
How-Tos

Version 8.3.3

This collection of How-Tos explains how to get started using Wing Pro with specific Python frameworks,

tools, and libraries for web and GUI development, 2D and 3D modeling, scientific analysis, compositing,

rendering, game development, and much more.

These How-Tos assume that you know how to use the Python framework or tool being discussed and

that you are already somewhat familiar with Wing. To learn more about Wing see the Quick Start Guide

or Tutorial.

https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial

Wingware, the feather logo, Wing Python IDE, Wing Pro, Wing Personal, Wing 101, Wing IDE, Wing

IDE 101, Wing IDE Personal, Wing IDE Professional, Wing IDE Pro, Wing Debugger, and "The

Intelligent Development Environment for Python" are trademarks or registered trademarks of Wingware

in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without notice. Wingware

shall not be liable for technical or editorial errors or omissions contained in this document; nor for

incidental or consequential damages resulting from furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification purposes only and may

be trademarks of their respective owners.

Copyright (c) 1999-2022 by Wingware. All rights reserved.

Wingware
P.O. Box 400527
Cambridge, MA 02140-0006
United States of America

Contents

How-Tos 1

How-Tos for Specific Environments 12

1.1. Using Wing with virtualenv 13

Creating a New Virtualenv 13

Working on a Remote Host 14

Using an Existing Virtualenv 14

Activating the Virtualenv 15

Package Management 15

Using Virtualenv with Anaconda 15

Related Documents 15

1.2. Using Wing with pipenv 16

Creating a New Pipenv 16

Using an Existing Pipenv 17

Working on a Remote Host 17

Package Management 17

Related Documents 17

1.3. Using Wing with Anaconda 18

Configuring Your Project 18

Creating a New Anaconda Environment 19

Package Management 19

About Anaconda Environments 20

Related Documents 20

1.4. Using Wing Pro with Docker 21

Getting Started 21

Overview of Docker 21

Configuration Overview 22

Related Documents 23

1.4.1. Using an Existing Docker Container with Wing Pro 23

Creating the Project 23

How It Works 24

Networking on Linux Hosts 24

1.4.2. Creating a New Docker Container with Wing Pro 25

How it Works 26

1.4.3. Remote Development via SSH to a Docker Instance 27

1.4.4. Docker Configuration Example 27

1.5. Using Wing Pro with Docker Compose 29

Getting Started 29

Configuration Overview 29

Controlling the Cluster 30

Debugging the Cluster 30

Execution Context for Other Processes 30

Python Shell 31

Unit Tests 31

OS Commands 31

How it Works 31

Related Documents 31

1.6. Using Wing Pro with LXC/LXD Containers 32

Getting Started 32

Overview of LXC/LXD 32

Creating a Container 33

Configuring Your Project 33

Testing the Container 34

Developing Code 34

Related Documents 35

1.7. Using Wing Pro with AWS 36

Prerequisites 36

Setting up AWS 36

Testing the SSH Connection 37

Creating a Wing Project 38

Testing a Hello World 38

Related Documents 39

1.8. Using Wing with Vagrant 40

Prerequisites 40

Creating a Project 40

How It Works 41

Usage Hints 41

Synced Folders 41

Password-less Private Keys 41

Related Documents 42

1.9. Using Wing Pro with Windows Subsystem for Linux 43

Prerequisites 43

Creating a Project 43

Setting up WSL 44

Related Documents 45

1.10. Using Wing with Raspberry Pi 46

Configuration 46

Related Documents 47

1.11. Using Wing with Cygwin 48

Project Configuration 48

Debugger Configuration 48

File Paths 49

Related Documents 49

1.12. Remote Python Development 50

Configuration 50

Creating a Project 51

Using Your Project 53

Details 54

How-Tos for Scientific and Engineering Tools 57

2.1. Using Wing with Matplotlib 58

Working Interactively 58

Debugging 59

Trouble-shooting 60

Related Documents 61

2.2. Using Wing with Jupyter Notebooks 62

Setting up Debug 62

Working with the Debugger 63

Editing Code 65

Stopping on Exceptions 67

Fixing Failure to Debug 68

Reloading Changed Modules 69

Related Documents 69

2.3. Using Wing with PyXLL 70

Introduction 70

Installation and Configuration 70

Debugging Python Code in Excel 71

Trouble-shooting 72

Related Documents 72

How-Tos for Web Development 74

3.1. Remote Web Development 75

Setting up SSH Access 75

Installing the Remote Agent 75

Setting up a Project 77

Initiating Debug 78

Debugging Code 79

Managing Permissions 80

Resources 81

3.2. Using Wing with Django 82

Creating a Project 82

Existing Django Project 83

New Django Project 83

Selecting the Python Environment 83

Usage Tips 83

Automated Django Tasks 83

Debugging Exceptions 84

Template Debugging 84

Better Auto-Completion 84

Running Unit Tests 85

Related Documents 85

3.3. Using Wing with Flask 86

Project Configuration 86

Remote Hosts and VMs 87

Containers 87

Port Forwarding 87

Debugging Flask in Wing 87

Setting up Auto-Reload with Wing Pro 88

Related Documents 88

3.4. Using Wing with Pyramid 90

Creating a Wing Project 90

Debugging 90

Launching from Wing 90

Auto-reloading Changes 91

Launching Outside of Wing 91

Notes on Auto-Completion 92

Debugging Jinja2 Templates 92

Debugging Mako Templates 92

Remote Development 93

Related Documents 93

3.5. Using Wing with web2py 94

Introduction 94

Setting up a Project 94

Remote Development 95

Debugging 95

Usage Tips 95

Setting Run Arguments 95

Hung Cron Processes 96

Better Auto-completion 96

Related Documents 96

3.6. Using Wing with mod_wsgi 97

Debugging Setup 97

Disabling stdin/stdout Restrictions 98

Remote Development 98

Related Documents 98

How-Tos for GUI Development 99

4.1. Using Wing with wxPython 100

Introduction 100

Installation and Configuration 100

Test Driving the Debugger 101

Using a GUI Builder 101

Related Documents 101

4.2. Using Wing with PyQt 102

Introduction 102

Installation and Configuration 102

Test Driving the Debugger 103

Using a GUI Builder 103

Related Documents 103

4.3. Using Wing with GTK and PyGObject 104

Introduction 104

Installation and Configuration 104

Test Driving the Debugger 105

Improving Auto-Completion 105

Using a GUI Builder 106

Related Documents 106

How-Tos for Modeling, Rendering, and Compositing Systems 107

5.1. Using Wing with Blender 108

Working with Blender 108

Related Documents 109

5.2. Using Wing with Autodesk Maya 110

Debugging Setup 110

Avoiding Crashing in Maya 2020 111

Using Maya's Python in Wing 111

Better Static Auto-completion 111

Maya 2020 112

Maya 2018 112

Maya 2016 112

Maya 2011+ 112

Older Versions 113

Additional Information 113

Related Documents 113

5.3. Using Wing with NUKE and NUKEX 114

Project Configuration 114

Configuring for Licensed NUKE/NUKEX 114

Configuring for Personal Learning Edition of NUKE 115

Additional Project Configuration 115

Replacing the NUKE Script Editor with Wing Pro 115

Debugging Python Running Under NUKE 116

Debugger Configuration Detail 117

Limitations and Notes 118

Related Documents 118

5.4. Using Wing with Unreal Engine 119

Creating a Project 119

Working with Wing 120

Debugging Notes 121

Using Live Runtime Analysis 121

How it Works 121

Notes on sys.path 122

Debug Configuration Details 122

Related Documents 122

5.5. Using Wing with Source Filmmaker 124

Debugging Setup 124

Related Documents 125

5.6. Using Wing with pygame 126

Project Configuration 126

Debugging 126

Related Documents 127

Unmaintained How-Tos 128

6.1. Using Wing with Twisted 129

Project Configuration 129

Remote Development 130

Debug Configuration 130

Related Documents 130

6.2. Using Wing with Plone 131

Introduction 131

Configuring your Project 132

Debugging 132

Related Documents 132

6.3. Using Wing with Turbogears 133

Project Configuration 133

Debugging 134

Remote Development 134

Related Documents 134

6.4. Using Wing with Google App Engine SDK for Python 135

Creating a Project 135

Configuring the Debugger 136

Using the Debugger 137

Improving Auto-Completion and Goto-Definition 137

Debugging Multiple Applications 137

Notes 138

Related Documents 138

6.5. Using Wing with mod_python 139

Introduction 139

Quick Start 139

Example 140

Remote Development 140

Related Documents 141

6.6. Debugging Code Running Under Py2exe 142

Configuring the Debugger 142

Related Documents 143

6.7. Using Wing with IDA Python 144

Debugging IDA Python in Wing 144

Related Documents 145

6.8. Using Wing with IronPython 146

Project Configuration 146

Related Documents 146

How-Tos for Specific Environments
The following How-Tos explain how to get started using Wing with specific types of Python

environments provided by virtual environments, containers, virtual machines, and remote hosts.

How-Tos for Specific Environments

12

1.1. Using Wing with virtualenv

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running in

virtualenv.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for virtualenv. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Creating a New Virtualenv

Wing Pro can create a new virtualenv at the same time that you create a new project. To do this, select

New Project from the Project menu, choose the source directory to use with your new project, and

then press Next. On the second page you will be able to select Create New Environment and choose

virtualenv from the menu of available environment types.

If you are using an existing source directory, you will need to enter the following values:

Name is the name for your virtualenv directory.

Parent Directory is the directory where the virtualenv directory will be created.

If you are using a new source directory, the virtualenv will be created inside that new directory.

You may also specify the following values:

Packages to Install lets you specify packages to install into the new virtualenv. This is either a

space-separated list of pip package specifications, or a file that contains one package

How-Tos for Specific Environments

13

https://wingware.com
http://www.virtualenv.org
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

specification per line. In either case, the package specifications may be anything accepted by pip,

such as a package name, package==version, and package>=version.

Python Executable selects the base Python installation to use. In Python 2, you must install

virtualenv into the selected Python first, if it's not already present.

Upgrade pip selects whether Wing should upgrade pip in the virtualenv before installing any

packages, to compensate for the fact that virtualenv installs an old version of pip even if the base

Python installation has a newer one.

Inherit global site-packages controls whether to use the --system-site-packages option when

running virtualenv. When checked, the virtualenv will be able to use packages installed into the

base Python installation. Otherwise, it will be completely isolated from the base install, other than

its use of Python's standard libraries.

After submitting the New Project dialog, Wing will create the virtualenv, set the Python Executable in

Project Properties to the command that activates the environment, and add the virtualenv directory to

the project.

Now source analysis, executing, debugging, and testing in Wing will use the new virtualenv, as long as

the project you just created is open.

Working on a Remote Host

Wing Pro can also create a new virtualenv on a remote host. This is done the same way as described

above, except you first need to choose or create a remote host configuration from the Host menu on the

first page of the New Project dialog.

If you are using a virtualenv on the remote host, Wing will update the remote host configuration to use

that virtualenv.

Using an Existing Virtualenv

To use an existing virtualenv with Wing, simply set the Python Executable in Wing's Project

Properties or the New Project dialog to Activated Env and enter the command that activates the

environment. Wing uses this to determine the environment to use for source analysis and to execute,

test, and debug your code. In this case, Wing starts Python by running python in that environment. This

does not work, however, if the full path to the activate script contains a space. In that case, use

Command Line instead, as described below.

Python Executable can also be set to Command Line to enter the full path to the virtualenv's

python.exe or python. In fact, this is required if the full path to the activate command contains spaces.

The easiest way to find the correct value to set is to launch your virtualenv Python outside of Wing and

execute the following:

How-Tos for Specific Environments

14

import sys
print(sys.executable)

Activating the Virtualenv

If you followed the above instructions, Wing will automatically activate the virtualenv while you're using

your project.

An alternative approach is to leave Python Executable unset and instead activate the virtualenv on the

command line and then start Wing from the command line so that it inherits the virtual environment.

However, this is not recommended because the inherited environment may conflict with virtual

environments used by other projects.

Package Management

Once you've configured your project to use a virtualenv, you can use the Packages tool in the Tools

menu to list, add, remove, or update packages. See Package Manager for details.

Using Virtualenv with Anaconda

Anaconda implements its own named environments, created by conda create but it is also possible to

use virtualenv with Anaconda. This works in the same way, except that on Windows Wing will

automatically call conda activate base before it sets up your virtualenv. This is needed to avoid failure

to import some modules as a result of missing environment. See About Anaconda Environments in the

Anaconda How-To for details.

Related Documents

For more information see:

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Specific Environments

15

https://wingware.com/doc/packages/intro
https://wingware.com/doc/howtos/anaconda
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.2. Using Wing with pipenv

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running in a Python

environment managed by pipenv.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for pipenv. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Creating a New Pipenv

Wing Pro can create a new pipenv at the same time that you create a new project. To do this, select

New Project from the Project menu, choose the source directory to use with your new project, and

then press Next.

On the second page you will be able to select Create New Environment and choose pipenv from the

menu of available environment types.

Wing uses your selected source directory as the pipenv directory. You can optionally enter the following

values:

Packages to Install lets you specify packages to install into the new virtualenv. This is either a

space-separated list of pip package specifications, or a requirements.txt file that contains one

package specification per line. In either case, the package specifications may be anything accepted

by pip, such as a package name, package==version, and package>=version. An existing Pipfile

or environment.yml may also be used to specify which packages to install.

How-Tos for Specific Environments

16

https://wingware.com
https://pypi.org/project/pipenv/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Python Executable selects the base Python installation to use. You will need to install pip into this

Python installation if not already present. Wing takes care of installing pipenv as needed.

After submitting the New Project dialog, Wing will create the pipenv, set the Python Executable in

Project Properties to the command that activates the environment, and add the source directory to the

project.

Now source analysis, executing, debugging, and testing in Wing will use the new pipenv, as long as the

project you just created is open.

Using an Existing Pipenv

To use an existing pipenv with Wing, simply select the pipenv as your source directory using the

Use Existing Directory option in the New Project dialog. Wing will automatically detect that this

directory contains a pipenv and use it with your new project.

Working on a Remote Host

Wing Pro can also create a new pipenv on a remote host. This is done the same way as described

above, except you first need to choose or create a remote host configuration from the Host menu on the

first page of the New Project dialog.

If you are using a pipenv on the remote host, Wing will update the remote host configuration to use the

virtualenv created by pipenv (rather than the base Python installation).

Package Management

Once you've configured your project to use pipenv, you can use the Packages tool in the Tools menu

to list, add, remove, or update packages. See Package Manager for details.

Related Documents

For more information see:

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Specific Environments

17

https://wingware.com/doc/packages/intro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.3. Using Wing with Anaconda

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code run with the

Anaconda Distribution of Python.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for use with Anaconda Python. To get started using

Wing as your Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Configuring Your Project

To use Anaconda with an existing Wing project, simply set the Python Executable in

Project Properties to the interpreter that you want to use. There are several options for this:

Command Line can be selected to enter the full path to Anaconda's python.exe or python. In many

cases, Wing will automatically find Anaconda and include it in the drop down menu to the right of the file

selector shown for this option. The Python executable for Anaconda is typically located at the top level

of the installation on Windows and in the bin sub-directory on other OSes. Another way to find the

correct full path to use is to start Anaconda outside of Wing and then type the following:

import sys
print(sys.executable)

Activated Env can be selected to use an existing environment created with conda create or virtualenv.

This should be the command that activates the environment, for example activate venv1. In this case,

Wing starts Python by running python in that environment. If Anaconda is installed in a default location,

How-Tos for Specific Environments

18

https://wingware.com
https://www.anaconda.com/distribution/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Wing will find your existing environments, which can be selected with the drop down menu to the right of

this field.

Note that using Activated Env does not work if the full path to Anaconda's activate contains spaces. In

that case, use Command Line option instead as described above.

If you are creating a new Wing project and want to use Anaconda, select New Project from the Project

menu and configure Python Executable in the New Project dialog in the same way as described

above. Note that you can create a new Anaconda environment from the New Project dialog by

selecting Create New Environment on the second dialog page and choosing Conda Env from the

dropdown menu.

In most cases, setting Python Executable is all that you need to do. Wing will start using your

Anaconda installation immediately for source intelligence, for the next debug session, and in the

integrated Python Shell after it is restarted from its Options menu.

Creating a New Anaconda Environment

Wing Pro can also create a new Anaconda environment with conda create at the same time that it

creates a new project. To do this, select New Project from the Project menu, choose the source

directory to use with your project, and press the Next button. Then select Create New Environment

and choose Conda Env from the menu of available environment types.

You will need to enter the name for the new environment, choose the location to write the new

environment, select the installation directory of the Anaconda that you want to use, and specify at least

one package to install into the new environment.

Package specifications may either be entered directly into the New Project dialog, in a space-separate

list, or read from an existing requirements.txt or Pipfile. In both cases, the package specifications may

be anything accepted by conda install including just the package name, package==version, or

package>=version:

flask
gunicorn
numpy==1.17.4
django>=3.1

When the New Project dialog is submitted, it will run conda create and then configure the project to

use the new environment.

Package Management

Once you've configured your project to use an Anaconda environment, you can use the Packages tool

in the Tools menu to list, add, remove, or update packages. See Package Manager for details.

How-Tos for Specific Environments

19

https://wingware.com/doc/packages/intro

About Anaconda Environments

On Windows, Anaconda may fail to load DLLs when its python.exe is run directly without using a

named environment. This is due to the fact that by default the Anaconda installer no longer sets the

PATH that it needs to run, in order to avoid conflicting with different Python installations on the same

system. A typical error message looks like this:

builtins.ImportError:
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
Importing the numpy c-extensions failed.
...
Original error was: DLL load failed: The specified module could not be found.

The exact message you see will vary depending on which packages you are using, or you may not run

into this at all if you are not using packages that are affected by it.

This may occur when running Anaconda Python outside of Wing without using a named Anaconda

environment or when using virtualenv with Anaconda. The solution on the command line is to call

conda activate base before starting Anaconda or activating the virtualenv.

The problem should not appear in Wing because it detects when Anaconda is being used and

automatically activates the base environment before launching Anaconda.

Related Documents

For more information see:

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Specific Environments

20

https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.4. Using Wing Pro with Docker

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running on Docker

containers.

This document describes how to create a new Wing Pro project that uses a Docker container for Python

development.

Getting Started

Before you can work with Docker you will need to download and install it.

On Windows and macOS, downloading Docker Desktop from the Docker website is the easiest way to

install it. Be sure to launch the Docker Desktop after installation, so that the daemon is started.

On most Linux distributions, Docker CE (the free community edition) can be installed with the

docker-engine package as described here.

You should also install Wing Pro if you don't already have it.

Overview of Docker

Docker provides a light-weight form of virtualization that serves to isolate running code from the host

system, both for security and so that a replicable controlled environment can be created for developing

and running applications.

Docker containers may be used to deploy code into production, and this may include spinning up new

container instances on the fly to balance load or service incoming requests in a securely isolated

environment.

How-Tos for Specific Environments

21

https://wingware.com
https://www.docker.com/
https://www.docker.com/
https://runnable.com/docker/install-docker-on-linux
https://wingware.com/downloads/wing-pro

Docker works by making use of standard preconfigured images that contain particular technologies

pre-installed on either a Linux or Windows OS. These images are managed in a curated library and

downloaded automatically, as needed to build your containers.

Each container may contain copies of files from the host system, either placed when the container is

built or provided by file sharing as the container runs. Containers do not have any access to the host file

system unless file sharing is configured, and then they can only write into the shared areas.

Containers can, however, access the host system through a network connection, which is what makes it

possible to debug code running within a container from a copy of Wing Pro running on the host system.

It is also possible to map network ports from the host system into the container, to facilitate

development of network services and websites.

Containers are typically short-lived, persisting for the duration of one run of an application or for the

purpose of performing a single computation. They are built, run, and then discarded after optionally

retaining some state information or the result of the computation through a file share or network

connection. Containers used in this way are often orchestrated into a larger system using Docker

Compose or Kubernetes. This is how Docker can automate deploying, load-balancing, and

management of containerized applications.

However, how to approach container life-cycle is up to the user. Other containers may be run many

times, or over a long period of time, using data shared with the host system. Thus, containers may

either be small ephemeral components of an application, or they may act more like a traditional virtual

machine or server.

Configuration Overview

Wing Pro offers a number of ways to work with Docker containers:

(1) Use An Existing Container -- Wing Pro can configure a new project to use an existing Docker

container. This approach requires specifying at least the container image to use and the host-container

file mapping used by that container. Wing works with files stored on the local disk and launches debug

processes, the Python Shell, unit tests, and optionally OS Commands within the container environment

using the container's mapped copies of those files.

(2) Create a New Container -- Wing Pro can also create and configure a new Docker container. This

approach creates the Dockerfile and a working starter application, configures a Wing Pro project file to

use it, and automatically builds the container. This case also works with files on the local disk and runs

debug and other processes on the container. When Wing creates a new Docker container, it uses the

standard preconfigured 'python' container image with the selected Python version and packages

installed by pip.

(3) Remote Development via SSH -- For containers that run OpenSSH and act more like a longer-lived

virtual machine or server, Wing can connect to the container is if it were a remote host. This allows

working directly with files on the container, rather than using local copies of the files.

How-Tos for Specific Environments

22

These are each described in the following sub-sections of this How-To.

Related Documents

For more information see:

• Docker home page provides downloads and documentation.

• Working with Containers and Clusters for more information on using containers in Wing Pro.

• Quickstart Guide contains additional basic information about getting started with Wing Pro.

• Tutorial provides a gentler introduction to Wing Pro's features.

• Wing Pro Reference Manual documents Wing Pro in detail.

1.4.1. Using an Existing Docker Container with Wing Pro

Creating the Project

To create a new project that uses an existing Docker container, use New Project in the Project menu,

select your source directory (or choose to create a new one), and press Next. On the second page,

select Create New Environment and choose Docker from the drop down menu of environment types.

Finally, select With Existing Container and enter at least the container image and host-to-container file

mapping. The configuration options are:

Configuration

Select the style of configuration to use: Either an existing already-built Docker image ID, or an existing

Dockerfile.

Image ID

Enter the name of the Docker image to use. When Configuration is set to Use Image ID this selects

from those images that have already been built by Docker. When Configuration is instead

Specify Configuration this should be the image name defined with FROM ... AS in the Dockerfile or

any valid image name to use for the configuration if AS is not used. Existing images are listed in the

drop down to the right of the entry field.

File Mappings

You must enter at least one file mapping. Each mapping is a pair of directories, one on the local host

and the other on the container. This is the mapping set up for the selected container image with the -v

command line option for docker run or using COPY in the Dockerfile.

Mapping Type

This specifies whether the file mappings are made by using -v with docker run or with COPY in the

Dockerfile. In general it's easier to use -v because the container does not need to be rebuilt and

restarted when host-side files change.

How-Tos for Specific Environments

23

https://www.docker.com/
file:///Users/Shared/build/ide-osx/build-files/build-temp/manual/proj/container-intro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

Even when the mapping type is set to use COPY, Wing will establish an internally defined dynamic

mapping with -v, in order to make the debugger and other IDE functionality available on the container.

Python Executable

This selects the Python to run on the container. In most cases this is the default, which python3 if it

exists or otherwise python.

Connect Hostname

This is the host name that the container uses to make a TCP/IP connection to the host system. In most

cases, this is host.docker.internal. On Linux, where host networking mode is used, set this to

127.0.0.1 instead (see Networking on Linux Hosts below for details).

How It Works

Wing takes the configuration values you enter in the New Project dialog and configures a new Wing

project as follows:

1) A new container configuration is created and set as the Python Executable to use in

Project Properties.

2. The mapped directories are added to the project.

3. The Python Shell is restarted using Python running in the container.

If you didn't create a new source directory along with your project then you will need to save the project

file with Save Project in the Project menu. Otherwise, it is saved automatically into the new source

directory.

Now Wing will run debug processes, unit tests, and the Python Shell on an instance of the selected

container image. OS Commands can optionally run commands on the container or on the local host.

This is selected by toggling the Run in Container option in the OS Command configuration.

Note that each debug process, each unit test run, and each instance of the Python Shell creates its

own independent instance of the container.

Networking on Linux Hosts

When Docker is running on a Linux host, it starts containers using a different networking mode than the

one used by Docker Desktop on Windows and macOS. This mode prevents connections from the

container to the host system, which prevents Wing from inspecting and debugging the containers.

To work around this problem, Wing starts containers on Linux using host networking mode. In this

mode, the container can connect to the host using 127.0.0.1.

Currently there is no way to override this behavior. Please contact us at support@wingware.com if this

does not work with your container.

How-Tos for Specific Environments

24

mailto:support@wingware.com

1.4.2. Creating a New Docker Container with Wing Pro

To create a new Docker container along with your new project, use New Project in the Project menu,

select your source directory (or choose to create a new one), and press Next. On the second page,

select Create New Environment and choose Docker from the drop down menu of environment types.

Finally, select Create New Container and enter at least the container image and host-to-container file

mapping. The configuration options are:

Image ID

This selects the image ID name to assign to the docker container. It is used within Wing to refer to the

container configuration, by Docker to refer to the container, and is used as the default new project

directory.

Host-side Project Directory

This selects the directory where the new project should be written on the host system. The directory will

contain the generated Dockerfile and requirements.txt, as well as the source directory and other

support files.

Container-side Directory

This selects the location on the container where the source directory should be mapped or copied. The

source directory on the host side is always called app and is created at the top level of your selected

Host-side Project Directory.

Packages

This specifies any PyPI packages that should be installed into the new container, either as a

space-separated list of package specifications, or a file that contains one package specification per line.

In either case, the package specifications can be a package name or package:version to specify the

version to use.

Wing will create requirements.txt that is stored with the new project and used to make sure the

packages are installed when the container is built. You will be able to add or change packages on the

container later by editing the requirements.txt file and then rebuild the container from the

OS Commands tool.

Note

Be sure to read about Package Security.

Establish Mappings

How-Tos for Specific Environments

25

https://wingware.com/doc/packages/security

When this option is checked (the recommended default), Wing configures the Docker container so that it

is run with your host-side source directory mapped into the container with the -v option passed to

docker run. This acts like a file share, so that changes made on the host file system immediately

become available within the container, and changes made within the container are written back to the

host file system.

When establishing mappings is disabled, Wing instead uses the COPY directive in your Dockerfile to

make a copy of your host-side source directory when the Docker container is built. In this case, the

container needs to be rebuilt and restarted whenever a change is made to your sources. To handle this,

Wing sets up the project it creates to automatically run the build each time code is debugged or

executed.

Regardless of hether this is enabled, Wing always establishes an internally defined dynamic mapping,

in order to make the debugger and other IDE functionality available on the container.

Use wingdbstub for Debugging

When this option is checked, Wing configures the container so that you can initiate debug from your

code using import wingdbstub, rather than starting debug from the IDE. In most cases, this option

should be left disabled. It is useful when Python cannot be started directly in the container.

Python Version Specifier

This option specifies which Python version Wing should install into the Docker container. This is placed

after the FROM: python directive in the Dockerfile that Wing generates. It can be any of the Python

image variants that Docker supports, including 3 for Python 3, 2 for Python 2, or a specific version like

3.8.1. If this option is left blank, the latest Python version at build time will be used. To make your

development environment reproducible and uniform, it is best to select a specific Python version.

How it Works

Once you've created your project, Wing creates the selected host-side directory and populates it with

the following items:

(1) An app directory is created as the place to put source code for the application. This directory is

either copied into or shared with the container, depending on whether the Establish Mappings option

was checked. The directory initially contains a requirements.txt file that specifies which third party

packages are needed by your application. This is passed to pip during the container build process. If it

is edited, the container will need to be rebuilt (see below). The app directory also a starter code file. If

the Use wingdbstub for Debugging option was selected, the file wingdbstub.py and security token

wingdebugpw will also be placed here and configured for access to Wing Pro running on the host.

(2) A Dockerfile is created that tells Docker to use the standard Python container image and the

contents of app/requirements.txt to set up the container's environment. The default action of the

container, used when docker run is invoked without arguments, is to run the application without debug.

How-Tos for Specific Environments

26

(3) The script build.sh (or build.bat on Windows) is written to build or rebuild the container.

Wing also creates and saves a project file into the host-side directory that is configured to make use of

the container. The host-side directory is added to the Project tool, a mapping is established between

files on the container and host side so that Wing knows where files are located on each, the

Python Executable is set up to run the Docker-provided Python, and the project is configured to run

the build command automatically before debugging if not using a dynamic mapping to share files.

Wing then builds the container in the Containers tool and when that completes saves the project file to

disk and restarts the Python Shell to contain the Docker-provided Python. Building the container may

take a while if you haven't yet downloaded the container image or are installing many packages.

Once this completes, you can start debug from the Debug menu or toolbar. Wing should reach a

breakpoint it has set automatically in the starter code configured with the project. If you opted to use

wingdbstub to initiate debug, you will need to instead start the process from outside of Wing or by

using Execute Current File in the Debug menu. Wing will have added import wingdbstub to the

starter code it generated, so that debug should start and a breakpoint should be reached.

Whenever requirements.txt or the Dockerfile are changed, you will need to rebuild your container,

which can be done by right-clicking on the Containers tool.

1.4.3. Remote Development via SSH to a Docker Instance

Docker is sometimes used to host a longer-lived installation of Linux, acting more like a stand-alone

system that includes the ability to ssh from the host system into the container. In this case, Wing Pro's

Remote Development capability can be used instead, to work directly with files and processes running

under Docker (no local copies of the files need to exist).

Setting up remote development via SSH to a Docker container works the same as for any other type of

remote host. For details, see Remote Python Development (if the debug process can be launched from

the IDE) or Remote Web Development (if the debug process is launched from outside of the IDE).

For more information on setting up SSH access into a Docker container, see SSH into a Docker

Container.

1.4.4. Docker Configuration Example

If you are new to Docker, setting up a simple container manually may help to clarify how Docker works.

This can be done by creating a directory docker and placing the following files into it.

Dockerfile:

FROM python:3.7
WORKDIR /app
RUN pip install --trusted-host pypi.python.org Flask

How-Tos for Specific Environments

27

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/remote-development
https://wingware.com/doc/howtos/debugging-web-remote
https://www.dontpanicblog.co.uk/2018/11/30/ssh-into-a-docker-container/
https://www.dontpanicblog.co.uk/2018/11/30/ssh-into-a-docker-container/

EXPOSE 80
CMD ["python", "app.py"]

app.py:

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():
 return "<h3>Hello World!</h3>Your app is working.
</br/>"

if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80, use_reloader=True)

Then build the Docker container by typing the following in the docker directory:

docker build --tag=myapp .

You can now run your container like this:

docker run -v "/path/to/docker":/app -p 4000:80 myapp

You will need to substitute /path/to/docker with the path to the docker directory you created above; the

quotes make it work if the path has spaces in it.

You can now try this tiny Flask web app by pointing a browser running on your host system at it:

If you are using Docker Desktop, then use http://localhost:4000/

If you are using Docker CE, you will need to determine the IP address of your container and use that

instead of localhost. One way to do this is to type docker ps to find the Container ID for your container

and then use it in the following in place of c052478b0f8a:

docker inspect -f "{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}" c052478b0f8a

Notice that if you make a change to app.py in Wing, then the change will be reflected in your browser

when you reload the page. This is due to using both the -v argument for docker run to mount a volume

in the container (so container files are immediately updated if they change on the host), and the fact that

app.run() for Flask is being passed use_reloader=True (so that changed container files are

automatically reloaded by Flask).

How-Tos for Specific Environments

28

http://localhost:4000/

1.5. Using Wing Pro with Docker Compose

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running on clusters

that are orchestrated by Docker Compose.

This document describes how configure Wing Pro in order to use Docker Compose for Python

development.

Getting Started

Before you can work with Docker Compose you will need to download and install it. See Install Docker

Compose for details.

You should also install Wing Pro if you don't already have it.

Configuration Overview

To configure Wing to use a Docker Compose cluster, select Cluster for the Python Executable, either

in the New Project dialog or Project Properties (both from the Project menu).

In the New Project dialog, this is found under Use Existing Python on the second dialog page, after

you have selected your source directory.

In the Project Properties dialog, it is under the Environment tab.

After selecting Cluster for Python Executable, create a new cluster configuration by pressing the New

button. This displays the cluster configuration dialog. You will need to enter an identifier to use within

Wing and point it at the docker-compose.yml file for the cluster.

How-Tos for Specific Environments

29

https://wingware.com
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://wingware.com/downloads/wing-pro

You will also need to select the main service to use as the default place to run your Python Shell and

unit test processes. Note, however, that both the shell and tests can be configured to run either in

synthesized out-of-cluster copies of a cluster service, or on specific services after the cluster as a whole

is launched. This is described in more detail in Execution Context below.

Once you have created your cluster configuration, submit the New Project or Project Properties dialog

to complete your project setup.

Controlling the Cluster

You can now control your cluster from Wing's Containers tool, found in the Tools menu. The top part of

this tool shows the overall status of the cluster and provides buttons for building, starting, debugging,

and stopping your cluster.

The Containers tool also lists the services in the cluster and their status. You can right-click on items in

the services list to view their configuration in the docker-compose.yml file.

When Show Synthesized Containers is checked in the tool's Options menu, the list of services will

include out-of-cluster containers that Wing synthesizes and starts, for example to run the Python Shell

or unit tests.

When the Show Console item in the Options menu is checked, the bottom of the tool shows a console

containing the output of the docker-compose commands that Wing is running behind the scenes.

Debugging the Cluster

There are several ways to debug code in a cluster managed by Docker Compose:

(1) The most common way to debug a cluster is to select the services that should be debugged in the

services list within the Containers tool. Then press the Debug button. Wing launches the cluster in

such a way that all Python code run in the selected services will be debugged.

(2) Another way to debug code in a cluster is to first start the cluster as a whole without debug by

pressing Start in the Containers tool. Additional processes can be then started and debugged

in-cluster by setting up a Named Entry Point from the Debug menu and configuring those to launch

code in-cluster. This is done by setting the Python Executable in the associated launch configuration

to Cluster, selecting the cluster configuration and service, and checking the In-Cluster checkbox. See

Named Entry Points for more information.

(3) It is also possible to debug code in a synthesized out-of-cluster copy of a container. This is useful if

the container environment as a whole is not needed by that code, and can be accomplished in the same

way as in option (2) above, but by unchecking the In-Cluster checkbox.

Execution Context for Other Processes

Other processes started by Wing may also be run either on a synthesized out-of-cluster copy of a

selected container service, or on the live service in-cluster after the cluster as a whole has been started.

How-Tos for Specific Environments

30

https://wingware.com/doc/debug/named-entry-points

Python Shell

By default, Wing starts the Python Shell on a synthesized out-of-cluster copy of the service you

selected as you main service during cluster configuration. This can be changed with Use Environment

in the Python Shell's Options menu. From here, a launch configuration may be defined that selects

Cluster for Python Executable and checks on the In-Cluster checkbox.

Unit Tests

Unit tests work in a similar way: The testing environment can be set up with Environment under the

Testing tab in Project Properties, or in the properties set by right-clicking on an individual test file.

OS Commands

The OS Commands tool can also run commands either out-of-cluster or in-cluster. For command lines,

this is done by setting the Execution Context under the Environment tab of the OS Command

configuration. For Python files, the environment set in the file's properties is used, or you can define a

Named Entry Point that pairs a Python file with the desired launch configuration.

For more information on using clusters in Wing, see Working with Clusters.

How it Works

Whole-cluster debug is implemented by creating a derived docker-compose.yml file that mounts

Wing's debugger into the container, and also a site-packages/sitecustomize directory that imports

wingdbstub in order to initiate debug back to the IDE as soon as Python starts.

Wing also takes care of all the associated configuration for the debugger, including establishing the

network connection and mapping between local and container side copies of source files.

Related Documents

For more information see:

• Docker home page provides downloads and documentation.

• Working with Clusters for more information on using clusters with Wing Pro.

• Quickstart Guide contains additional basic information about getting started with Wing Pro.

• Tutorial provides a gentler introduction to Wing Pro's features.

• Wing Pro Reference Manual documents Wing Pro in detail.

How-Tos for Specific Environments

31

https://wingware.com/doc/proj/clusters
https://www.docker.com/
file:///Users/Shared/build/ide-osx/build-files/build-temp/manual/proj/clusters
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.6. Using Wing Pro with LXC/LXD Containers

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running on LXC

Linux containers hosted by LXD.

This document describes how to create a new Wing Pro project for Python development on a Linux

container.

Getting Started

Before you can work with Linux containers in Wing, you will need to install and configure LXD.

You should also install Wing Pro on your host system if you don't already have it.

Overview of LXC/LXD

LXC implements Linux containers, which provide a light-weight form of virtualization that is useful for its

security, standardization of runtime environment, and ability to support scalable deployment. LXD is the

next-generation toolset for controlling LXC containers.

LXC/LXD use standard preconfigured container images that are managed in a curated library and

downloaded automatically, as needed to run your containers. Each container may contain copies of files

from the host system, either copied into place or provided by file sharing as the container runs.

Containers do not have any access to the host file system unless file sharing is configured, and then

they can only write into the shared areas.

Some LXC/LXD containers, depending on configuration, can access the host system and/or other

containers in a cluster through a network connection. It is also possible to map network ports from the

host system into the container, to facilitate development of network services and websites.

How-Tos for Specific Environments

32

https://wingware.com
https://linuxcontainers.org/lxd/introduction/
https://linuxcontainers.org/lxd/getting-started-cli/
https://wingware.com/downloads/wing-pro

Wing Pro supports only the newer LXD command line interface. It requires that the container has

network access to the host system, which is enabled by default when a container is created. The

container must also have Python installed on it, which most Linux systems do.

Creating a Container

You will first need to create a container instance, as follows:

lxc launch ubuntu:20.04 demo

You can replace ubuntu:20.04 with any image that includes Python. Type the following to see a list of

all available images:

lxc image list images:

The name demo may also be replaced, with any other name for the new container instance.

Configuring Your Project

To set up a Wing project that uses your LXD container, select New Project from the Project menu,

select Create Blank Project, and press the Create Project button.

After your project has been created, select Project Properties from the confirmation dialog or Project

menu. Then set Python Executable to Container and press New to create a new container

configuration. Enter at least the following fields:

• Identifier is any short name for the container instance. It does not have to be the same as used in

lxc launch above, and is used only within Wing to identify the container.

• Type should be set to LXC/LXD.

• Image ID is the image name you gave in your lxc launch call (demo in the example above).

You may also need to set Python Executable under the Options tab of the container configuration, if

there is no executable called python on the container. This is needed on Ubuntu 20.04 (the image used

in the example above) because only python3 exists there. If you used that image, select

Command Line and enter python3.

Once you press OK in the new container configuration dialog, the new container will be entered into the

Project Properties dialog and you can submit that to finish project configuration.

Now is a good time to save your project to disk from the new project confirmation dialog or using

Save Project in the Project menu.

How-Tos for Specific Environments

33

Testing the Container

At this point, Wing should start up the container automatically. The Python Shell tool in Wing, available

in the Tools menu, will also restart using the new configuration, so you can interact with the Python

installation on the container.

The status of the container can be seen in the Containers tool from the Tools menu. It can be restarted

by right-clicking in the list of containers found there.

Developing Code

Now you have a working container integration but there is not yet any Python code that can be run on

the container. To add that, use New in the File menu, and enter a simple test file as follows:

print('Hello World')

Then create a directory on your host system and save the file there as test.py.

Next, add a file mapping to your container configuration by selecting Containers from the Project

menu, editing the container, and adding an entry to the File Mappings list. The Host entry is the full

path to the directory where your just wrote your test.py and Container is the full path where you want to

mount that directory on the container. For example:

• Host: /home/testuser/demo

• Container: /app

Note that if your container already has a mapping set up in its configuration, you will need to uncheck

Establish Mappings under the File Mappings field to prevent Wing from trying to create the mappings

when the container is launched. Then that is unchecked, the mappings listed here are used only to

determine which files on the host match files on the container. When it is checked, Wing also sets up

the mappings for you by temporarily modifying the container's configuration. For the above simple

demo, this option needs to remain checked.

When you save your container configuration, Wing will restart the container and your code is now

available on the container.

Wing automatically takes care of mapping to and from the container's location for your source files, and

knows that code should be launched on the container (and not the host system) when debugged or

executed because your Project Properties selected the container for Python Executable.

To debug it, set a breakpoint in your code by clicking in the leftmost margin in the editor.

Then press the green play icon in the toolbar in Wing or use Start/Continue in the Debug menu. You

should reach the breakpoint. Continuing from there causes "Hello World" to appear in Wing's Debug I/O

tool and the debug process will exit.

How-Tos for Specific Environments

34

That's all there is to it! You can now develop, debug, execute, and test your Python code in the LXD

container environment.

Related Documents

For more information see:

• LXD provides more information documentation for LXD and LXC.

• Working with Containers and Clusters for more information on using containers in Wing Pro.

• Quickstart Guide contains additional basic information about getting started with Wing Pro.

• Tutorial provides a gentler introduction to Wing Pro's features.

• Wing Pro Reference Manual documents Wing Pro in detail.

How-Tos for Specific Environments

35

https://linuxcontainers.org/lxd/introduction/
https://wingware.com/doc/proj/container-intro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.7. Using Wing Pro with AWS

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running on

Amazon Web Services (AWS).

This document describes how to configure Wing Pro for AWS. To get started using Wing Pro as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Prerequisites

You will need an AWS instance that has Python installed on it, is running 32-bit or 64-bit Intel Linux, and

that you can connect to with SSH. You will need the following in order to configure Wing Pro to use your

AWS instance:

(1) The user name and static IP address or DNS name used to connect to the AWS instance. Amazon

Lightsail typically uses an IP address while EC2 and other variants of AWS may provide a DNS name

as well. The static IP address will work in any case.

(2) The SSH key pair in a *.pem file, as downloaded from AWS.

If you do not already have Wing Pro installed, download it now.

Setting up AWS

If you already have an AWS instance to work with, you can skip this section.

Otherwise, Amazon Lightsail is the easiest way to get an AWS instance, in about 5 minutes. You will

need to set up an account. Then create a Linux/Unix instance, selecting the OS Only option and the

most recent Ubuntu or any other Intel Linux with Python 2 or 3 on it.

How-Tos for Specific Environments

36

https://wingware.com
https://aws.amazon.com/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/downloads/wingpro
https://aws.amazon.com/lightsail/

While setting up your instance, you can download your SSH key pair under the AWS SSH key

pair manager. You'll need this on your local machine, where Wing is running, in order to be able to

connect to the instance.

After the instance is created, it will remain in pending state for a minute or so. Once it is up and

running, create a static IP address under the Network tab in the AWS Lightsail management area and

attach it to your instance.

At this point you have all that is needed to start using Wing Pro with AWS: (1) The SSH key pair that you

downloaded, and (2) the user name and IP address, which are shown on the Lightsail instance

management page.

Testing the SSH Connection

Before trying to use your new instance from Wing Pro, you may want to first try to connect using ssh or

PuTTY's plink.exe on the command line, to make sure your configuration is working. This is not a

requirement, however, since you can also connect to AWS using Wing's built-in SSH implementation.

OpenSSH

On Linux or macOS using ssh, you need to make your *.pem SSH key pair file readable only by the

user running Wing, for example with:

chmod 600 aws.pem

Otherwise, ssh will reject it as potentially compromised.

Once that is done, try connecting as follows, substituting the actual path to your downloaded SSH key

pair and your instance's username and IP address or DNS name:

ssh -i /path/to/mykey.pem ubuntu@11.22.33.44

You will be asked to add the instance's identity to your known hosts file, which you should do by typing

yes. If this is not done, ssh will fail to connect and Wing will also not be able to connect to the instance.

PuTTY

With PuTTY on Windows, you will need to first convert the SSH key to a format that PuTTY can use.

This is done by launching puttygen, pressing the Load button to read the *.pem SSH key file you

downloaded from the AWS management site, and then using Save Private Key to write a *.ppk file.

Then you invoke plink.exe to connect to the AWS instance as follows, substituting in the actual path to

your downloaded SSH key pair and the correct username and IP address or DNS name for the AWS

instance:

plink.exe -i C:\path\to\mykey.ppk ubuntu@11.22.33.44

How-Tos for Specific Environments

37

You will be asked to accept the AWS instance's identity the first time you connect, and this must be

done before Wing's remote development support will work with the AWS instance.

Built-in SSH Implementation

If you don't have ssh or PuTTY, you can also just use Wing's built-in SSH implementation. You will

need to know the full path to your AWS .pem private key file and also the username and host's IP

address. Once you have these, proceed to the next section to configure your connection to AWS in

Wing.

Creating a Wing Project

Now you're ready to create a project in Wing Pro. This is done with New Project from the Project

menu. From the Host menu at the top of the first page in the New Project dialog, select

Create Configuration.

This displays the New Remote Host dialog where you can configure Wing to connect to AWS. Select

AWS for the Remote Host Type. Then enter an identifier for the remote host (any short string to identify

it in Wing's UI) and the user name and IP address or DNS name used to connect to the AWS instance.

In most cases Python Executable should be Use default, which first tries python3 and then python. If

Python is not on the PATH on your AWS instance or you want to specify a particular Python executable

or activate a virtual environment, you can do this here.

You will also need to point Wing at the SSH key file you downloaded from AWS earlier. This is done

under the Options tab of the New Project dialog, using the Private Key field. Select

Use private key file and enter the full path to your downloaded SSH key.

Pressing OK in the New Remote Host dialog will create the remote host configuration, so Wing can

already connect to your AWS instance. Form here you can select or create your source directory on the

AWS instance, and choose or create the Python environment to use. See Creating a Project for details.

After pressing Create Project in the New Project dialog, Wing will configured a new untitled project.

You can save it to local disk from the Project menu.

Testing a Hello World

To try out a simple example of editing and debugging code on the remote AWS instance, create a file

helloworld.py temporarily on the instance. This is done by right-clicking on one of the directories in the

Project tool in Wing Pro and selecting Create New File. Enter the file name (in some key bindings this

is in the data entry area at the bottom of Wing's window) and then type or paste the following into the

new file:

import time
print("Hello World! {}".format(time.time()))

How-Tos for Specific Environments

38

https://wingware.com/doc/proj/creating-a-project

After saving the file, set a breakpoint on the second line by clicking on the leftmost margin in the editor.

Then select Start/Continue from the Debug menu to start debug, or use the green play icon in the

toolbar.

There is a slight delay to get the process started, depending on your network distance from the AWS

instance, but then you should see Wing stop on the breakpoint. Although there's not much to see in this

context, you can check that it's working by entering the following into the Debug Console tool:

time.time()

Once you continue debugging, the process will exit and print its "Hello World" message to Wing's

Debug I/O tool.

Related Documents

For more information see:

• Amazon Web Services (AWS) provides documentation and links for creating an AWS account and

instance.

• Remote Hosts for details on configuring remote development.

• Quickstart Guide contains additional basic information about getting started with Wing Pro.

• Tutorial provides a gentler introduction to Wing Pro's features.

• Wing Pro Reference Manual documents Wing Pro in detail.

How-Tos for Specific Environments

39

https://aws.amazon.com/
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.8. Using Wing with Vagrant

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running on Vagrant

containers.

This document describes how to configure Wing Pro for Vagrant. To get started using Wing Pro as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Prerequisites

This guide assumes you have already installed and started using Vagrant. Wing Pro supports working

with Vagrant boxes running Linux (32-bit or 64-bit) or macOS. Other OS types, such as FreeBSD, won't

work.

You will also need to make sure that Python is installed in the Vagrant box. If Python is not present,

Wing Pro's remote agent installation process will fail.

If you do not already have Wing Pro installed, download it now.

Creating a Project

Creating a Wing Pro project for an existing Vagrant container is easy:

1. Start your container with vagrant up

2. Use New Project from the Project menu and then select Create Configuration from the Host

menu in the New Project dialog. Then select Vagrant as the Remote Host Type

3. Fill in the full path to your Vagrant project directory (which contains your Vagrantfile) and press

OK to create the remote host configuration

How-Tos for Specific Environments

40

https://wingware.com
http://www.vagrantup.com/
https://wingware.com/doc/howtos/quickstart
http://www.vagrantup.com/
https://wingware.com/downloads/wingpro

4. Only on Windows with PuTTY, you will be asked to convert Vagrant's private key into a PuTTY

key. To do this, Wing starts puttygen with the private key already loaded into it. Press

Save private key to save the key as private_key.ppk in the current directory. Confirm saving

without password (the original also doesn't have a password) and then quit puttygen to continue

the project setup process in Wing.

Once this is done, Wing should install the remote agent and confirm that it is working. You can now

continue through the New Project dialog to select or create your source directory on your Vagrant

container and select or create the Python enviromment to use. See Creating a Project for details.

To learn more about Wing Pro's remote development capabilities, see Remote Hosts.

To learn more about Wing Pro's features, take a look at the Tutorial in the Help menu or the Quickstart

Guide.

How It Works

Wing uses vagrant ssh-config to inspect your Vagrant container and fill in the necessary settings in

Wing's project file.

To see the settings that Wing created during New Project, take a look at Project Properties from the

Project menu. The Python Executable was set to point to a remote host named vagrant. Click on Edit

here or use Remote Hosts in the Project menu to access the remote host configuration. The values

that Wing sets up are: Identifier and Hostname under the General tab, SSH Port and Private Key

under the Options tab, and Manage SSH Tunnels under the Advanced tqb. Settings these values

manually achieves exactly the same results as using the New Project dialog.

Usage Hints

Synced Folders

As far as Wing is concerned, all files and directories are located in the Vagrant container and Wing

never accesses local copies of the files maintained by Vagrant's synchronization commands.

If you need to update your local copies of files for some other reason while working with Wing, run

vagrant rsync, or set up continuous synchronization with vagrant rsync-auto.

Password-less Private Keys

Vagrant uses password-less private keys by default. However, Wing can also work with

password-protected private keys. You will be prompted as needed for the passphrase to unlock your

key. Alternatively, you can load the key into the SSH user agent (ssh-agent or pageant for PuTTY) and

change Options > Private Key in Wing's vagrant remote host configuration to Use SSH User Agent.

How-Tos for Specific Environments

41

https://wingware.com/doc/proj/creating-a-project
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/howtos/quickstart

Related Documents

For more information see:

• Vagrant home page provides downloads and documentation.

• Remote Python Development describes how to set up remote development in general.

• Remote Development documents the details of remote development.

• Quickstart Guide contains additional basic information about getting started with Wing Pro.

• Tutorial provides a gentler introduction to Wing Pro's features.

• Wing Pro Reference Manual documents Wing Pro in detail.

How-Tos for Specific Environments

42

http://vagrantup.com/
https://wingware.com/doc/howtos/remote-development
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.9. Using Wing Pro with Windows Subsystem for Linux

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running on

Windows Subsystem for Linux (WSL), including both WSL 1 and WSL 2.

This document describes how to configure Wing Pro for WSL. To get started using Wing Pro as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Prerequisites

To use Wing Pro with WSL you will need to install Python on WSL and be able to SSH from Windows

into WSL. If you don't already have this working, see Setting up WSL below before trying to create a

project in Wing Pro.

If you do not already have Wing Pro installed, download it now.

Creating a Project

To create a Wing Pro project that accesses Linux under WSL:

1. Use New Project from the Project menu and then select Create New Configuration from the

Host menu in the New Project dialog.

2. Leave the Remote Host Type in the New Remote Host dialog set to Generic.

3. Set Identifier to wsl or some other short name for the WSL-hosted Linux.

4. Set Host Name to username@ipaddress where username is replaced with the user name

running on Linux and ipaddress is replaced with the IP address that ip a reports inside your WSL

system. The user name is needed even if it is the same as the user running on Windows.

How-Tos for Specific Environments

43

https://wingware.com
https://docs.microsoft.com/en-us/windows/wsl/about
https://wingware.com/doc/howtos/quickstart
https://docs.microsoft.com/en-us/windows/wsl/about
https://wingware.com/downloads/wingpro

5. Set Python Executable to Command Line and enter /usr/bin/python3 or the full path to the

Python executable you wish to use on Linux.

6. If you are running the SSH server on Linux under a non-standard port, set SSH Port under the

Options tab.

7. If you are using an older WSL version that allows connecting with username@127.0.0.1 then you

will also need to set Manage SSH Tunnels under the Advanced tab of the remote host

configuration to Never Create Tunnel. This should not be done if using an IP address other than

127.0.0.1 in the Host Name field.

8. Leave the rest of the configuration values set to their defaults and press OK.

Wing Pro should install the remote agent and confirm that it is working. Then you can continue through

the New Project dialog to select or create your source directory and select or create the Python

environment to use. See Creating a Project for details.

You will be able to edit, debug, test, search, and manage files on the WSL-hosted Linux installation, or

launch commands running on Linux from Wing Pro's OS Commands tool.

To learn more about Wing Pro's remote development capabilities, see Remote Hosts.

To learn more about Wing Pro's features, take a look at the Tutorial in Wing's Help menu or the

Quickstart Guide.

Setting up WSL

Here is one way to set up WSL with Ubuntu as the Linux distribution and PuTTY as the SSH client:

Enable WSL and Install Ubuntu Linux:

• Enable WSL in Windows 10+. This is done in the Settings app under Apps > Apps & features >

Related settings / Programs and features > Turn Windows features on and off. Restart when

prompted.

• Install Ubuntu from the Microsoft Store.

• Install Python in Ubuntu with sudo apt-get install python3 if not already present.

Fix the SSH server on Ubuntu:

• Some versions of Ubuntu under WSL seem to be initially misconfigured so that connecting to the

SSH server immediately drops the connection. If you run into this, you can fix the problem with

sudo apt-get purge openssh-server followed by sudo apt-get install openssh-server and then

sudo service ssh --full-restart. Type wsl on Windows to get into your WSL system without

needing the SSH server to work.

Each time you restart Windows or Ubuntu:

• Run sudo service ssh --full-restart on Ubuntu to make sure the SSH server is started.

How-Tos for Specific Environments

44

https://wingware.com/doc/proj/creating-a-project
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/quickstart

Find the IP Address for Ubuntu

• Run wsl on Windows

• In the resulting WSL prompt, run ip a to get the IP address for eth0. For example, in the following

output fragment the IP address is 172.17.134.127 (the number right after inet in the eth0 section):

4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether 00:15:5d:a8:d9:33 brd ff:ff:ff:ff:ff:ff
 inet 172.17.134.127/20 brd 172.17.143.255 scope global eth0
 valid_lft forever preferred_lft forever

Now you should be able to connect to Ubuntu using username@ipaddress, with username replaced

with your Ubuntu-side user name and ipaddress replaced by the IP address you just found. You can try

this with PuTTY's plink.exe or OpenSSH's ssh.exe if you have those, or proceed to creating your Wing

project (see above) to use Wing's built-in SSH implementation.

Notes

In the unlikely event that you already have an SSH server running somewhere on your system on port

22, you will need to change the port number used on Ubuntu in /etc/ssh/sshd_config and then execute

sudo service ssh --full-restart again. In this case, you also need to set the port in your remote host

configuration in Wing, under the Options tab.

Other Linux distributions are also available in the Microsoft Store.

It is also possible to use Open SSH instead of PuTTY. See Working with OpenSSH for details.

Related Documents

For more information see:

• Windows Subsystem for Linux provides information on getting starting with WSL.

• Remote Hosts for details on configuring remote development.

• Quickstart Guide contains additional basic information about getting started with Wing Pro.

• Tutorial provides a gentler introduction to Wing Pro's features.

• Wing Pro Reference Manual documents Wing Pro in detail.

How-Tos for Specific Environments

45

https://wingware.com/doc/proj/ssh-setup-details-openssh
https://docs.microsoft.com/en-us/windows/wsl/about
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.10. Using Wing with Raspberry Pi

Note

"Within a couple of minutes I could fence in and eliminate an error with the handling of a

GPRS modem attached to the Raspberry Pi that before I was trying to hunt down for

hours." -- Robert Rottermann, redCOR AG

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code running on the

Raspberry Pi.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Raspberry Pi. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Configuration

Wing Pro does not run on the Raspberry Pi, but you can set up Wing Pro on a computer connected to

the Raspberry Pi to work on and debug Python code remotely. This is configured as follows:

• If you do not already have Wing Pro installed, download it now on Windows, Linux, or macOS.

• Make sure you can connect to the Raspberry Pi from the machine where Wing IDE will be running,

using ssh (or PuTTY on Windows). If you don't have either ssh or PuTTY, you can also

How-Tos for Specific Environments

46

http://redcor.ch/
https://wingware.com
http://raspberrypi.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/downloads/wingpro
http://www.putty.org/

connect using Wing's built-in SSH implementation. See Setting up SSH for Remote Development

for a detailed description of the available configuration options. However, in most cases all you

need to know is the Raspberry Pi's ip address.

• Start up Wing and use New Project from the Project menu to create a project. Select

Create New Configuration from the Host menu in the New Project dialog and then select

Raspberry Pi for the Remote Host Type in the New Remote Host dialog.

• Then fill in the New Remote Host fields as follows:

• Identifier -- Set this to rasp or some other short identifier for the Raspberry Pi. This name is

used only within Wing.

• Host Name -- Set this to the string you use to SSH into the Raspberry Pi. In most cases you'll

need both a username and IP address, such as pi@192.168.0.2.

Note that you can edit your configuration later, or add remote hosts to any project, from the

Remote Hosts item in the Project menu.

• Next click OK to create the remote host configuration. Wing will attempt to install the remote agent

and then establish a connection to the Raspberry Pi. If this fails, details of the SSH command's

output will be given in the resulting dialog.

• Once you have the remote agent working, continue through the New Project dialog to select or

create your source directory and select or create the Python environment to use. See Creating a

Project for details.

After you press Create Project Wing will create a new untitled project configured to work with your

Raspberry Pi. Save it to local disk from the Project menu, for example as rasp.wpr.

Once this is done, you can open files from the Project tool, with Open From Project and in other ways,

and work with them as if they were on your local machine. That includes debugging, running unit tests,

issuing revision control commands, searching, running a Python Shell or OS Commands remotely, and

using other features like goto-definition, find uses, and refactoring.

Related Documents

For more information see:

• Raspberry Pi home page for documentation and downloads.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Specific Environments

47

https://wingware.com/doc/proj/remote-ssh
https://wingware.com/doc/proj/creating-a-project
https://wingware.com/doc/proj/creating-a-project
http://raspberrypi.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.11. Using Wing with Cygwin

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for cygwin,

a Linux/Unix like environment for Microsoft Windows.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Cygwin. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Note: This document was last tested with cygwin 3.6.

Project Configuration

To write and debug code running under cygwin, download and install Wing for Windows on your

machine. Wing does not run on cygwin but you can set up Wing for Windows to work with Python code

that is running under cygwin.

This is done by creating a project with New Project in the Project menu, selecting

Create Blank Project, pressing Create Project, and then adding the Windows-side copies of your

source files to the project with Add Existing Directory in the Project menu.

Debugger Configuration

To debug code running on cygwin, follow the instructions for Debugging Externally Launched Code. In

this model, you will always launch your Python code from cygwin and not from Wing's menus or toolbar.

When setting this up, use cygwin paths for WINGHOME in wingdbstub.py because this file will be

used on the cygwin side.

How-Tos for Specific Environments

48

https://wingware.com/
https://www.cygwin.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/debug/debugging-externally-launched-code

File Paths

It is often easiest to configure cygwin pathnames to be equivalent to the Windows pathnames. An

example would be to set up /src in cygwin to point to the same directory as \src on Windows, which is

src at top level of the main drive, usually c:\src.

If this is not possible, you should be sure to add all the sources you need to work with to your project in

Wing. This way, Wing can automatically find all your files and use a hash on the contents of the file to

identify which Windows-side files are the same as the cygwin files. See File Location Maps for details.

Related Documents

For more information see:

• Cygwin home page, which provides links to documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Specific Environments

49

https://wingware.com/doc/debug/file-location-maps
https://www.cygwin.com/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

1.12. Remote Python Development

Wing Pro can connect securely to a remote host, VM, or container, in order to work with files on the

remote system in the same way that Wing supports working with files on your local system. Editing,

debugging, testing, searching, version control, Python Shell, OS Commands, and other features all

work with remote systems.

Currently, Wing can work remotely to macOS and Intel or ARM Linux systems. This includes any PEP

513 compatible Intel Linux system and ARM systems like Raspberry Pi and Jolla phone. We are still

expanding the range of remote systems that we support. For a detailed list of the remote host types

supported in the current release, please see Supported Platforms. If you try a device and cannot get it

working, don't hesitate to email support@wingware.com for help.

Configuration

Before you can set up remote development in Wing, you need to be able to connect to your remote

system using SSH. This can be tested outside of Wing with ssh on Linux and macOS or either

OpenSSH (provided by Cygwin, Git Bash, or similar) or PuTTY on Windows. If you don't have either

ssh or PuTTY, Wing falls back to using its own built-in SSH implementation. See Setting up SSH for

Remote Development for a detailed description of all the available configuration options. However, in

most cases all you will need to know is the user name and the ip address or host name of the remote

system.

How-Tos for Specific Environments

50

https://wingware.com/
https://wingware.com/doc/install/supported-platforms
mailto:support@wingware.com
https://wingware.com/doc/proj/remote-ssh
https://wingware.com/doc/proj/remote-ssh

Creating a Project

To set up a new project that works with a remote host, select New Project from the Project menu and

choose Create New Configuration from the Host menu in the New Project dialog. Then enter an

Identifier to use for the remote host and the Host Name or ip address (optionally in the form

username@hostname). You only need to specify Python Executable if python is not on the PATH on

your selected remote host or you want to select one of several Python installations.

For example, here is a configuration to access a Linux system on a local network from macOS:

The press OK to create the remote host configuration and install the remote agent if necessary.

If the remote agent needed to be installed or upgraded then Wing will briefly show a status dialog during

installation and inspection of the remote system, followed by a confirmation dialog:

How-Tos for Specific Environments

51

Close this dialog and you will see that the new remote host configuration has been selected for your

new project:

You can now continue by selecting or creating your source directory and selecting or creating a Python

environment to use with the project. See Creating a Project for details on the configuration options.

After you press the Create Project button in the New Project dialog, Wing will set up your project. You

can then save the project to local disk with Save Project in the Project menu.

How-Tos for Specific Environments

52

https://wingware.com/doc/proj/creating-a-project

Using Your Project

If you bring up the Python Shell from the Tools menu, you should be able to interact with the Python

environment you selected on your remote host. For example, here is Python running remotely on a

CentOS 6 system from Wing on macOS:

To debug, open a file from the directory you added to the project and select Start/Continue in the

Debug menu. Wing launches the file in the debugger on the remote host and will reach breakpoints and

exceptions. Debugging a remote file works the same way as for local files. You can use the

Debug Console, Stack Data, Watch and other tools to inspect and debug your code.

How-Tos for Specific Environments

53

Other tools, including the Testing tool for unit testing, the version control integrations, and

OS Commands for executing non-Python command lines all work on the remote host.

Details

The remote host configuration you created along with your project is stored inside your project file. You

can view and edit the configuration, or create other remote host configurations, from Remote Hosts in

the Project menu:

How-Tos for Specific Environments

54

It is possible to set up multiple remote host configurations for one project, but the project's

Python Executable in Project Properties (from the Project menu) can only point to one of the remote

hosts, and that is where the Python Shell and debug processes are run. Changing the

Python Executable is what determines whether a project points to local disk or some remote system.

Here are the Project Properties that were set up automatically in the project we created above:

How-Tos for Specific Environments

55

Remotely Stored Projects

In this example, we stored the project file on local disk, but project files can also be stored on the remote

host. In that case, the remote host configuration needs to be checked as Shared. This stores the

remote host configuration locally so that it can be used to access the remote project later with

Open Remote Project from the Project menu.

You can also use this feature to remotely open a regular locally created Wing project.

Remote Display with X11

To work with code that displays a user interface, you can forward X11 display to occur on the machine

where Wing is running. This is done by checking the Forward X11 option in your remote host

configuration, under the Options tab.

Unless Wing is running on Linux, you will also need to install and run an X11 server on the machine

where Wing is runing, for example XQuartz on macOS or MobaXTerm on Windows.

Further Reading

For more information see:

• Remote Hosts for more detailed instructions and advanced configuration options.

• Remote Web Development describes how to set up remote development where the debug process

is launched from outside of the IDE, for example by a web server or framework.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Please don't hesitate to contact support@wingware.com if you need help getting remote development

working.

How-Tos for Specific Environments

56

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/debugging-web-remote
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual
mailto:support@wingware.com

How-Tos for Scientific and Engineering Tools
The following How-Tos explain how to get started using Wing with tools for scientific and engineering

data analysis and visualization.

How-Tos for Scientific and Engineering Tools

57

2.1. Using Wing with Matplotlib

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for

Matplotlib, a powerful numerical and scientific plotting library.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Matplotlib. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Working Interactively

Wing supports interactive development and debugging of Python code designed for the Matplotlib

numerical and scientific plotting library, so plots can be shown and updated from the command line. For

example, two plots could be shown in succession by typing the following into Wing's integrated

Python Shell, one line at a time:

from matplotlib.pyplot import plot, show
x = range(10)
plot(x)
show()
y = [2, 8, 3, 9, 4] * 2
plot(y)

Wing sets up the environment so that show() runs to completion and immediately returns you to the

prompt, rather than waiting until the plot is closed. In addition, Wing calls Matplotlib's main loop to keep

plots windows interactive and updating while you are at the prompt. This allows plots to be added or

changed without restarting a process or interrupting your work flow.

How-Tos for Scientific and Engineering Tools

58

https://wingware.com
https://matplotlib.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Evaluating Files and Selections

Code from the editor can be executed in the Python Shell with the Evaluate ... in Python Shell items

in the Source menu and in the editor's right-click context menu. By default the Python Shell restarts

automatically before evaluating a whole file, but this can be disabled in its Options menu.

Active Ranges

Wing also allows you to set a selected range of lines in the editor as the "active range" for the

Python Shell by clicking the icon in the top right of the Python Shell tool. Wing highlights and

maintains the active range as you edit it in the editor, and it can be re-evaluated easily with the icon

that appears in the top right of the Python Shell once an active range has been set into it. Use the

icon to clear the active range from the editor and shell.

Supported Backends

Interactive development is supported for the TkAgg, GTKAgg, GtkCairo, WXAgg (for wxPython 2.5+),

Qt5Agg, Qt4Agg, MacOSX, and WebAgg backends. It will not work with other backends.

Debugging

Code can be debugged either by launching a file with in the toolbar (or Start/Continue the Debug

menu) or by enabling debug in the integrated Python Shell and working from there. In either case,

Wing can be used to reach breakpoints or exceptions, step through code, and view the program's data.

For general information on using Wing's debugger see the Debugger Quick Start.

When executing code that includes show() in the debugger, Wing will block within the show() call just

as Python would if launched on the same file. This is by design, since the debugger seeks to replicate

as closely as possible how Python normally runs.

However, interactive development from a breakpoint or exception is still possible, as described below.

This capability can be used to load setup code before interacting with Matplotlib, or to try out a fix when

an exception has been reached.

Interactive Debugging from the Debug Console (Wing Pro only)

Whenever the debugger is stopped at a breakpoint or exception, Wing Pro's Debug Console provides

a command prompt that may be used to inspect and interact with the paused debug process.

Commands entered here run in the context of the currently selected debug stack frame.

The tool implements the same support for interactive development provided by the Python Shell, so

plots may be shown and modified interactively whenever Wing's debugger is paused. Once the debug

process is continued, Wing switches off interactive mode and returns to behaving in the same way that

Python would when running the code outside of the debugger.

How-Tos for Scientific and Engineering Tools

59

https://wingware.com/doc/debug/quick-start

Note

Interactive development from the Debug Console requires that you have already imported

matplotlib in the code that you are debugging or in a previous command entered in the console.

Otherwise show() may block and plots won't be updated.

Interactive Debugging from the Python Shell

Another way to combine the debugger with interactive development is to turn on both

Enable Debugging and Enable Recursive Prompt in the Python Shell's Options menu. This causes

Wing to add a breakpoint margin to the Python Shell and to stop in the debugger if an exception or

breakpoint is reached, either in code in the editor or code that was entered into the Python Shell.

The option Enable Recursive Prompt causes Wing to show a new recursive prompt in the

Python Shell whenever the debugger is paused, rather than waiting for completion of the original

command before showing another prompt. Showing or updating plots from recursive prompts works

interactively in the same way as described earlier.

If another exception or breakpoint is reached, Wing stops at those as well, recursively to any depth.

Continuing the debug process from a recursive prompt completes the innermost invocation and returns

to the previous recursive prompt, unless another exception or breakpoint is reached first.

Trouble-shooting

If show() blocks when typed into the Python Shell, if plots fail to update, or if you run into other event

loop problems while working with Matplotlib, then the following may help solve the problem:

(1) When working in the Debug Console, evaluate the imports that set up Matplotlib first, so that Wing

can initialize its event loop support before show() is called. Evaluating a whole file at once in the

Debug Console (but not the Python Shell) will cause show() to block if Matplotlib was not previously

imported.

(2) In case there is a problem with the specific Matplotlib backend that you are using, try the following as

a way to switch to another backend before issuing any other commands:

import matplotlib
matplotlib.use('TkAgg')

Instead of TkAgg you may also try other supported backends, including Qt5Agg (which requires that

Qt5 is installed) or WebAgg (which uses a web browser for plot display).

Please email support@wingware.com if you run into problems that you cannot resolve.

How-Tos for Scientific and Engineering Tools

60

mailto:support@wingware.com

Related Documents

For more information see:

• The Matplotlib website

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Scientific and Engineering Tools

61

https://matplotlib.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

2.2. Using Wing with Jupyter Notebooks

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for Jupyter,

an open source scientific notebook system.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Jupyter. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Setting up Debug

Since Jupyter is started outside of Wing, you will need to initiate debug from your code or from the

Jupyter notebook. There are a few configuration options that need to be set correctly for this to work

properly.

Limitation: Jupyter does not provide a usable filename for code that resides directly in a notebook

.ipynb file (it is simply set to names like <ipython-input-1>). As a result you cannot stop in or step

through code in the notebook itself. Instead, you need to place your code in a Python file that is

imported into the notebook, and then set breakpoints and step through code in the Python file.

Configure wingdbstub.py

To initiate debug, you will need to copy wingdbstub.py out of your Wing installation (on macOS it is

located in Contents/Resources within the .app bundle) and place it in the same directory as your

.ipynb file.

You may need to set WINGHOME inside of wingdbstub.py to the installation location of Wing. This is

set automatically during installation of Wing except on macOS, on Windows if you use the zip installer,

How-Tos for Scientific and Engineering Tools

62

https://wingware.com
https://jupyter.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

and on Linux if you use the tar installer. An alternative to editing wingdbstub.py is just to set the

environment variable WINGHOME before you run jupyter notebook.

Listen for Debug Connections

Next, tell Wing to listen for externally initiated debug connections by clicking on the bug icon in the lower

left of Wing's window and checking on Accept Debug Connections.

Starting Debug

Now add code like the following to the top of your Jupyter notebook:

import wingdbstub
wingdbstub.Ensure()

When you run that cell, Wing will start debugging Jupyter. You should see Wing's toolbar change and

the Stack Data tool should show one running process:

Working with the Debugger

To try out debugging, save a file named testdebug.py in the same directory as your .ipynb file with the

following contents:

def run():
 print("Hello world")
 x = 1
 print("Done")

Open this in Wing and place a breakpoint on the first line by of the body of run() by clicking on the

breakpoint margin to the left, as follows:

How-Tos for Scientific and Engineering Tools

63

Now add the following cell to your Jupyter notebook:

import testdebug
testdebug.run()

When you execute that cell, Wing should stop on the breakpoint in testdebug.py:

How-Tos for Scientific and Engineering Tools

64

Now you can use the toolbar icons to step through code, view data in the Stack Data tool in Wing,

interact in the context of the current debug stack frame with the Debug Console (Wing Pro only), and

use all of Wing's other debugging features on your code. See the Tutorial in Wing's Help menu for

more detailed information on Wing's debugging capabilities.

To complete execution of your cell, press the green continue arrow in the toolbar. Now if you execute

the cell again, you should reach your breakpoint a second time. Then continue again to complete

execution of the cell.

Editing Code

Now try editing code in testdebug.py to change Hello world to Hello everyone and save the file. If you

execute your cell again in Jupyter you'll notice the text being output has not changed. This is because

the module has already been imported by Python and Jupyter is not automatically reloading it. To load

your changes you'll need to restart the kernel from Jupyter's toolbar or its Kernel menu. In many cases

Restart and Run All in the Kernel menu will be the most efficient way to reload your code and get back

to your breakpoint.

Try selecting the Source Assistant from Wing's Tools menu and then adding some other code in

testdebug.py, for example add z = yy for your code reads as follows:

def run():
 print("Hello everyone")

How-Tos for Scientific and Engineering Tools

65

 z = yy
 print("Done")

Notice that Wing offers auto-completion and updates the Source Assistant with call tips,

documentation, and other information about what you are typing, or what you have selected in the

auto-completer. If a debug process is active and the code you are typing is on the stack, Wing includes

also symbols found through inspection of the live runtime state in the auto-completer. In some code, but

not the above example, this can include information Wing was not able to find through static analysis of

the Python code.

Working in live code like this is a great way to write new code in the Debug Console, where you can try

it out immediately.

Or, you can work in the editor and try out selected lines of code by pressing the icon in top right of

the Debug Console to make an active range. Once that is done, you can execute those lines

repeatedly by pressing the icon in the Debug Console:

How-Tos for Scientific and Engineering Tools

66

Stopping on Exceptions

Since Jupyter handles all exceptions that occur while executing a cell, Wing will not stop on most

exceptions in your code. Instead, you will get the usual report in the notebook output area.

Try this by now by restarting the Jupyter kernel and executing your edited copy of testdebug.py, which

should read as follows:

def run():
 print("Hello everyone")
 z = yy
 print("Done")

Jupyter will report the exception in the notebook (undefined symbol yy), but Wing will not stop on it.

It is possible to get Wing to stop on exceptions, although currently the only way to do that is to edit code

in IPython's interactiveshell.py. You can easily find that by setting a breakpoint in run() as before and

going up the stack in Wing using the Stack Data or Call Stack tool. Then add the following code to the

final except: clause in InteractiveShell.runcode. This will log the exception, which Wing takes as a

clue that it should report the exception even though it is being handled:

if 'WINGDB_ACTIVE' in os.environ:
 import logging
 logging.exception(sys.exc_info()[1])

You will need to restart the Jupyter kernel after making this change. Then try executing your cell again

and you will see Wing now reports the exception:

How-Tos for Scientific and Engineering Tools

67

You can continue as usual from the exception and it will also be reported in the Jupyter notebook.

Fixing Failure to Debug

If you accidentally disconnect Wing's debugger from Jupyter, for example by pressing the red stop icon

 in Wing's toolbar, you can reestablish the debug connection at any time by re-executing the first cell

we set up above, or by placing the following code into any other code that gets executed:

import wingdbstub
wingdbstub.Ensure()

Note that if you plan to restart the Jupyter kernel every time you start debug then you don't need the

wingdbstub.Ensure line. This makes sure that debug is active and connected to the IDE, so it is only

needed if the debug connection has been dropped since the first time wingdbstub was imported.

If debugging stops working entirely and this does not solve it, you will need to restart the Jupyter kernel

from its toolbar or Kernel menu and then re-execute the above code to start debugging again.

How-Tos for Scientific and Engineering Tools

68

Reloading Changed Modules

The instructions above rely on restarting of the kernel as the way to reload changed code into Jupyter.

Module reloading is also an option, making it possible to reload code without restarting the kernel.

Simple module reloading can be done using Python's builtin function reload() (or in Python 3.x instead

imp.reload() after import imp). For details see instructions for reloading in IPython.

Or, for more complex cases, the autoreload extension for IPython may help.

In general module reload can be problematic if old program state is not cleared correctly, and the

complexity of this depends on the modules being used and their implementations. Simply restarting the

kernel is always the safest option.

Related Documents

Wing provides many other options and tools. For more information:

• Jupyter website

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Scientific and Engineering Tools

69

https://dpb.bitbucket.io/reloading-modified-code-when-using-the-ipython-interactive-shell.html
https://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html
https://jupyter.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

2.3. Using Wing with PyXLL

Note

"Out of all the Python IDEs available I found Wing to have the fastest and easiest to use

debugger by far. Using it to debug Python code running in Excel with PyXLL is a joy!" --

Tony Roberts

Wing Pro is a Python IDE that can be used to develop, test and debug Microsoft Excel add-ins written in

Python with PyXLL.

This document focuses on configuring Wing to debug Python code running in Excel. To learn more

about Wing in general, please refer to the Tutorial in Wing's Help menu or read the Quickstart Guide.

Introduction

PyXLL is a commercial product that embeds Python into Microsoft Excel on Windows. It allows you to

expose Python code to Excel as worksheet functions, macros, menus, and ribbon toolbars.

PyXLL add-ins can be developed, tested, and debugged using Wing. Wing's remote debugger is used

to connect to Excel in order to debug the Python code.

Installation and Configuration

Take the following steps to set up and configure Wing for use with PyXLL:

How-Tos for Scientific and Engineering Tools

70

https://wingware.com
https://www.pyxll.com
https://wingware.com/doc/howtos/quickstart
https://www.pyxll.com
https://wingware.com/doc/debug/remote-debugging

• Install PyXLL as described in the PyXLL user guide. Be sure the follow this guide to the end and

install the optional PyXLL wheel using pip.

• Install Wing if you don't already have it.

• Launch Wing from the Start menu on Windows.

• Create a new project in Wing with New Project in the Project menu. Select Create Blank Project

as the project type and press Create Project. Then use Project Properties in the project creation

confirmation dialog or Project menu to set Python Executable to Command Line and then enter

the full path to the Python you are using with PyXLL. This is the same value used for executable

in the PyXLL config file.

• Locate the folder where you have installed PyXLL and in Wing select Add Existing Directory

from the Project menu to add it to your project. Also add any other directories that store the source

code you are working on.

• Save your project to disk with Save Project As in the Project menu.

Debugging Python Code in Excel

This section describes how to debug Python code running in the Excel process through the PyXLL

add-in.

• Copy wingdbstub.py from the Install Directory, listed in Wing's About box, accessed from the

Help menu, into a directory listed on the pythonpath in your PyXLL config file. If you are just

starting with PyXLL, this could be the examples folder in your PyXLL folder.

• Open your copy of wingdbstub.py and make the following changes:

1. Make sure WINGHOME is set to the full path of the Wing installation from which you copied

wingdbstub.py. This may already be done, since it is usually set automatically during

installation.

2. Change the value of kEmbedded to 1. This tells Wing's debugger that you are working with

an embedded copy of Python, which affects some aspects of how code is debugged.

• Add wingdbstub to the modules list in your pyxll.cfg file:

[PYXLL]
modules =
 wingdbstub
 ...

• Make sure the Debugger > Listening > Accept Debug Connections preference is enabled on in

Wing, to allow debug connections from the Excel process. This can also be enabled by clicking on

the bug icon in the lower left of Wing's window.

Now hovering your mouse over the bug icon should show that Wing is listening for externally

initiated debug connections on the local host.

How-Tos for Scientific and Engineering Tools

71

https://www.pyxll.com/docs/userguide/installation.html
https://wingware.com/downloads

If Wing is not listening, it may be that it has not been allowed to do so by Windows. In that case, try

restarting Wing so that Windows will prompt you to allow network connections.

• Set any required breakpoints in your Python source code by clicking on the leftmost margin next to

the code in Wing's editor, or with the breakpoint items in the Debug menu.

• Restart Excel or reload the PyXLL add-in so that the wingdbstub module is imported. You should

see the status indicator in the lower left of Wing's window change to yellow, red, or green, as

described in Debugger Status.

• Call a Python function from Excel that will reach a breakpoint.

When a breakpoint is reached, Wing will come to the front and show the file where the debugger has

stopped. If no breakpoint or exception is reached, the program will run to completion, or you can use the

Pause command in the Debug menu.

Trouble-shooting

If this doesn't work at first, try using wingdbstub.Ensure() to force wingdbstub to make the connection

to the debugger. The following code creates an Excel worksheet function that, when called, ensures the

debugger is connected:

from pyxll import xl_func
import wingdbstub

@xl_func
def debug_test():
 wingdbstub.Ensure()
 return "Connected Ok!"

If this code can't connect then check that the Wing application is allowed to make network connections

in your Windows Firewall settings. To do this, go to the Windows Start menu and type "Allow an app

through Windows firewall", select "Change Settings" and then "Allow another app...". Navigate to the

Wing installation folder and select the Wing executable from the bin folder. Restart Wing and Excel and

now the two should be able to connect.

If you still have problems making this work, try setting the kLogFile variable in wingdbstub.py to log

additional diagnostic information. This diagnostic output can be emailed to support@wingware.com for

help.

Related Documents

Wing provides many other options and tools. For more information:

• PyXLL website.

• Debugging Externally Launched Code.

• Quickstart Guide contains additional basic information about getting started with Wing.

How-Tos for Scientific and Engineering Tools

72

https://wingware.com/doc/debug/status
mailto:support@wingware.com
https://www.pyxll.com
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/howtos/quickstart

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Scientific and Engineering Tools

73

https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

How-Tos for Web Development
The following How-Tos explain how to get started using Wing with a number of popular web

development frameworks.

How-Tos for Web Development

74

3.1. Remote Web Development

Wing Pro is a Python IDE that can be used to develop, test, and debug websites running on a remote

server, VM, or other system where an IDE cannot be installed. Debugging takes place in the context of

the web server or web framework, as code is invoked by browser page load. Wing provides

auto-completion, call tips, find uses, and many other features that help you work with Python code.

If you do not already have Wing Pro installed, download it now.

This document focuses on how to configure Wing for remote web development. To get started using

Wing as your Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Setting up SSH Access

Wing Pro's remote development support assumes that you have already set access to the remote host

with SSH. This can be tested outside of Wing using ssh or PuTTY, or you can use Wing's built-in SSH

implementation. See Setting up SSH for Remote Development for a detailed description of the available

configuration options. However, in most cases all you will need to know is the user name and the ip

address or host name of the remote system.

Installing the Remote Agent

The next step is to set up a remote host configuration from Remote Hosts in the Project menu. Press

the + icon to add a new remote host configuration.

You will need to choose a short identifier that Wing will use to refer to the host and enter the hostname,

which may be a name or an IP address and can be in username@hostname form if the remote user

How-Tos for Web Development

75

https://wingware.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/proj/remote-ssh

name does not match the local one. You will only rarely need to specify any of the other values in a

remote host configuration. For now, leave them blank. For example:

Once you submit the dialog for creating the configuration, Wing will try to probe the remote host and

then install the appropriate remote agent. When the process completes it should confirm that the remote

agent is installed and working as follows:

Next return to the Remote Hosts dialog and specify that the remote host configuration you've just

created should be shared, so that it isn't just stored in the currently open project:

How-Tos for Web Development

76

If something goes wrong during the remote agent installation process, Wing will instead show a dialog

similar to the following:

In this case, the output provided may help to diagnose and fix the problem. Or, for help contact

support@wingware.com.

Setting up a Project

Now it's time to set up a project that accesses your files on the remote host. To do this, select

New Project in the Project menu, use the Create Blank Project option, and then press

Create Project.

You can also set up a remote host from the New Project dialog, but let's use the blank project type now

so that you will see where the relevant configuration takes place.

Click OK to create the project, and then go into Project Properties from the Project menu. Set the

Python Executable to Remote and select the remote host you've just configured:

How-Tos for Web Development

77

mailto:support@wingware.com

Next add your files to the project with the Add Existing Directory item in the Project menu. Press the

Browse button next to the Directory field to display a dialog that browses the file system on the remote

host. Go into the directory you want to add and press Select Directory.

Wing will spend some time scanning the disk and analyzing files but you should already be able to open

and edit source files stored on the remote host from the Project tool.

Initiating Debug

This How-To assumes you're going to be launching your web server or web framework from outside of

Wing and want to debug-enable code that is invoked as you browse your development website. The

way Wing does this is by providing a module wingdbstub.py that you can import to initiate debug.

When you installed the remote agent above, Wing wrote a preconfigured copy of wingdbstub.py to the

remote agent installation directory. By default this is ~/.wingpro8/remote-8.3.3.0/wingdbstub.py

where ~ indicates the remote user's home directory. This will vary if you change the

Installation Directory under the Advanced tab of your remote host configuration.

Copy that file to the same directory as your code and add the following to your code before it reaches

anything you'll want to debug:

import wingdbstub

Next tell Wing to listen for connections from an externally launched debug process. This is done by

clicking on the bug icon in the lower left of Wing's window and checking on

Accept Debug Connections:

How-Tos for Web Development

78

If you hover over the bug icon, Wing shows that it is listening for connections, both on the local host and

on the configured remote host:

Note: If you are using Apache or otherwise run your code as a user that is different from the one used in

your remote host configuration, you'll need to adjust permissions on some files as described in the

section Managing Permissions below.

Debugging Code

Now you can set some breakpoints by clicking on the breakpoint margin to the left of your code. For

example:

Once this is done you should be able to point your browser at a web page that executes code with a

breakpoint, and Wing should stop on it:

Use Stack Data to view debug data:

How-Tos for Web Development

79

Or just interact on the command line within the current stack frame in the Debug Console tool:

Both of these tools are accessible from Wing's Tools menu.

This technique should work with any web development framework. See Web Development How-Tos for

details on using Wing with specific frameworks.

Managing Permissions

If your code is running as a different user than the one specified in your remote host configuration, as

may be the case if running under Apache or another web server, then you will need to make some

additional changes to make remote debugging work. For example, your remote host configuration may

set Host Name to devel@192.168.0.50 so the user that installs the remote agent is devel while the

code is actually run by the user apache.

How-Tos for Web Development

80

https://wingware.com/doc/howtos/web

In this case you must change the disk permissions on the Install Dir from which you copied

wingdbstub.py so it can be read by the user that runs your debug process. The best way to do this is

to create a group that includes both users and use that group for the directory, for example with

chgrp -R groupname dirname.

Then change your copy of wingdbstub.py by replacing ~ with the full path to the home directory of the

user in the remote host configuration. This is needed because ~ will expand to a different directory if the

code is run as a different user.

You may also want to change the permissions on the debugger security token file wingdebugpw so

that both users can read it, for example with chmod 640 wingdebugpw. The default for this file is to

allow only the owner to read it. If this isn't done, Wing will generate a different debugger security token

on the remote host and will initially reject your debug connection and prompt for you to accept the new

security token. Once that is done, future debug connections will be accepted.

Resources

• Web Development How-Tos contains instructions for using Wing with specific web development

frameworks, such as Django, Flask, Pyramid, web2py, and others.

• Remote Hosts documentation provides details for configuring Wing Pro to work with remote hosts.

• Quick Start provides an introduction to Wing's features.

• Tutorial takes you through Wing's features step by step.

• Wing Reference Manual documents Wing in detail.

How-Tos for Web Development

81

https://wingware.com/doc/howtos/web
https://wingware.com/doc/howtos/django
https://wingware.com/doc/howtos/flask
https://wingware.com/doc/howtos/pyramid
https://wingware.com/doc/howtos/web2py
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

3.2. Using Wing with Django

Note

"Wing is really the standard by which I judge other IDEs. It opens, it works, and does

everything it can do to stay out of my way so I can be productive. And its remote

debugging, which I use when I'm debugging Django uWSGI processes, makes it a rock

star!" -- Andrew M

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for the

Django web development framework. The debugger works with Django's auto-reload feature and can

step through and debug Python code and Django templates. Wing Pro also automates some aspects of

the creation and management of Django projects and applications.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Django. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Creating a Project

You can configure a new Wing project to use an existing Django project, or you can create a new

Django project at the same time.

How-Tos for Web Development

82

https://wingware.com/
https://www.djangoproject.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Existing Django Project

To set up a Wing Pro project for an existing Django project, use New Project in the Project menu. First

select the host you with to work on, then choose your existing source directory, and set Project Type to

Django. If Wing auto-detects a Python environment in your selected source directory, you can

immediately create the project. Otherwise, press Next to select your Python environment as described

below.

New Django Project

If you are starting a new Django project at the same time as you are setting up your Wing project, use

New Project in the Project menu. First select the host you wish to work on, then choose a new project

directory, and set Project Type to Django. Then press Next to configure your Python environment as

described in the previous section.

Selecting the Python Environment

The Python Environment that you use with Django can be any existing Python installation or

environment, or you can create a new virtualenv, pipenv, conda env, or Docker container along with

your project. See Creating Python Environments for details.

If you select an existing Python environment, be sure that it has Django installed into it before creating

your project. If you don't know where your Python is located, run it outside of Wing and type the

following:

import sys
print(sys.executable)

The resulting full path can be used with Command Line under the Existing Python Executable option

in the New Project dialog.

Once the project is created, this will display a dialog that confirms the configuration, with a detailed list

of the settings that were made.

Now you should be able to start Django in Wing's debugger, set breakpoints in Python code and Django

templates, and reach those breakpoints in response to a browser page load.

Usage Tips

Automated Django Tasks

The Django menu, shown in Wing when the current project is configured for Django, contains items for

common tasks such as creating a new app, generating SQL for a selected app, migrating an app or

database, running validation checks or unit tests, and restarting the integrated Python Shell with the

Django environment.

How-Tos for Web Development

83

https://wingware.com/doc/proj/creating-python-envs

Wing's Django extensions are open source and can be found in scripts/django.py in the install

directory listed in Wing's About box. For detailed information on writing extensions for Wing, see

Scripting and Extending Wing.

Debugging Exceptions

Django contains a catch-all handler that displays exception information to the browser. When debugging

with Wing, it is useful to also propagate these exceptions to the IDE. This can be done with a monkey

patch as follows (for example, in local_settings.py on your development system):

import os
import sys

import django.views.debug

def wing_debug_hook(*args, **kwargs):
 if __debug__ and 'WINGDB_ACTIVE' in os.environ:
 exc_type, exc_value, traceback = sys.exc_info()
 sys.excepthook(exc_type, exc_value, traceback)
 return old_technical_500_response(*args, **kwargs)

old_technical_500_response = django.views.debug.technical_500_response
django.views.debug.technical_500_response = wing_debug_hook

The monkey patch only activates if Wing's debugger is active and assumes that the

Debugger > Exceptions > Report Exceptions preference is left set to its default value When Printed.

Template Debugging

Wing Pro allows you to set breakpoints in any file that contains {%%} or {{}} tags, and the debugger will

stop at them.

Note that stepping is tag by tag and not line by line, but breakpoints are limited to being set for a

particular line and thus match all tags on that line.

When template debugging is enabled, you won't be able to step into Django internals during a template

invocaton. To work around that, temporarily uncheck Enable Django Template Debugging under the

Extension tab of Project Properties in Wing, and then restart your debug process.

Better Auto-Completion

Wing provides auto-completion on Python code and Django templates. The completion information is

based on static analysis of the files and runtime introspection if the debugger is active and paused. It is

often more informative to work with the debugger paused or at a breakpoint, particularly in Django

templates where static analysis is not as effective as it is in Python code.

How-Tos for Web Development

84

https://wingware.com/doc/scripting/index

Running Unit Tests

Wing Pro includes a unit testing integration capable of running and debugging Django unit tests. For

Django projects, the Default Testing Framework under the Testing tab of Project Properties is set to

Django Tests so that the Testing tool runs manage.py test and displays the results. Individual tests

can be run or debugged by selecting them and pressing Run Tests or Debug Tests in the Testing tool.

If unit tests need to be run with different settings, the environment variable

WING_TEST_DJANGO_SETTINGS_MODULE can be set to replace DJANGO_SETTINGS_MODULE

when unit tests are run.

Related Documents

For more information see:

• Django home page provides downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

• Remote Web Development describes how to set up development to a remote host, VM, or

container.

How-Tos for Web Development

85

https://www.djangoproject.com/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual
https://wingware.com/doc/howtos/debugging-web-remote

3.3. Using Wing with Flask

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for the

Flask web development framework.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Flask. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Project Configuration

To create a new project, use New Project in Wing's Project menu. Choose Use Existing Directory or

Create New Directory to select or create your source directory and then choose the Project Type of

Flask. Press Next and then select or create the Python environment to use with your new project.

Using an Existing Python Installation or Environment: Select Use Existing Python and

Command Line to use an existing Python installation or environment. This should be set to the value of

sys.executable (after import sys) from the Python you wish to use.

Or, if you are using Flask in an existing virtualenv or Anaconda environment, select Activated Env

instead and enter the command that activates the environment (for example,

c:\path\to\env\Scripts\activate.bat, /path/to/env/bin/activate, or Anaconda's activate env). The drop

down menu to the right of this field lists recently used and automatically found environments.

Note that using an activate command whose full path contains spaces will not work. In this case, use

the Command Line option as described above.

How-Tos for Web Development

86

https://wingware.com
https://palletsprojects.com/p/flask/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

When an existing Python installation or environment is used, Flask is assumed to already be installed

into it. If this is not the case, you can install it from the Packages tool after your project has been set up.

Creating a New Environment: You can also create a new virtualenv, pipenv, conda, or Docker

environment from here along with your project, as described in more detail in Creating Python

Environments.

When you have finished selecting your Python environment, press Create Project to create your new

project. If you are using an existing source directory, you will need to save the project to disk using

Save Project in the Project menu. If you created a new source directory, the project will automatically

be stored there.

Remote Hosts and VMs

Wing Pro can work with Flask code that is running on a remote host or VM. To do this, you need to be

able to connect to the remote system with SSH. Then you can create your project in the same way as

above, after first setting the Host in the New Project dialog. See Remote Hosts for more information on

remote development with Wing Pro.

Containers

For containers, select Local Host on the first page of the New Project dialog, then

Create New Environment on the second page, and set up a new Docker container. For details, see

Using Wing Pro with Docker.

Port Forwarding

When a remote host or container is used with your project, Wing sets up port forwarding in the remote

host or container configuration created with your project, so that you can connect to the Flask instance

using a browser running on the same host as the IDE.

For example, if Flask is listening on port 8000 on the remote host or container, Wing forwards port 8000

on localhost to the remote system, and the url you will use to access Flask from the host where Wing is

running is: http://localhost:8000.

You can view and alter the port forwarding configuration on the Options page of the remote host or

container configuration.

Debugging Flask in Wing

If you used New Project to start a new Flask project, Wing will have written a starter app.py that is

already properly configured for debugging. If you are starting to use Wing with an existing Flask source

base, you will need to turn off Flask's built-in debugger, so that Wing's debugger can take over reporting

exceptions.

To do this, you can set up your main entry point as in the following example:

How-Tos for Web Development

87

https://wingware.com/doc/proj/creating-python-envs
https://wingware.com/doc/proj/creating-python-envs
https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/howtos/docker

from flask import Flask
app = Flask(__name__)

...

if __name__ == "__main__":
 import os
 if 'WINGDB_ACTIVE' in os.environ:
 app.debug = False
 app.run()

Notice that this turns off Flask's debugging support only if Wing's debugger is present.

Once this is done, use Set Current as Main Entry Point in the Debug menu to set this file as your

main entry point. Then you can start debugging from the IDE, see Flask's output in the Debug I/O tool,

and load pages from a browser to reach breakpoints or exceptions in your code.

Use Restart Debugging in the Debug menu or the restart icon in the toolbar to quickly restart Flask

after making changes to your code. Or you can automate this as described in the next section.

Setting up Auto-Reload with Wing Pro

Auto-reload is set up automatically by Wing if New Project is used to start a new Flask project.

If you are working with an existing code base, you can configure it to auto-reload changed code adding

use_reloader=True to your app.run() call, as follows:

app.run(use_reloader=True)

Then enable Debug Child Processes under the Debug/Execute tab in Project Properties from the

Project menu. This tells Wing Pro to debug also child processes created by Flask, including the

reloader process.

Now Flask will automatically restart on its own whenever you save an already-loaded source file to disk.

You can add additional files for Flask to watch as follows:

watch_files = ['/path/to/file1', '/path/to/file2']
app.run(use_reloader=True, extra_files=watch_files)

Whenever any of these additional files changes, Flask will also automatically restart.

Related Documents

For more information see:

• Flask home page provides links to documentation.

How-Tos for Web Development

88

https://palletsprojects.com/p/flask/

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Web Development

89

https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

3.4. Using Wing with Pyramid

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for the

Pyramid web development framework.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Pyramid. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Creating a Wing Project

To create a new project, use New Project in Wing's Project menu with Project Type set to Pyramid.

You'll be able to select or create a source directory for your project and select or create a Python

environment. See Creating a Project for details on creating projects in Wing.

Debugging

Launching from Wing

The easiest way to debug Pyramid is just to launch it from Wing. To do this, find and open pserve from

Pyramid and select Set Current as Main Entry Point from the Debug menu.

Then right-click on pserve and under Environment enter your run arguments, for example:

development.ini

Then go into Project Properties in the Project menu and set Initial Directory under the

Debug/Execute tab to the full path of the directory that contains your .ini files.

How-Tos for Web Development

90

https://wingware.com
https://trypyramid.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/proj/creating-a-project

Now you can start debugging with Start/Continue in the Debug menu or from the toolbar. You can load

http://localhost:6543/ or other page, or initiate an AJAX request, and Wing will stop on any breakpoints

or exceptions. This works with any Python code, including any View Callable, Pyramid internals, or any

other library or package used by your code.

From here, you can step through code or inspect the program state with Stack Data and other tools. In

Wing Pro, the Debug Console provides a command line that allows you to interact with the current

stack frame in your debug process. All the debugging tools are available from the Tools menu.

Auto-reloading Changes

With the above configuration, you'll need to restart Pyramid every time you make a change. If you have

Wing Pro you can cause Pyramid to auto-reload changes. To do this, add the --reload option to the run

arguments you set for pserve, for example:

--reload development.ini

Then enable Debug Child Processes in Project Properties, from the Project menu, so that Pyramid's

reloaded processes will also be debugged.

This option is only available in Wing Pro. In Wing Personal you'll need to use wingdbstub for reloading,

as described below.

Launching Outside of Wing

Wing can also debug code that is launched from outside of the IDE, for example from the command

line. To do this with Pyramid, copy wingdbstub.py from the Install Directory listed in Wing's About

box into the directory that contains your Pyramid .ini files. You may need to set the value of

WINGHOME inside your copy of this file to the full path of the install directory you copied it from, or on

macOS to the full path of the .app.

Next place the following line into your source, on a line before the code you wish to debug:

import wingdbstub

Then click on the bug icon in the lower left of Wing's window and make sure that Accept

Debug Connections is checked.

Now you can start your Pyramid server as you usually would, for example:

pserve --reload development.ini

Using --reload is not necessary but it is supported by Wing's debugger and makes testing of changes

much easier.

How-Tos for Web Development

91

http://localhost:6543/

Notes on Auto-Completion

Wing provides auto-completion on Python code and in other files, including the various templating

languages that can be used with Pyramid.

The autocomplete information available to Wing is based on static analysis of your project files and any

files Wing can find through imports, by searching on your Python Path.

When the debugger is active and paused, Wing also uses introspection of the live runtime for any

template or Python code that is active on the stack. As a result, it is often more informative to work on

your source files while Wing's debugger is active and paused at a breakpoint, exception, or anywhere in

the source code reached by stepping.

Debugging Jinja2 Templates

The Jinja2 template engine sets up stack frames in a way that makes it possible to set breakpoints

directly in .jinja2 template files and step through them, viewing data in Stack Data and other tools in the

same way as for Python code.

Debugging support in the Jinja engine is imperfect in that that not all tags are reached and some tags

cause lines to be visited multiple times. However, this capability can still be useful to stop Wing's

debugger when a particular template is being invoked.

Debugging Mako Templates

Another good choice of templating engine for Pyramid is Mako, because it allows the full syntax of

Python in expression substitutions and control structures. However, Mako templates cannot be directly

stepped through using the debugger. Instead, you can set breakpoints in the .py files produced by Mako

for templates.

To debug Mako templates with Wing you will need to modify your .ini file to add the following line in the

[app:main] section:

mako.module_directory=%(here)s/data/templates

You may need to change the path to match your project. Without this setting, mako templates are

compiled in memory and not cached to disk, so you won't be able to debug them. With this setting,

Mako will write .mako.py files for each template to the specified directory, whenever the template

changes. You can set breakpoints within these generated files.

Your .mako.py files will not be in one-to-one line correspondence with their .mako source files, but

mako inserts tracking comments indicating original source line numbering.

If you are starting Pyramid outside of Wing and need to use wingdbstub to initiate debugging, as

described earlier, and want to do this from a Mako template, then you can add the following to the

template:

How-Tos for Web Development

92

http://www.makotemplates.org

<%! import wingdbstub %>

Remote Development

Wing Pro can work with Pyramid code that is running on a remote host, VM, or container. To do this,

you need to be able to connect to the remote system with SSH. Then you can create your project in the

same way as above, using the Connect to Remote Host via SSH project type. See Remote Hosts for

more information on remote development with Wing Pro.

Related Documents

For more information see:

• Pyramid documentation

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Web Development

93

https://wingware.com/doc/proj/remote-hosts
https://trypyramid.com/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

3.5. Using Wing with web2py

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code and templates

written for web2py, a powerful open source web development framework.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for web2py. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Introduction

Wing allows you to debug Python code and templates running under web2py as you interact with it from

your web browser. Breakpoints set in your code from the IDE will be reached, allowing inspection of

your running code's local and global variables with Wing's various debugging tools. In addition, in Wing

Pro, the Debug Console allows you to interactively execute methods on objects and get values of

variables that are available in the context of the running web app.

There is more than one way to do this, but in this document we focus on an "in process" method where

the web2py server is run from within Wing, as opposed to attaching to a remote process.

Setting up a Project

The best way to install web2py is to clone the git repository. Be sure to follow the instructions in the

readme so you clone all the dependencies recursively.

To create a new project, use New Project in Wing's Project menu with Project Type set to web2py.

You'll be able to select or create a source directory for your project and select or create a Python

environment. See Creating a Project for details on creating projects in Wing.

How-Tos for Web Development

94

https://wingware.com
http://www.web2py.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/debug/debugging-externally-launched-code
https://github.com/web2py/web2py/
https://wingware.com/doc/proj/creating-a-project

After the pressing Create Project, open the Project tool from the Project menu. From there, find and

right click on the file web2py.py and select Set As Main Entry Point.

Remote Development

Wing Pro can work with web2py code that is running on a remote host, VM, or container. To do this, you

need to be able to connect to the remote system with SSH. Then you can create your project in the

same way as above, using the Connect to Remote Host via SSH project type. See Remote Hosts for

more information on remote development with Wing Pro.

Debugging

You can now debug web2py by clicking on the green Debug icon in Wing's toolbar and waiting for the

web2py console to appear. Enter a password and start the server as usual.

Once web2py is running, open a file in Wing that you know will be reached when you load a page of

your web2py application in your web browser. Place a breakpoint in the code and load the page in your

web browser. Wing should stop at the breakpoint. Use the Stack Data tool or Debug Console (in Wing

Pro) to look around.

An example is to set a breakpoint in applications/examples/views/default/index.html, which is

loaded when you go to the URL http://127.0.0.1:8000/examples/default/index (assuming local

web2py install running on port 8000).

Notice that breakpoints work both in Python code and HTML template files.

Wing's Debug Console (in the Tools menu) is similar to running a shell from web2py (with

python web2py.py -S myApp -M) but additionally includes your entire context and provides

auto-completion. You can easily inspect or modify variables, manually make function calls, and continue

debugging from your current context.

Usage Tips

Setting Run Arguments

When you start debugging, Wing will show the File Properties for web2py.py. This includes a

Run Arguments field under the Debug tab where you can add any web2py option. For example,

adding -a '<recycle>' will give you somewhat faster web2py startup since it avoids showing the Tk

dialogs and automatically opening a browser window. This is handy once you already have a target

page in your browser. Run python web2py.py --help for a list of all the available options.

To avoid seeing the File Properties dialog each time you debug, un-check the "Show this dialog before

each run" check box. You can access it subsequently with Debug Environment in the Debug menu.

How-Tos for Web Development

95

https://wingware.com/doc/proj/remote-hosts

Hung Cron Processes

Web2py may spawn cron sub-processes that fail to terminate on some OSes when web2py is

debugged from Wing. This can lead to unresponsiveness of the debug process until those

sub-processes are killed. To avoid this, add the parameter -N to prevent the cron processes from being

spawned.

Better Auto-completion

Because of the way web2py is designed, Wing's static analysis engine can fail to find the types of

commonly used values like db. To work around this, run to a breakpoint in your code before editing it.

This causes Wing to use runtime analysis as well as static analysis to drive auto-completion and other

IDE features.

Related Documents

Wing provides many other options and tools. For more information:

• web2py website provides documentation and downloads.

• Remote Web Development describes how to set up development on a remote host, VM, or

container.

• Quickstart Guide which contains additional basic information

about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual, which describes Wing in detail.

How-Tos for Web Development

96

http://web2py.com/
https://wingware.com/doc/howtos/debugging-web-remote
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

3.6. Using Wing with mod_wsgi

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code that is running

under mod_wsgi.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for mod_wsgi. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Debugging Setup

When debugging Python code running under mod_wsgi, the debug process is initiated from outside of

Wing, and must connect to the IDE. This is done with wingdbstub according to the instructions in

Debugging Externally Launched Code.

Because of how mod_wsqi sets up the interpreter, be sure to set kEmbedded=1 in your copy of

wingdbstub.py and use the debugger API to reset the debugger and connection as follows:

import wingdbstub
wingdbstub.Ensure()

Then click on the bug icon in lower left of Wing's window and make sure that Accept

Debug Connections is checked. After that, you should be able to reach breakpoints by loading pages

in your browser.

How-Tos for Web Development

97

https://wingware.com
http://www.modwsgi.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/debug/debugging-externally-launched-code

Disabling stdin/stdout Restrictions

In order to debug, may also need to disable the WSGI restrictions on stdin/stdout with the following

mod_wsgi configuration directives:

WSGIRestrictStdin Off
WSGIRestrictStdout Off

Remote Development

Wing Pro can work with mod_wsgi code that is running on a remote host, VM, or container. To do this,

you need to be able to connect to the remote system with SSH. Then you can create your project in the

same way as above, using the Connect to Remote Host via SSH project type. See Remote Hosts for

more information on remote development with Wing Pro.

Related Documents

For more information see:

• mod_wsgi website for downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Web Development

98

https://wingware.com/doc/proj/remote-hosts
https://modwsgi.readthedocs.io/en/develop/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

How-Tos for GUI Development
The following How-Tos explain how to get started using Wing with a number of popular GUI

development frameworks.

How-Tos for GUI Development

99

4.1. Using Wing with wxPython

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for the

wxPython cross-platform GUI development toolkit.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for wxPython. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Introduction

wxPython is a good choice for desktop application developers that want to use Python. It is available for

Windows, Linux, and macOS and provides native look and feel on each of these platforms.

While Wing does not provide a GUI builder for wxPython, it does provide advanced editing, debugging,

testing, and code inspection capabilities for Python, and it can be used with other available GUI

builders, as described below.

Installation and Configuration

Take the following steps to set up and configure Wing for use with wxPython:

• Install wxPython as described on the wxPython Downloads page. Be sure to install also the

wxPython demo and samples.

• Install Wing if you don't already have it.

• Start Wing from the Start menu on Windows, the Finder or macOS, or by typing wing8 on the

command line on Linux.

How-Tos for GUI Development

100

https://wingware.com
http://www.wxpython.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://www.wxpython.org/pages/downloads/
https://wingware.com/downloads

• Select Show Python Environment from the Source menu. If the Python version reported there

doesn't match the one you're using with wxPython, then select Project Properties from the

Project menu and set Python Executable.

• Locate and open wxPython's demo.py into Wing and then select Add Current File from the

Project menu to add it to your project. If you can't find demo.py but have other wxPython code

that works, you can just use that. However, you'll need to adapt the instructions in the rest

accordingly.

• Set demo.py as main entry point for debugging using the Set Current as Main Entry Point item

in the Debug menu.

• Save your project to disk. Use a name ending in .wpr.

Test Driving the Debugger

Now you're ready to try out the debugger:

Start debugging with the Start / Continue item in the Debug menu. Uncheck the

Show this dialog before each run checkbox at the bottom of the dialog that appears and select OK.

The demo application will start up. If its main window doesn't come to front, bring it to front from your

task bar or window manager. Try out the various demos from the tree on the left of the wxPython demo

app.

Next open ImageBrowser.py, located in the same directory as demo.py. Set a breakpoint on the first

line of runTest() by clicking on the dark grey left margin. Go into the running demo app and select More

Dialogs / ImageBrowser. Wing will stop on your breakpoint.

From here, you can step through code or inspect the program state with Stack Data and other tools. In

Wing Pro, the Debug Console provides a command line that allows you to interact with the current

stack frame in your debug process. All the debugging tools are available from the Tools menu.

See the Wing Tutorial and Quick start for more information.

Using a GUI Builder

Wing doesn't include a GUI builder for wxPython but it can be used with other tools, such as wxGlade or

wxFormBuilder. Wing will automatically reload files that are generated by the GUI builder.

Related Documents

Wing provides many other options and tools. For more information:

• wxPython website

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for GUI Development

101

https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/howtos/quickstart
https://www.wxpython.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

4.2. Using Wing with PyQt

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for the PyQt

cross-platform GUI development toolkit.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for PyQt. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Introduction

PyQt is a commercial GUI development environment that runs with native look and feel on Windows,

Linux, Mac OS, and mobile devices.

While Wing does not provide a GUI builder for PyQt, it does provide advanced editing, debugging,

testing, and code inspection capabilities for Python, and it can be used with other available GUI

builders, as described below.

These instructions should also work with PySide, which are roughly comparable non-commercial open

source bindings for Qt.

Installation and Configuration

Take the following steps to set up and configure Wing for use with PyQt:

• Install PyQt as described in Installing PyQt5. Be sure to install also the qtdemo.

• Install Wing if you don't already have it.

How-Tos for GUI Development

102

https://wingware.com
http://www.riverbankcomputing.co.uk/software/pyqt/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
http://pyqt.sourceforge.net/Docs/PyQt5/installation.html
https://wingware.com/downloads

• Start Wing from the Start menu on Windows, the Finder or macOS, or by typing wing8 on the

command line on Linux.

• Select Show Python Environment from the Source menu. If the Python version reported there

doesn't match the one you're using with PyQt, then select Project Properties from the Project

menu and set Python Executable.

• Locate and open qtdemo.py into Wing and then select Add Current File from the Project menu

to add it to your project. If you can't find qtdemo.py but have other PyQt code that works, you can

just use that. However, you'll need to adapt the instructions in the rest accordingly.

• Set qtdemo.py as main entry point for debugging with Set Current as Main Entry Point in the

Debug menu.

• Save your project to disk. Use a name ending in .wpr.

Test Driving the Debugger

Now you're ready to try out the debugger:

Start debugging with the Start / Continue item in the Debug menu. Uncheck the

Show this dialog before each run checkbox at the bottom of the dialog that appears and select OK.

The demo application will start up. If its main window doesn't come to front, bring it to front from your

task bar or window manager.

Next locate and open menumanager.py in the qtdemo directory and set a breakpoint on the first line of

the method itemSelection. Once set, this breakpoint should be reached whenever you click on a button

in the qtdemo application.

From here, you can step through code or inspect the program state with Stack Data and other tools. In

Wing Pro, the Debug Console provides a command line that allows you to interact with the current

stack frame in your debug process. All the debugging tools are available from the Tools menu.

See the Wing Tutorial and Quick start for more information.

Using a GUI Builder

Wing doesn't include a GUI builder for PyQt but it can be used with an external GUI builder like Qt

Designer. Wing will automatically reload files that are generated by the GUI builder.

Related Documents

For more information see:

• PyQt home page, which provides links to documentation and downloads.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for GUI Development

103

https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/howtos/quickstart
http://www.riverbankcomputing.co.uk/software/pyqt/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

4.3. Using Wing with GTK and PyGObject

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for GTK

using PyGObject.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for GTK and PyGObject. To get started using Wing as

your Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Introduction

PyGObject implements Python bindings for GTK, an open source GUI development toolkit.

While Wing does not provide a GUI builder for GTK, it does provide advanced editing, debugging,

testing, and code inspection capabilities for Python, and it can be used with other available GUI

builders, as described below.

Installation and Configuration

Take the following steps to set up and configure Wing for use with PyGObject:

• Install PyGObject as described in the PyGObject documentation.

• Install Wing if you don't already have it.

• Start Wing from the Start menu on Windows, the Finder or macOS, or by typing wing8 on the

command line on Linux.

How-Tos for GUI Development

104

https://wingware.com
https://www.gtk.org/
https://pygobject.readthedocs.io/en/latest/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://pygobject.readthedocs.io/en/latest/l
https://wingware.com/downloads

• Select Show Python Environment from the Source menu. If the Python version reported there

doesn't match the one you're using with PyGObject, then select Project Properties from the

Project menu and set Python Executable.

• Locate and open the Python main entry point for your PyGObject-based application and then

select Add Current File from the Project menu to add it to your project.

• Set your Python main entry point for debugging with Set Current as Main Entry Point in the

Debug menu.

• Save your project to disk. Use a name ending in .wpr.

Test Driving the Debugger

Now you're ready to try out the debugger:

Start debugging with the Start / Continue item in the Debug menu. Uncheck the

Show this dialog before each run checkbox at the bottom of the dialog that appears and select OK.

Your application should start up. If its main window doesn't come to front, bring it to front from your task

bar or window manager.

Next locate and open Python source code that you know will be reached when you use your application

and set a breakpoint by clicking on the margin to the left of the code. Then trigger the breakpoint by

performing an action in your application that results in execution of the code at that line.

From here, you can step through code or inspect the program state with Stack Data and other tools. In

Wing Pro, the Debug Console provides a command line that allows you to interact with the current

stack frame in your debug process. All the debugging tools are available from the Tools menu.

See the Wing Tutorial and Quick start for more information.

Improving Auto-Completion

PyGObject uses lazy (on-demand) loading of functionality to speed up startup of applications that are

based on it. This prevents Wing's analysis engine from inspecting PyGObject-wrapped APIs and thus

the IDE fails to offer auto-completion.

To work around this, use Fakegir, which is a tool to build a fake Python package of PyGObject modules

that can be added to the Source Analysis > Advanced > Interface File Path preference. The parent

directory of the generated gi package should be added; if the defaults are used, the directory to add is

~/.cache/fakegir.

Fakegir's README.md provides usage details.

Don't add the Fakedir produced package to the Python Path defined in Wing's Project Properties

because code will not work if the fake module is actually on sys.path when importing any

PyGObject-provided modules.

How-Tos for GUI Development

105

https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/howtos/quickstart
https://github.com/strycore/fakegir

Once this is done Wing should offer auto-completion for all PyGObject-provided modules and should be

able to execute and debug your code without disruption.

Using a GUI Builder

Wing doesn't include a GUI builder for PyGObject but it can be used with an external GUI builder like

Glade. Wing will automatically reload files that are generated by the GUI builder.

Related Documents

For more information see:

• GTK using PyGObject websites.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for GUI Development

106

https://www.gtk.org/
https://pygobject.readthedocs.io/en/latest/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

How-Tos for Modeling, Rendering, and Compositing Systems
The following How-Tos explain how to get started using Wing with modeling, rendering, and

compositing systems that use Python for game development and 2D and 3D animation.

How-Tos for Modeling, Rendering, and Compositing Systems

107

5.1. Using Wing with Blender

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for Blender,

an open source 3D content creation system.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Blender. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Working with Blender

Blender loads Python scripts in a way that makes them difficult to debug in a Python debugger. The

following stub file can be used to work around these problems:

import os
import sys

MODIFY THESE:
winghome = r'c:\Program Files (x86)\Wing Pro 8'
scriptfile = r'c:\src\test\blender.py'

os.environ['WINGHOME'] = winghome
if winghome not in sys.path:
 sys.path.append(winghome)
#os.environ['WINGDB_LOGFILE'] = r'c:\src\blender-debug.log'
import wingdbstub
wingdbstub.Ensure()

def runfile(filename):

How-Tos for Modeling, Rendering, and Compositing Systems

108

https://wingware.com/
https://www.blender.org
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

 if sys.version_info < (3, 0):
 execfile(filename)
 else:
 import runpy
 runpy.run_path(filename)

runfile(scriptfile)

To use this script:

1. Modify winghome & scriptfile definitions where indicated to the wing installation directory and the

script you want to debug, respectively. When in doubt, the location to use for winghome is given

as the Install Directory in Wing's About box (accessed from Help menu).

2. Run blender

3. Press Shift-F11 to display the text editor

4. Press Alt-O to browse for a file and select this file to open

Once the above is done you can debug your script by executing this blender stub file in blender. This is

done using the Run Script button on the bottom toolbar or by pressing Alt-P, although note that Alt-P is

sensitive to how the focus is set.

Note that you will need to turn on listening for externally initiated debug connections in Wing, by clicking

on the bug icon in the lower left of the main window and selecting Accept Debug Connections in the

popup menu that appears.

Related Documents

For more information see:

• Blender website

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Modeling, Rendering, and Compositing Systems

109

https://www.blender.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

5.2. Using Wing with Autodesk Maya

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for

Autodesk Maya, a commercial 3D modeling application.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Maya. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Debugging Setup

When debugging Python code running under Maya, the debug process is initiated from outside of Wing,

and must connect to the IDE. This is done with wingdbstub according to the detailed instructions in the

Debugging Externally Launched Code section of the manual. In summary, you will need to:

1. Copy wingdbstub.py from your Wing installation into a directory that will be on the sys.path when

Python code is run by Maya. You may need to inspect that (after import sys) first from Maya, or

you can add to the path with sys.path.append() before importing wingdbstub.

2. Because of how Maya sets up the Python interpreter, be sure to set kEmbedded=1 in your copy

of wingdbstub.py

3. In your code, where you initiate debugging, use the debugger API to ensure the debugger is

connected to the IDE before any other code executes, as follows:

import wingdbstub
wingdbstub.Ensure()

How-Tos for Modeling, Rendering, and Compositing Systems

110

https://wingware.com
http://usa.autodesk.com/maya/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/debug/debugging-externally-launched-code

4. In some cases you may need to edit wingdbstub.py to set WINGHOME to point to the directory

where Wing is installed. This is usually set up automatically by Wing's installer, but won't be if you

are using the .zip installation of Wing. Note that if you edit wingdbstub.py after Maya has already

imported it then you will need to restart Maya to get it to import the modified wingdbstub.

5. Then click on the bug icon in lower left of Wing's window and make sure that Accept

Debug Connections is checked.

At this point, you should be able to reach breakpoints by causing the scripts to be invoked from Maya. In

Maya 2018 at least, running a script does not set up the file name in the compiled Python code

correctly, so breakpoints only work in modules that are imported into your top-level script. Breakpoints in

the main script may work in older Maya versions.

Once debugging starts, when a breakpoint or exception is reached, Wing should come to the front and

show the place where the debugger stopped. Although the code is running inside Maya, editing and

debugging happens inside Wing.

Avoiding Crashing in Maya 2020

Maya 2020 may use an old copy of OpenSSL that leads to crashing on 10th (Ice Lake), 11th (Rocket

Lake) or 12th (Alder Lake) generation Intel CPUs. The problem occurs when import wingdbstub is

reached, crashing Maya completely.

There are two ways to work around this problem:

1) Uncheck the Debugger > Network > Use Digests to Identify Files preference in Wing. This turns

off a part of Wing's debugger implementation that calls hashlib, and thus avoids the crash.

-or-

2) Set Windows system environment variable OPENSSL_ia32cap to the value ~0x20000000 before

starting Maya.

Using Maya's Python in Wing

You can use the mayapy executable found in the Maya application directory to run Wing's

Python Shell tool and to debug standalone Python scripts.

To do this, select Command Line for Python Executable in Project Properties, accessed from the

Project menu, and then enter the full path of the mayapy file (mayapy.exe on Windows).

Better Static Auto-completion

Setting Python Executable in Wing's Project Properties, as described above, is also needed to obtain

auto-completion for Maya's Python API.

How-Tos for Modeling, Rendering, and Compositing Systems

111

At least in some versions of Maya, Wing cannot statically analyze the files in the Python API without

some additional configuration. As a result, it will fail to offer auto-completion for the API. The solution to

this depends on the version of Maya.

Maya 2020

In Maya 2020 it is necessary to download and install the Maya 2020 devkit from the devkit downloads

listed on the Autodesk website. The pi interface files will be located in

devkitBase\devkit\other\pymel\extras\completion\pi inside your Maya 2020 installation directory.

This can be added to the Source Analysis > Advanced > Interface File Path preference in Wing.

Maya 2018

Maya 2018 ships with .pi files in the devkit/pymel/extras/completion/pi subdirectory of the Maya 2018

install directory. This can be added to the Source Analysis > Advanced > Interface File Path

preference in Wing.

Maya 2016

Maya 2016 is missing necessary developer files so you will need to download and install the Maya 2016

devkit which should create devkit\other\pymel\extras\completion\py\maya\api in your Maya

installation. This can then be used by making the following edits:

• In "OpenMaya.py" add from _OpenMaya_py2 import *

• In "OpenMayaAnim.py" add from _OpenMayaAnim_py2 import *

• In "OpenMayaRender.py" add from _OpenMayaRender_py2 import *

• In "OpenMayaUI.py" add from _OpenMayaUI_py2 import *

This method is based on this forum post.

Instead of editing files in the Maya installation, it is also be possible to add .pi files with the added

source. For example, placing OpenMaya.pi with contents from _OpenMaya_py2 import * in the same

directory as OpenMaya.py causes Wing to merge the analysis of the *.pi file with what is found in the

*.py file.

Alternatively, place these files in another directory that is added to the Source

Analysis > Advanced > Interface File Path preference in Wing.

You will also want to set the Python Executable in Wing's Project Properties to Command Line and

then enter the full path to mayapy.exe so that the API is on the Python Path and you are using the

correct version of Python.

Maya 2011+

Maya 2011+ before 2016 also shipped with .pi files that can be used as described for Maya 2018 above.

How-Tos for Modeling, Rendering, and Compositing Systems

112

https://www.autodesk.com/developer-network/platform-technologies/maya
https://apps.autodesk.com/MAYA/en/Detail/Index?id=6303159649350432165&appLang=en&os=Win64
https://apps.autodesk.com/MAYA/en/Detail/Index?id=6303159649350432165&appLang=en&os=Win64
https://forums.autodesk.com/t5/maya-programming/maya-python-api-2-0-ide-code-complete/td-p/6239681

Older Versions

For older Maya versions, .pi files from the PyMEL distribution at http://code.google.com/p/pymel/ may

be used. Just unpack the distribution and add extras/completion/pi to the Source Analysis >

Advanced > Interface File Path preference in Wing.

Additional Information

Some additional information about using Wing with Maya can be found in the mel wiki under the wing

tag.

See also the section Using Wing with Maya in Autodesk Maya Online Help: Tips and tricks for

scripters new to Python.

Related Documents

For more information see:

• Autodesk Maya website

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Modeling, Rendering, and Compositing Systems

113

http://code.google.com/p/pymel/
http://mayamel.tiddlyspot.com/
http://download.autodesk.com/us/maya/2010help/index.html?url=WS73099cc142f48755f2fc9df120970276f7-2158.htm,topicNumber=d0e183276
http://download.autodesk.com/us/maya/2010help/index.html?url=WS73099cc142f48755f2fc9df120970276f7-2158.htm,topicNumber=d0e183276
http://usa.autodesk.com/maya/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

5.3. Using Wing with NUKE and NUKEX

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for The

Foundry's NUKE and NUKEX digital compositing tool.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for NUKE and NUKEX. To get started using Wing as

your Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Project Configuration

First, launch Wing and create a new project from the Project menu. Although not required for working

with NUKE, you may want to select your existing source directory or add it after project creation with

Add Existing Directory in the Project menu. Doing this tells Wing's source analysis, search, and

revision control features know which files are part of the project.

Configuring for Licensed NUKE/NUKEX

If you have NUKE or NUKEX licensed and are not using the Personal Learning Edition, then you can

create a script to run NUKE's Python in terminal mode and use that as the Python Executable in

Wing's Project Properties. For example on macOS create a script like this:

#!/bin/sh
/Applications/Nuke6.3v8/Nuke6.3v8.app/Nuke6.3v8 -t -i "$@"

Then perform chmod +x on this script to make it executable. On Windows, you can create a batch file

like this:

How-Tos for Modeling, Rendering, and Compositing Systems

114

https://wingware.com
http://www.thefoundry.co.uk/products/nuke/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

@echo off
"c:\Program Files\Nuke7.0v9\Nuke7.0.exe" -t -i %*

Next, you will make the following changes in Project Properties, from the Project menu in Wing:

• Set Python Executable to Command Line and then enter the full path to this script

• Change Python Options under the Debug tab to Custom with a blank entry area (no options

instead of -u)

Apply these changes and Wing will use NUKE's Python in its Python Shell (after restarting from its

Options menu), for debugging, and for source analysis.

Configuring for Personal Learning Edition of NUKE

The above will not work in the Personal Learning Edition of NUKE because it does not support terminal

mode. In that case, install a Python version that matches NUKE's Python and use that instead. You can

determine the correct version to use by by looking at sys.version in NUKE's Script Editor.

Then set Python Executable in Project Properties, from the Project menu in Wing, to the full path to

the Python interpreter. The correct value to use can be determined by running Python outside of Wing

and executing the following:

import sys
print(sys.executable)

Using a matching Python version is a good idea to avoid confusion caused by differences in Python

versions, but is not critical for Wing to function. However, Wing must be able to find some Python

version or many of its features will be disabled.

Additional Project Configuration

When using Personal Learning Edition, and possibly in other cases, some additional configuration is

needed to obtain auto-completion on the NUKE API also when the debugger is not connected or not

paused.

The API is located inside the NUKE installation, in the plugins directory. The plugins directory (parent

directory of the nuke package directory) should be added to the Python Path configured in Wing's

Project Properties from the Project menu. On macOS this directory is within the NUKE application

bundle, for example /Applications/Nuke6.3v8/Nuke6.3v8.app/Contents/MacOS/plugins.

Replacing the NUKE Script Editor with Wing Pro

Wing Pro can be used as a full-featured Python IDE to replace NUKE's Script Editor component. This is

done by downloading and configuring NukeExternalControl.

How-Tos for Modeling, Rendering, and Compositing Systems

115

https://github.com/Nvizible/NukeExternalControl

First set up and test the client/server connection as described in the documentation for

NukeExternalControl. Once this works, create a Python source file that contains the necessary

client-side setup code and save this to disk.

Next, set a breakpoint in the code after the NUKE connection has been made, by clicking on the

breakpoint margin on the left in Wing's editor or by clicking on the line and using Add Breakpoint in the

Debug menu or the breakpoint icon in the toolbar.

Then debug the file in Wing Pro by pressing the green run icon in the toolbar or with Start/Continue in

the Debug menu. After reaching the breakpoint, use the Debug Console in Wing to work interactively

in that context.

You can also work on a source file in Wing's editor and evaluate selections within the file in the

Debug Console with Evaluate Selection in Debug Console from the Source menu.

Both the Debug Console and Wing's editor should offer auto-completion on the NUKE API, at least

while the debugger is active and paused in code that is being edited. The Source Assistant in Wing

Pro provides additional information for symbols in the auto-completer, editor, and other tools in Wing.

This technique will not work in Wing Personal because it lacks the Debug Console feature. However,

debugging is still possible using the alternate method described in the next section.

Debugging Python Running Under NUKE

Another way to work with Wing and NUKE is to connect Wing directly to the Python instance running

under NUKE. In order to do this, you need to import a special module in your code, as follows:

import wingdbstub

You will need to copy wingdbstub.py out of the install directory listed in Wing's About box and may

need to set WINGHOME inside wingdbstub.py to the location where Wing is installed if this value is

not already set by the Wing installer. On macOS, WINGHOME should be set to the full path of Wing's

.app folder.

Before debugging will work within NUKE, you must also set the kEmbedded flag inside wingdbstub.py

to 1.

Next click on the bug icon in the lower left of Wing's main window and make sure that

Accept Debug Connections is checked.

Then execute the code that imports the debugger. For example, right click on one of NUKE's tool tabs

and select Script Editor. Then in the bottom panel of the Script Editor enter import wingstub and

press the Run button in NUKE's Script Editor tool area. You should see the bug icon in the lower left of

Wing's window turn green, indicating that the debugger is connected.

If the import fails to find the module, you may need to add to the Python Path as follows:

How-Tos for Modeling, Rendering, and Compositing Systems

116

import sys
sys.path.append("/path/to/wingdbstub")
import wingdbstub

After that, breakpoints set in Python modules should be reached and Wing's debugger can be used to

inspect, step through code, and try out new code in the live runtime. Breakpoints set in the script itself

won't be hit, though, due to how Nuke loads the script, so code to be debugged should be put in

modules that are imported.

For example, place the following code in a module named testnuke.py that is located in the same

directory as wingdbstub.py or anywhere on the sys.path used by NUKE:

def wingtest():
 import nuke
 nuke.createNode('Blur')

Then set a breakpoint on the line import nuke by clicking in the breakpoint margin to the left, in Wing's

editor.

Next enter the following and press the Run button in NUKE's Script Editor, just as you did when

importing wingdbstub above:

import testnuke
testnuke.wingtest()

As soon as the second line is executed, Wing should reach the breakpoint. Then try looking around with

the Stack Data and Debug Console (in Wing Pro only).

Debugger Configuration Detail

If the debugger import is placed into a script file, you may also want to call Ensure on the debugger,

which will make sure that the debugger is active and connected:

import wingdbstub
wingdbstub.Ensure()

This way it will work even after the Stop icon has been pressed in Wing, or if Wing is restarted or the

debugger connection is lost for any other reason.

For additional details on configuring the debugger see Debugging Externally Launched Code.

How-Tos for Modeling, Rendering, and Compositing Systems

117

https://wingware.com/doc/debug/debugging-externally-launched-code

Limitations and Notes

When Wing's debugger is connected directly to NUKE and at a breakpoint or exception, NUKE's GUI

will become unresponsive because NUKE scripts are run in a way that prevents the main GUI loop from

continuing while the script is paused by the debugger. To regain access to the GUI, continue the

paused script or disconnect from the debug process with the Stop icon in Wing's toolbar.

NUKE will also not update its UI to reflect changes made when stepping through a script or otherwise

executing code line by line. For example, typing import nuke; nuke.createNode('Blur') in the

Debug Console will cause creation of a node but NUKE's GUI will not update until the script is

continued.

When the NUKE debug process is connected to the IDE but not paused, setting a breakpoint in Wing

will display the breakpoint as a red line rather than a red dot during the time where it has not yet been

confirmed by the debugger. This can be any length of time, if NUKE is not executing any Python code.

Once Python code is executed, the breakpoint should be confirmed and will be reached. This delay in

confirming the breakpoint does not occur if the breakpoint is set while the debug process is already

paused, or before the debug connection is made.

These problems should only occur when Wing's debugger is attached directly to NUKE, and can be

avoided by working through NukeExternalControl instead, as described in the first part of this

document.

Related Documents

For more information see:

• NUKE/NUKEX home page, which provides links to documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Modeling, Rendering, and Compositing Systems

118

http://www.thefoundry.co.uk/products/nuke/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

5.4. Using Wing with Unreal Engine

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for Unreal

Engine, a 3D world creation tool from Epic Games.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Unreal. To learn more about using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Creating a Project

To get started developing and debugging Python code written for Unreal Engine, you first need to create

your Unreal project from Unreal Editor. This creates a directory that contains various starter files and

directories and also your *.uproject file.

Once this is done, select New Project from Wing Pro's Project menu, choose Local Host and

Use Existing Directory and then enter the full path of the directory that contains your *.uproject file.

Next select Unreal Engine under Project Type and press the Next button.

On the second New Project screen, select Use Existing Python and Command Line. Then enter the

full path to the python.exe or python inside your Unreal Engine installation. For example:

c:\Program Files\Epic Games\UE_4.27\Engine\Binaries\ThirdParty\Python3\Win64\python.exe

How-Tos for Modeling, Rendering, and Compositing Systems

119

https://wingware.com
https://www.unrealengine.com/
https://www.unrealengine.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Note

On macOS and possibly some other systems the Python command line included with Unreal

Engine crashes on startup. In that case, you cannot use it for the Command Line setting in

Wing. Instead, select Use default or point Wing to some other Python installation.

This does mean that on systems where the Unreal Engine Python command line is broken, you

will need to install Python separately if you don't already have it. Ideally this would match the

version of Python that Unreal Engine uses (as of early 2022 this was Python 3.7) so that

auto-completion on builtins and the standard library are accurate.

Now you can complete creation of your Wing project by pressing the Create Project button.

Wing will show the result of this operation, including all steps taken. It may warn about needing to

restart Unreal Editor and/or turning on Developer Mode in Unreal Editor, which is done from

Preferences > Plugins > Python. Developer Mode is needed to generate the stubs file that Wing uses

to provide auto-completion for Unreal Engine's API. Even if that is already enabled, you may need to

restart Unreal Editor before debugging works, since it does not rescan the disk for new Python Path

directories created while it is running.

That's all there is to it!

Working with Wing

You can now type import unreal and should receive auto-completion and other support after typing

unreal. in the editor.

You can also debug Python code in Unreal Editor. To start the debugger, run the following Python code

in Unreal Editor:

import wingdbstub

You should see Wing's toolbar change to indicate that a debug process is connected.

Now you can open your Python script(s) in Wing and place breakpoints by clicking on the leftmost editor

margin. Wing will stop on breakpoints and also any unhandled exceptions that are reach in your code.

If you drop the debug connection and want to reestablish it without restarting Unreal Editor, you can do

this by executing the following code:

wingdbstub.Ensure()

How-Tos for Modeling, Rendering, and Compositing Systems

120

You may need to import wingdbstub again before doing that, if you are executing this code from a

different context than your original import of that module.

Debugging Notes

(1) While stopped at a breakpoint in Wing, Unreal Editor will be unresponsive, because the debugger

has taken over control. You will need to continue in the debugger or disconnect Wing's debugger by

pressing the red Stop item or using the Debug > Stop Debugging menu item before you can return to

using Unreal Editor's UI.

(2) Because Unreal Engine does not normally call into any Python code on a regular basis, Wing's

debugger cannot always immediately process requests from the IDE, such as those that add or remove

breakpoints or request the debug process to Pause.

As a result, breakpoints set may initially appear as a small dash and only convert into a round circle

once the debugger confirms setting the breakpoint. This may not be until you next execute a Python

script, but should usually occur before the breakpoint is actually reached. However, sometimes old

breakpoints removed in the IDE will not yet be removed inside Unreal Engine, causing Wing to stop

there before the breakpoint updates are completed.

This should only occur during times when no Python code is being executed by Unreal Engine. For

example, if you have a timer written in Python or other Python script activity occuring on a regular basis,

then you should not see this issue.

(3) In rare cases, it may to be possible to get into a state where breakpoints are no longer reached at all.

In this case, restarting Unreal Engine solves the problem.

Using Live Runtime Analysis

A way to get even better auto-completion in Wing is to run to a breakpoint in the debugger and then

work in the editor or the Debug Console accessed from the Wing's Tools menu. If you're working in the

current Python stack frame, Wing inspects the live runtime to populate the auto-completer and other

code intelligence tools. This also has the advantage that you can immediately try out the code that you

are writing in the Debug Console.

For more information on Wing's capabilities, see the Tutorial in the Help menu or the Quick Start

Guide.

How it Works

Wing's auto-completion for Unreal Editor depends on its creation of the unreal.py stubs file, which is

located in Intermediate/PythonStub inside your Unreal Editor project directory (where the *.uproject is

located). This is created for any project opened by Unreal Editor after you've turned on

Developer Mode in Unreal Editor from Preferences > Plugins > Python.

How-Tos for Modeling, Rendering, and Compositing Systems

121

https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/howtos/quickstart

If you follow the above instructions for creating a Wing project for Unreal Editor, Wing will automatically

add the Intermediate/PythonStub directory to the Python Path that is configured in

Project Properties under the Environment tab. You can also add this manually to an existing Wing

project.

Notes on sys.path

Because of how Unreal Engine packages Python, Wing cannot obtain the Python path from the

command line executable, as it usually does.

This means that you need to manually add any other directories from which you import code to your

Python Path in Wing's Project Properties. Otherwise, Wing will not be able to find and offer

auto-completion and other code intelligence for code in those directories.

One way to review all the directories that are on the Python path inside Unreal Editor is to run the

following code there:

import sys, os
print(os.pathsep.join(sys.path))

The output of this can be pasted into the Python Path field in Wing's Project Properties after selecting

View as Text.

Note that many of the entries Unreal places on sys.path do not exist, and thus are not actually needed.

However, you can still add them to the Python Path in Wing's Project Properties. Wing will warn about

them but allows them in the configuration and will update its knowledge of your code if those directories

are later created and populated.

Debug Configuration Details

When you created your Wing project for Unreal Engine, Wing wrote a pre-configured copy of its

wingdbstub.py module into Content/Python inside your Unreal Engine project directory (where the

*.uproject is located). The values that Wing sets in this module are WINGHOME, to tell the debugger

where to find the debugger implementation, and kEmbedded, to tell Wing that it is debugging code

running in an embedded instance of Python. The latter alters how it treats an exit from the outermost

stack frame; without it, the debug connection would drop and need to be reestablished with

wingdbstub.Ensure() after each invocation of Python code.

Wing also turns on Accept Debug Connections` in the menu for the bug icon in the lower left of Wing's

window, so that debugging initiated from outside of Wing can connect to the IDE.

Related Documents

For more information see:

• Unreal Engine website

How-Tos for Modeling, Rendering, and Compositing Systems

122

https://www.unrealengine.com/

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Modeling, Rendering, and Compositing Systems

123

https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

5.5. Using Wing with Source Filmmaker

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for Source

Filmmaker (SFM), a movie-making tool built by Valve using the Source game engine.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Source Filmmaker. To get started using Wing as

your Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Debugging Setup

Wing can debug Python code that's saved in a file, but not code entered in the Script Editor window. As

of version 0.9.8.5 (released May 2014), this includes scripts run from the main menu. In all versions,

code in imported modules may be debugged.

When debugging Python code running under SFM, the debug process is initiated from outside of Wing,

and must connect to the IDE. This is done with wingdbstub, as described in in the Debugging

Externally Launched Code section of the manual. Because of how SFM sets up the interpreter, you

must set kEmbedded=1 in your copy of wingdbstub.py.

Some versions of SFM comes with wingdbstub.py in the site-packages directory in its Python

installation. However, this file must match the version of Wing you are using so you may need to copy

wingdbstub.py from your Wing install directory to the site-packages directory. The default location of

the site-packages directory is:

<STEAM>\steamapps\common\SourceFilmmaker\game\sdktools\python\2.7\win32\Lib\site-packages

How-Tos for Modeling, Rendering, and Compositing Systems

124

https://wingware.com
http://www.sourcefilmmaker.com/
http://www.sourcefilmmaker.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/debugging-externally-launched-code

Before debugging, click on the bug icon in lower left of Wing's window and make sure that

Accept Debug Connections is checked. After that, you should be able to reach breakpoints by

causing the scripts to be invoked from SFM.

To start debugging and ensure there's a connection from the SFM script being debugged to Wing,

execute the following before any other code executes:

import wingdbstub
wingdbstub.Ensure()

To use the python executable found in the SFM application directory to run Wing's Python Shell tool

and to debug standalone Python scripts, enter the full path of the python.exe file under

Command Line in the Python Executable field of the Project Properties```dialog.

Related Documents

For more information see:

• Source Filmmaker website

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Modeling, Rendering, and Compositing Systems

125

http://www.sourcefilmmaker.com/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

5.6. Using Wing with pygame

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for pygame,

an open source framework for game development with Python.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for pygame. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Project Configuration

Pygame works just fine with Wing without any special configuration. You'll need to first install pygame

according to the instructions on the pygame website.

To create a new project, use New Project in Wing's Project menu with Project Type set to Pygame.

You'll be able to select or create a source directory for your project and select or create a Python

environment. See Creating a Project for details on creating projects in Wing.

After you press Create Project in the New Project dialog, find your main entry point, open it into Wing,

and select Set Current as Main Entry Point in the Debug menu.

Debugging

Now you can launch your game from Wing with Start/Continue in the Debug menu. Wing will stop on

any exceptions or breakpoints reached while running your game, and you can use the debugger to step

through code, inspect the value of variables, and try out new code interactively.

How-Tos for Modeling, Rendering, and Compositing Systems

126

https://wingware.com
http://www.pygame.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
http://www.pygame.org/
https://wingware.com/doc/proj/creating-a-project

To learn more about Wing's features, please refer to the tutorial in Wing's Help menu or read the

Quickstart Guide.

Related Documents

Wing provides many other options and tools. For more information:

• pygame home page provides downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

How-Tos for Modeling, Rendering, and Compositing Systems

127

https://wingware.com/doc/howtos/quickstart
https://www.pygame.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

Unmaintained How-Tos
This section contains unmaintained How-Tos for using Wing with older and less commonly used

frameworks, tools, and alternate Python implementations.

Unmaintained How-Tos

128

6.1. Using Wing with Twisted

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for Twisted.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Twisted. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Note: This document is not being maintained and was last tested with Twisted version 8.

Project Configuration

To create a new project, use New Project in Wing's Project menu. Select the project type ``Twisted

and under Python Executable select Custom and then enter the full path of the Python you plan to use

with Twisted. You can determine the correct value to use by executing the following commands

interactively in Python. If you are using virtualenv, this will be the virtualenv's Python executable:

import sys
sys.executable

Press OK and then add the directory with your source code to the new project with

Add Existing Directory in the Project menu.

Unmaintained How-Tos

129

https://wingware.com
http://twistedmatrix.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Remote Development

Wing Pro can work with Twisted code that is running on a remote host, VM, or container. To do this, you

need to be able to connect to the remote system with SSH. Then you can create your project in the

same way as above, using the Connect to Remote Host via SSH project type. See Remote Hosts for

more information on remote development with Wing Pro.

Debug Configuration

To debug Twisted code launched from within Wing, create a file with the following contents and set it as

your main entry point by adding it to your project and then using the Set Main Entry Point item in the

Debug menu:

from twisted.scripts.twistd import run
import os
try:
 os.unlink('twistd.pid')
except OSError:
 pass
run()

Then go into the File Properties for this file (by right clicking on it) and set Run Arguments as follows:

-n -y filename.tac

The -n option tells Twisted not to daemonize, which would cause the debugger to fail because

sub-processes are not automatically debugged. The -y option serves to point Twisted at your .tac file.

Replace filename.tac in the above example with the correct name of your file.

Wing Pro may be able to debug Twisted without the -n option, if you enable Debug Child Processes

under the Debug/Execute tab of Project Properties, from the Project menu.

You can also launch Twisted code from outside of Wing as described in Debugging Externally

Launched Code in the manual.

Related Documents

For more information see:

• Twisted home page, which provides links to documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

130

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/debug/debugging-externally-launched-code
http://twistedmatrix.com/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

6.2. Using Wing with Plone

Note

"The best solution for debugging Zope and Plone" -- Joel Burton, Member, Plone Team

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for the

Plone content management system.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Plone. To get started using Wing as your Python

IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Note: This document is not being maintained and was last tested with Plone 4.

Introduction

These instructions are for the Plone 4+ unified installer. Wing no longer supports old style Zope Product

name space merging so it cannot be used with older versions of Plone.

Unmaintained How-Tos

131

https://wingware.com
http://www.plone.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Configuring your Project

To create a new project, use New Project in Wing's Project menu. Select the project type Plone and

under Python Executable select Custom and then enter the full path of the Python you plan to use

with Plone. The full path can be found by looking at the top of many of the scripts in zinstance/bin or

zeocluster/bin. You can also determine the correct value to use by executing the following commands

interactively in Python. If you are using virtualenv, this will be the virtualenv's Python executable:

import sys
sys.executable

Press OK and then add the directory with your source code to the new project with

Add Existing Directory in the Project menu.

Next find and open the file zinstance/bin/instance and select Set Current as Main Entry Point in

Project menu. If you have a ZEO cluster, instead use zeocluster/bin/client1 or whatever name is

given in the .cfg file. Wing reads the sys.path updates from that file so that it can find your Plone

modules.

Debugging

If you have followed the instructions above, you should be able to start debug from the toolbar or Debug

menu. The debugger will stop on breakpoints and any exceptions that are printed, and debug data can

be viewed in the Stack Data tool, by hovering over values, and in Wing Pro by pressing Shift-Space or

with the interactive Debug Console.

Related Documents

Wing provides many other options and tools. For more information:

• Plone home page, which provides links to documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

132

http://www.plone.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

6.3. Using Wing with Turbogears

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for the

Turbogears, web development framework.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for Turbogears. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Note: This document is not being maintained and was last tested with Turbogears 2.

Project Configuration

This section assumes your Turbogears 2 project is called wingtest. If not, substitute your project name

in the following instructions.

• Go into the Turbogears instance directory wingtest and run Wing

• Add your instance directory to the project and save it as wingtest.wpr There is no need to add all

of Turbogears to the project; just the instance should suffice.

• Add also the paster to your project. Then open it and and set it as main entry point from the

Debug menu

• Open up the Python Shell tool and type import sys followed by sys.executable to verify whether

Wing is using the Python that will be running Turbogears. If not, open Project Properties and set

the Python Executable to the correct one.

• Next right click on paster and select File Properties. Under the Debug tab, set Run Arguments

to serve development.ini (do not include the often-used --reload argument, as this will interfere

with debugging). Then also set Initial Directory to the full path of wingtest.

Unmaintained How-Tos

133

https://wingware.com
http://www.turbogears.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

Debugging

To debug Turbogears 2 from Wing:

• Set a breakpoint on the return line of RootController.index() in your root.py or somewhere else

you know will be reached on a page load

• Start debugging in Wing from the toolbar or or Debug menu. If Wing shows a warning about

sys.settrace being called in DecoratorTools select Ignore this Exception Location in the

Exceptions tool in Wing and restart debugging. In general, sys.settrace will break any Python

debugger but Wing and the code in DecoratorTools both take steps to keep debugging working in

this case.

• Bring up the Debug I/O tool in Wing and wait until the server output shows that it has started

• Load http://localhost:8080/ or the page you want to debug in a browser

Wing should stop on your breakpoint. From here, you can step through code or inspect the program

state with Stack Data and other tools. In Wing Pro, the Debug Console provides a command line that

allows you to interact with the current stack frame in your debug process. All the debugging tools are

available from the Tools menu.

Remote Development

Wing Pro can work with Pyramid code that is running on a remote host, VM, or container. To do this,

you need to be able to connect to the remote system with SSH. Then you can create your project in the

same way as above, using the Connect to Remote Host via SSH project type. See Remote Hosts for

more information on remote development with Wing Pro.

Related Documents

For more information see:

• Turbogears home page for downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

134

https://wingware.com/doc/proj/remote-hosts
http://www.turbogears.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

6.4. Using Wing with Google App Engine SDK for Python

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for Google

App Engine SDK for Python. Wing Pro provides auto-completion, call tips, a powerful debugger, and

many other features that help you write, navigate, and understand Python code.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing Pro for Google App Engine. To get started using Wing

Pro as your Python IDE, please refer to the tutorial in Wing Pro's Help menu or read the Quickstart

Guide.

Note: This document is not being maintained and was last tested with Google App Engine version 1.9.

Creating a Project

Before trying to configure a project in Wing Pro, first install and set up Google App Engine SDK for

Python and verify that it is working by starting it outside of Wing and testing it with a web browser.

Next, create a project in Wing Pro with New Project in the Project menu and selecting

Google App Engine as the project type. Then use Add Directory in the Project menu to add your

source directories to the project. You should also add at least dev_appserver.py, which is located in

the top level of the Google SDK directory.

Next open up dev_appserver.py in Wing's editor and select Set Current as Main Entry Point in the

Debug menu. This tells Wing to use this file as the main entry point, which is then highlighted in the

Project tool.

Unmaintained How-Tos

135

https://wingware.com
https://cloud.google.com/appengine/docs/python/
https://cloud.google.com/appengine/docs/python/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/howtos/quickstart

Next you need to go into Project Properties and set Debug/Execute > Debug Child Processes to

Always Debug Child Processes. This is needed because App Engine creates more than one process.

Finally, save your project with Save Project in the Project menu. Store the project at or near the top

level of your source tree.

Configuring the Debugger

Before trying to debug make sure you stop Google App Engine if it is already running outside of Wing.

You can debug code running under Google App Engine SDK for Python by selecting Start / Continue

from the Debug menu or using the green run icon in the toolbar. This displays a dialog that contains a

Run Arguments field that must be altered to specify the application to run. For example, to run the

guestbook demo that comes with the SDK, the run arguments would be

"${GOOGLE_APPENGINE_DIR}/demos/guestbook" where ${GOOGLE_APPENGINE_DIR} is

replaced by the full pathname of the directory the SDK is installed in. The quotation marks are needed if

the pathname contains a space. In other apps, this is the path to where the app.yaml file is located. If

this path name is incorrect, you will get an error when you start debugging.

You can also leave the environment reference ${GOOGLE_APPENGINE_DIR} in the path and define

an environment variable under the Environment tab of the Debug dialog. Or use

${WING:PROJECT_DIR} instead to base the path on the directory where Wing's project file was saved.

For most projects, you'll need to add at least --max_module_instances=1 to the run arguments, and

you may also want to add --threadsafe_override=false. These command line arguments disable some

of GAE's threading and concurrency features that can prevent debugging from working properly.

Add a --port=8082 style argument if you wish to change the port number that Google App Engine is

using when run from Wing's debugger. Otherwise the default of 8080 will be used.

Using a partial path for the application may also be possible if the Initial Directory is also set in under

the Debug tab.

Next, click the OK button to save your settings and start debugging. Once the debugger is started, the

Debug I/O tool (accessed from the Tools menu) should display output from App Engine, and this

should include a message indicating the hostname and port at which App Engine is taking requests.

If Google App Engine asks to check for updates at startup, it will do so in the Debug I/O tool and you

can press "y" or "n" and then Enter as you would on the command line. Or send the

--skip_sdk_update_check argument on the command line to dev_appserver.py to disable this.

Unmaintained How-Tos

136

Using the Debugger

After you have configured the debugger, set a break point in any Python code that is executed by a

request and load the page in the browser. For example, to break when the main page of the guestbook

demo is generated, set a breakpoint in the method Mainpage.get in guestbook.py. When you reach

the breakpoint, the browser will stop and wait while Wing debugs the code.

From here, you can step through code or inspect the program state with Stack Data and other tools.

The Debug Console provides a command line that allows you to interact with the current stack frame in

your debug process. All the debugging tools are available from the Tools menu. You can also see data

values by hovering the mouse over symbols in the editor or Debug Console and you can press F4 to

go to the point of definition of any symbol.

Continue running with the green run button in the toolbar. Unless another breakpoint or exception is

reached, this shoud complete the page load in the browser.

You may edit the Python code for an application while the App Engine is running, and then reload in

your browser to see the result of any changes made. In most cases, there is no need to restart the

debug process after edits are made. However, if you try the browser reload too quickly, while App

Engine is still restarting, then it may not respond or breakpoints may be missed.

To learn more about the debugger, try the Tutorial in Wing Pro's Help menu.

Improving Auto-Completion and Goto-Definition

Wing can't parse the sys.path hackery used by Google App Engine SDK for Python so it may fail to find

some modules for auto-completion, goto-definition and other features. To work around this, set a

breakpoint in _run_file in dev_appserver.py and start debugging. Then, after script_name has been

set, in the Debug Console tool type the following:

os.pathsep.join(_PATHS.script_paths(script_name))

Copy this to the clipboard and open up the file properties for dev_appserver.py by right-clicking on the

file. Then, in Project Properties under the Environment tab select Custom for the Python Path, click

on the View as Text button and paste in the extra path.

You will need to redo this if you move the app engine installation, or you can use

${WING:PROJECT_DIR} in the paths to based them on the location of the project file.

Debugging Multiple Applications

To set up multiple entry points without needing to change the file properties for dev_appserver.py, use

Named Entry Points in the Debug menu. Each Named Entry Point can contain a different commands

line and environment for dev_appserver.py.

Unmaintained How-Tos

137

In this case, configuration of Python Path and other values mentioned above is done in the Launch

Configuration used in each Named Entry Point.

Notes

App Engine runs code in a restricted environment that prevents access to some system information,

including process ID. This causes some of the sub-processes created by App Engine to be shown with

process id -1. In this case they are not listed as children of the parent process and you will need to kill

both processes, one at a time, from the toolbar or Debug menu.

Windows users may need to set the TZ environment variable to UTC via the environment field in Project

Properties to work around problems with setting os.environ['TZ'] while a process is running (this is a

Windows runtime bug). One possible symptom of this is repeated 302 redirects that prevent logging in

or other use of the site.

Related Documents

For more information see:

• Google App Engine SDK for Python for downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

138

https://cloud.google.com/appengine/docs/python/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

6.5. Using Wing with mod_python

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code that is run by the

mod_python module for the Apache web server.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for mod_python. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Note: This document is not being maintained and was last tested in ancient times.

Introduction

This document assumes mod_python is installed and Apache is configured to use it; please see the

installation chapter of the mod_python manual for information on how to install it.

Since Wing's debugger takes control of all threads in a process, only one http request can be debugged

at a time. In the technique described below, a new debugging session is created for each request and

the session is ended when the request processing ends. If a second request is made while one is being

debugged, it will block until the first request completes. This is true of requests processed by a single

Python module and it is true of requests processed by multiple Python modules in the same Apache

process and its child processes. As a result, it is recommended that only one person debug

mod_python based modules per Apache instance and production servers should not be debugged.

Quick Start

• Copy wingdbstub.py (from the install directory listed in Wing's About box) into either the directory

the module is in or another directory in the Python path used by the module.

Unmaintained How-Tos

139

https://wingware.com
http://www.modpython.org
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

• Edit wingdbstub.py if needed so the settings match the settings in your preferences. Typically,

nothing needs to be set unless Wing's debug preferences have been modified. If you do want to

alter these settings, see the Manually Configured Remote Debugging section of the Wing

reference manual for more information.

• Copy wingdebugpw from your Settings Directory into the directory that contains the module you

plan to debug. This step can be skipped if the module to be debugged is going to run on the same

machine and under the same user as Wing. The wingdebugpw file must contain exactly one line.

• Insert import wingdbstub at the top of the module imported by the mod_python core.

• Insert if wingdbstub.debugger != None: wingdbstub.debugger.StartDebug() at the top of each

function that is called by the mod_python core.

• Allow debug connections to Wing by setting the Debugger > Listening > Accept Debug

Connections preference to true.

• Restart Apache and load a URL to trigger the module's execution.

Example

To debug the hello.py example from the Publisher chapter of the mod_python tutorial, modify the

hello.py file so it contains the following code:

import wingdbstub

def say(req, what="NOTHING"):
 wingdbstub.Ensure()
 return "I am saying %s" % what

And set up the mod_python configuration directives for the directory that hello.py is in as follows:

AddHandler python-program .py
PythonHandler mod_python.publisher

Then set a breakpoint on the return "I am saying %s" % what line, make sure Wing is listening for a

debug connection, and load http://[server]/[path]/hello.py in a web browser (substitute appropriate

values for [server] and [path]). Wing should then stop at the breakpoint.

Remote Development

Wing Pro can work with mod_python code that is running on a remote host, VM, or container. To do

this, you need to be able to connect to the remote system with SSH. Then you can create your project in

the same way as above, using the Connect to Remote Host via SSH project type. See Remote Hosts

for more information on remote development with Wing Pro.

Unmaintained How-Tos

140

https://wingware.com/doc/debug/manual-remote-debugging
https://wingware.com/doc/install/user-settings-dir
https://wingware.com/doc/proj/remote-hosts

Related Documents

For more information see:

• Mod_python website for downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

141

http://modpython.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

6.6. Debugging Code Running Under Py2exe

Wing Pro is a Python IDE that can be used to debug Python code running in an application packaged by

py2exe. This is useful to solve a problem seen only when the code is running from the package, or so

that users of the packaged application can debug Python scripts that they write for the app.

If you do not already have Wing Pro installed, download it now.

This document just describes how to configure Wing for debugging Python code running under py2exe.

To get started using Wing as your Python IDE, please refer to the tutorial in Wing's Help menu or read

the Quickstart Guide.

Note: This document is not maintained and was last tested in 2007.

Configuring the Debugger

To debug code running under py2exe you will need to use wingdbstub to initiate debug from outside of

Wing, as described in Debugging Externally Launched Code, along with some additional configuration

described below.

There are two important ways in which the environment differs when code runs under py2exe:

1. When py2exe produces the *.exe, it strips out all but the modules it thinks will be needed by the

application. This will remove modules needed by Wing's debugger.

2. py2exe runs in a slightly modified environment and it ignores the PYTHONPATH environment.

As a result, some custom code is needed so the debugger can find and load the modules that it needs:

Unmaintained How-Tos

142

https://wingware.com
http://py2exe.org/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/debug/debugging-externally-launched-code

Add extra environment needed by Wing's debugger
import sys
import os
extra = os.environ.get('EXTRA_PYTHONPATH')
if extra:
 sys.path.extend(extra.split(os.pathsep))
print(sys.path)

Start debugging
import wingdbstub

Just some test code
print("Hello from py2exe")
print("frozen", repr(getattr(sys, "frozen", None)))
print("sys.path", sys.path)
print("sys.executable", sys.executable)
print("sys.prefix", sys.prefix)
print("sys.argv", sys.argv)

You will need to set the following environment variables before launching the packaged application:

EXTRA_PYTHONPATH=\Python25\Lib\site-packages\py2exe\samples\simple\dist;\Python25\lib;\Python25\dlls
WINGDB_EXITONFAILURE=1

In this example, \Python25\Lib\site-packages\py2exe\samples\simple\dist contains the source for

the packaged application and also the copy of wingdbstub.py used to initiate debug.

The other added path entries point at a Python installation that matches the one being used by py2exe.

This is how the debugger will load missing standard library modules from outside of the py2exe

package.

Setting WINGDB_EXITONFAILURE causes the debugger to print an exception and exit if it fails to load.

Without this it will fail silently and continue to run without debug.

The above was tested with Python 2.5 using py2exe run with -q and -b2 options.

Related Documents

For more information see:

• py2exe home page provides downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

143

http://py2exe.org/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

6.7. Using Wing with IDA Python

Wing Pro is a Python IDE that can be used to develop, test, and debug Python code written for

Hex-Rays IDA multi-processor disassembler and debugger.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for IDA. To get started using Wing as your Python IDE,

please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Note: This document is not maintained and was last tested in 2012.

Debugging IDA Python in Wing

IDA embeds a Python interpreter that can be used to write scripts for the system. In order to debug

Python code that is run within IDA, you need to import a special module in your code, as follows:

import wingdbstub
wingdbstub.Ensure()

You will need to copy wingdbstub.py out of your Wing installation and may need to set WINGHOME

inside wingdbstub.py to the location where Wing is installed. On macOS, this is the full path of Wing's

.app folder.

Even though this is an embedded instance of Python, leave the kEmbedded flag set to 0.

Next click on the bug icon in the lower left of Wing's main window and make sure that

Accept Debug Connections is checked. Then restart IDA and the debug connection will be made as

soon as the above code is executed.

Unmaintained How-Tos

144

https://wingware.com
https://www.hex-rays.com/products/ida/index.shtml
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart

At that point, any breakpoints set in Python code will be reached and Wing can be used to inspect the

runtime state, step through code, and try out new code interactively.

For more information on this configuration, see Debugging Externally Launched Code.

Related Documents

For more information see:

• Hex-Rays IDA home page provides links to documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

145

https://wingware.com/doc/debug/debugging-externally-launched-code
https://www.hex-rays.com/products/ida/index.shtml
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

6.8. Using Wing with IronPython

Wing Pro is a Python IDE that can be used to develop and test Python code written for IronPython.

If you do not already have Wing Pro installed, download it now.

This document describes how to configure Wing for IronPython. To get started using Wing as your

Python IDE, please refer to the tutorial in Wing's Help menu or read the Quickstart Guide.

Note: This document is not maintained and was last reviewed in 2011.

Project Configuration

For instructions on setting up Wing with IronPython, see IronPython and Wing: Using Wing Python IDE

with IronPython. This article provides a script to help with setting up auto-completion for the .NET

framework, and some information on how to get Wing to execute your code in IronPython. It was written

by Michael Foord, co-author of the book IronPython in Action.

The script the article refers to is now shipped with Wing, in src\wingutils\generate_pi.py inside the

Wing install directory, which is listed in Wing's About box.

Related Documents

For more information see:

• IronPython home page provides downloads and documentation.

• Quickstart Guide contains additional basic information about getting started with Wing.

• Tutorial provides a gentler introduction to Wing's features.

• Wing Reference Manual documents Wing in detail.

Unmaintained How-Tos

146

https://wingware.com
http://ironpython.net/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/howtos/quickstart
http://www.voidspace.org.uk/ironpython/wing-how-to.shtml
http://www.voidspace.org.uk/ironpython/wing-how-to.shtml
http://www.ironpythoninaction.com/
http://ironpython.net/
https://wingware.com/doc/howtos/quickstart
https://wingware.com/doc/intro/tutorial
https://wingware.com/doc/manual

	How-Tos
	How-Tos for Specific Environments
	1.1. Using Wing with virtualenv
	Creating a New Virtualenv
	Working on a Remote Host
	Using an Existing Virtualenv
	Activating the Virtualenv
	Package Management
	Using Virtualenv with Anaconda
	Related Documents

	1.2. Using Wing with pipenv
	Creating a New Pipenv
	Using an Existing Pipenv
	Working on a Remote Host
	Package Management
	Related Documents

	1.3. Using Wing with Anaconda
	Configuring Your Project
	Creating a New Anaconda Environment
	Package Management
	About Anaconda Environments
	Related Documents

	1.4. Using Wing Pro with Docker
	Getting Started
	Overview of Docker
	Configuration Overview
	Related Documents
	1.4.1. Using an Existing Docker Container with Wing Pro
	Creating the Project
	How It Works
	Networking on Linux Hosts

	1.4.2. Creating a New Docker Container with Wing Pro
	How it Works

	1.4.3. Remote Development via SSH to a Docker Instance
	1.4.4. Docker Configuration Example

	1.5. Using Wing Pro with Docker Compose
	Getting Started
	Configuration Overview
	Controlling the Cluster
	Debugging the Cluster
	Execution Context for Other Processes
	Python Shell
	Unit Tests
	OS Commands
	How it Works
	Related Documents

	1.6. Using Wing Pro with LXC/LXD Containers
	Getting Started
	Overview of LXC/LXD
	Creating a Container
	Configuring Your Project
	Testing the Container
	Developing Code
	Related Documents

	1.7. Using Wing Pro with AWS
	Prerequisites
	Setting up AWS
	Testing the SSH Connection
	Creating a Wing Project
	Testing a Hello World
	Related Documents

	1.8. Using Wing with Vagrant
	Prerequisites
	Creating a Project
	How It Works
	Usage Hints
	Synced Folders
	Password-less Private Keys
	Related Documents

	1.9. Using Wing Pro with Windows Subsystem for Linux
	Prerequisites
	Creating a Project
	Setting up WSL
	Related Documents

	1.10. Using Wing with Raspberry Pi
	Configuration
	Related Documents

	1.11. Using Wing with Cygwin
	Project Configuration
	Debugger Configuration
	File Paths
	Related Documents

	1.12. Remote Python Development
	Configuration
	Creating a Project
	Using Your Project
	Details

	How-Tos for Scientific and Engineering Tools
	2.1. Using Wing with Matplotlib
	Working Interactively
	Debugging
	Trouble-shooting
	Related Documents

	2.2. Using Wing with Jupyter Notebooks
	Setting up Debug
	Working with the Debugger
	Editing Code
	Stopping on Exceptions
	Fixing Failure to Debug
	Reloading Changed Modules
	Related Documents

	2.3. Using Wing with PyXLL
	Introduction
	Installation and Configuration
	Debugging Python Code in Excel
	Trouble-shooting
	Related Documents

	How-Tos for Web Development
	3.1. Remote Web Development
	Setting up SSH Access
	Installing the Remote Agent
	Setting up a Project
	Initiating Debug
	Debugging Code
	Managing Permissions
	Resources

	3.2. Using Wing with Django
	Creating a Project
	Existing Django Project
	New Django Project
	Selecting the Python Environment
	Usage Tips
	Automated Django Tasks
	Debugging Exceptions
	Template Debugging
	Better Auto-Completion
	Running Unit Tests
	Related Documents

	3.3. Using Wing with Flask
	Project Configuration
	Remote Hosts and VMs
	Containers
	Port Forwarding
	Debugging Flask in Wing
	Setting up Auto-Reload with Wing Pro
	Related Documents

	3.4. Using Wing with Pyramid
	Creating a Wing Project
	Debugging
	Launching from Wing
	Auto-reloading Changes
	Launching Outside of Wing
	Notes on Auto-Completion
	Debugging Jinja2 Templates
	Debugging Mako Templates
	Remote Development
	Related Documents

	3.5. Using Wing with web2py
	Introduction
	Setting up a Project
	Remote Development
	Debugging
	Usage Tips
	Setting Run Arguments
	Hung Cron Processes
	Better Auto-completion
	Related Documents

	3.6. Using Wing with mod_wsgi
	Debugging Setup
	Disabling stdin/stdout Restrictions
	Remote Development
	Related Documents

	How-Tos for GUI Development
	4.1. Using Wing with wxPython
	Introduction
	Installation and Configuration
	Test Driving the Debugger
	Using a GUI Builder
	Related Documents

	4.2. Using Wing with PyQt
	Introduction
	Installation and Configuration
	Test Driving the Debugger
	Using a GUI Builder
	Related Documents

	4.3. Using Wing with GTK and PyGObject
	Introduction
	Installation and Configuration
	Test Driving the Debugger
	Improving Auto-Completion
	Using a GUI Builder
	Related Documents

	How-Tos for Modeling, Rendering, and Compositing Systems
	5.1. Using Wing with Blender
	Working with Blender
	Related Documents

	5.2. Using Wing with Autodesk Maya
	Debugging Setup
	Avoiding Crashing in Maya 2020
	Using Maya's Python in Wing
	Better Static Auto-completion
	Maya 2020
	Maya 2018
	Maya 2016
	Maya 2011+
	Older Versions
	Additional Information
	Related Documents

	5.3. Using Wing with NUKE and NUKEX
	Project Configuration
	Configuring for Licensed NUKE/NUKEX
	Configuring for Personal Learning Edition of NUKE
	Additional Project Configuration
	Replacing the NUKE Script Editor with Wing Pro
	Debugging Python Running Under NUKE
	Debugger Configuration Detail
	Limitations and Notes
	Related Documents

	5.4. Using Wing with Unreal Engine
	Creating a Project
	Working with Wing
	Debugging Notes
	Using Live Runtime Analysis
	How it Works
	Notes on sys.path
	Debug Configuration Details
	Related Documents

	5.5. Using Wing with Source Filmmaker
	Debugging Setup
	Related Documents

	5.6. Using Wing with pygame
	Project Configuration
	Debugging
	Related Documents

	Unmaintained How-Tos
	6.1. Using Wing with Twisted
	Project Configuration
	Remote Development
	Debug Configuration
	Related Documents

	6.2. Using Wing with Plone
	Introduction
	Configuring your Project
	Debugging
	Related Documents

	6.3. Using Wing with Turbogears
	Project Configuration
	Debugging
	Remote Development
	Related Documents

	6.4. Using Wing with Google App Engine SDK for Python
	Creating a Project
	Configuring the Debugger
	Using the Debugger
	Improving Auto-Completion and Goto-Definition
	Debugging Multiple Applications
	Notes
	Related Documents

	6.5. Using Wing with mod_python
	Introduction
	Quick Start
	Example
	Remote Development
	Related Documents

	6.6. Debugging Code Running Under Py2exe
	Configuring the Debugger
	Related Documents

	6.7. Using Wing with IDA Python
	Debugging IDA Python in Wing
	Related Documents

	6.8. Using Wing with IronPython
	Project Configuration
	Related Documents

