with Containers and Clusters
	Overview
	How it Works
	18.1. Individual Containers
	Configuration Overview
	Manual Configuration
	Container Instance Management
	Multiple Containers
	Container-Only Files

	18.2. Working with Clusters
	Configuration
	How Debugging Clusters Works
	Container Instance Management
	Cluster Life Cycle
	Details and Notes

	18.3. Containers Tool
	Individual Containers
	Clusters
	Consoles

	Remote Development
	How it Works
	Configuration Overview
	19.1. Setting up SSH for Remote Development
	Choosing an SSH Implementation
	Using OpenSSH or PuTTY Executables
	Using Wing's Built-in SSH Implementation
	Setting up SSH Access
	How Wing Stores Passphrases
	Preventing Access to an SSH User Agent
	Custom SSH Connection Responses

	19.2. Configuring Remote Hosts
	Installing and Running the Remote Agent
	Shared Remote Hosts Configurations

	19.3. Setting up Remote Projects
	Local Project Files
	Remote Project Files
	Creating Project Files
	Storing Project Files Remotely

	19.4. Remote Development Features
	19.5. Remote Agent User Settings
	19.6. Specifying Environment for the Remote Python
	19.7. Manually Installing the Remote Agent
	19.8. SSH Setup Details
	19.8.1. Working With OpenSSH
	Using Login Passwords
	Generating an SSH Key Pair
	Moving the SSH Public Key to the Remote Host
	Loading the SSH Private Key into the User Agent
	Trouble-Shooting
	Using a Non-Default SSH Port

	19.8.2. Working With PuTTY
	Logging in with Passwords
	Generating an SSH Key Pair
	Moving the SSH Public Key to the Remote Host
	Loading the SSH Private Key into the User Agent
	Trouble-Shooting
	Using a Non-Default SSH Port

	19.8.3. Working With Wing's Built-In SSH Implementation
	Configuration
	Using Login Passwords
	Using SSH Key Pairs
	Using an SSH Agent
	Specifying or Searching for Keys
	Host Keys
	Limitations

	19.8.4. Enabling Windows 10 OpenSSH Client

	Scripting and Extending Wing
	20.1. Scripting Example Tutorial
	20.2. Overview of the Scripting Framework
	20.3. Scripting API
	20.4. Script Syntax
	20.4.1. Script Attributes
	20.4.2. Adding Scripts to the GUI
	20.4.3. Argument Collection
	Example
	CArgInfo
	Commonly Used Types
	Commonly Used Interface

	20.4.4. Importing Other Modules
	20.4.5. Internationalization and Localization
	20.4.6. Plugin Extensions

	20.5. Debugging Extension Scripts
	20.6. Advanced Scripting
	Working with Wing's Source Code
	How Script Reloading Works

	20.7. API Reference
	20.7.1. API Reference - Utilities
	A Note on Filenames

	20.7.2. API Reference - Application
	Class CAPIApplication
	Top-level Settings and Environment
	Command Execution
	Asynchronous Timeouts
	Access to Key Objects
	Manage Windows
	Manage Editors
	Clipboard
	Application State
	Preferences
	Messages and Status
	Sub-Process Control
	Sub-Process Control with OS Commands
	Scripting Framework Utilities

	20.7.3. API Reference - Editor
	Class CAPIDocument
	General Access
	Buffer Access
	Undo/Redo
	Saving
	Class CAPIEditor
	General Access
	Selections
	Scrolling and Visual State
	Folding
	Indentation
	Snippets and Data Entry mode
	Utilities

	20.7.4. API Reference - Project
	Class CAPIProject
	Project Contents
	Project Properties
	Launch Configurations
	Named Entry Points
	Utilities
	Run Arguments

	20.7.5. API Reference - Debugger
	Class CAPIDebugger
	Class CAPIDebugRunState
	Starting and Stopping Debug
	Flow Control
	Threads and Stacks
	Breakpoints
	Utilities

	20.7.6. API Reference - Search
	Class CAPISearch

	20.7.7. API Reference - Analysis
	Class CAPISymbolInfo
	Class CAPIStaticAnalysis

	IDE Plugins
	21.1. Container Plugins
	21.2. Cluster Plugins

	Trouble-shooting Guide
	22.1. Trouble-shooting Failure to Start
	22.2. Speeding up Wing
	22.3. Trouble-shooting Failure to Debug
	22.3.1. Failure to Start Debug
	22.3.2. Failure to Stop on Breakpoints or Show Source Code
	22.3.3. Failure to Stop on Exceptions
	22.3.4. Extra Debugger Exceptions

	22.4. Trouble-shooting Other Known Problems
	22.5. Obtaining Diagnostic Output

	Preferences Reference
	User Interface
	Projects
	Files
	Editor
	Debugger
	Source Analysis
	Version Control
	Remote Development
	IDE Extension Scripting
	Network
	Internal Preferences
	Core Preferences
	User Interface Preferences
	Editor Preferences
	Project Manager Preferences
	Debugger Preferences
	Source Analysis Preferences

	Command Reference
	24.1. Top-level Commands
	Application Control Commands
	Dock Window Commands
	Document Viewer Commands
	Global Documentation Commands
	Window Commands
	Wing Tips Commands

	24.2. Project Manager Commands
	Project Manager Commands
	Project View Commands

	24.3. Editor Commands
	Editor Browse Mode Commands
	Editor Insert Mode Commands
	Editor Non Modal Commands
	Editor Panel Commands
	Editor Replace Mode Commands
	Editor Split Commands
	Editor Visual Mode Commands
	Active Editor Commands
	General Editor Commands
	Shell Or Editor Commands
	Source Assistant Commands
	Bookmark View Commands
	Snippet Commands
	Snippet View Commands

	24.4. Search Manager Commands
	Toolbar Search Commands
	Search Manager Commands
	Search Manager Instance Commands

	24.5. Refactoring Commands
	Refactoring Commands

	24.6. Unit Testing Commands
	Unit Testing Commands

	24.7. Version Control Commands
	Subversion Commands
	Git Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	24.8. Debugger Commands
	Debugger Commands
	Debugger Watch Commands
	Call Stack View Commands
	Exceptions Commands
	Breakpoint View Commands

	24.9. Script-provided Add-on Commands
	Django Script
	Django Script
	Emacs Extensions Script
	Editor Extensions Script
	Testapi Script
	Debugger Extensions Script

	Key Binding Reference
	25.1. Wing Personality
	25.2. Emacs Personality
	25.3. VI/VIM Personality
	25.4. Visual Studio Personality
	25.5. macOS Personality
	25.6. Eclipse Personality
	25.7. Brief Personality

	License Information
	26.1. Wing Pro Software License
	26.2. Open Source License Information
	26.3. Privacy Policy

