
Wing Pro Tutorial

This tutorial introduces Wing Pro by taking you through its feature set with a small coding example.

For a faster introduction, see the Quick Start Guide.

If you are new to programming, you may want to check out the book Python Programming

Fundamentals and accompanying screen casts, which use Wing 101 to teach programming with

Python.

Our How-Tos show how to use Wing with 3rd party web development frameworks, GUI toolkits,

scientific data visualization tools, Python-based modeling, rendering & compositing systems, and

other Python frameworks and toolkits.

To get started, press the Next Page icon in the toolbar immediately above this page.

https://wingware.com/doc/howtos/quickstart
https://kentdlee.github.io/CS1
https://kentdlee.github.io/CS1
https://wingware.com/doc/howtos/index

Tutorial: Why Wing?
Wing Pro is a light-weight but powerful integrated development environment that was designed from

the ground up for Python. As you get up to speed with Wing Pro you should find that:

• Wing speeds up your development of new code

• Wing makes it easier to understand and work with existing code

• Wing reveals errors earlier in the development process

• Wing makes it easier to find and fix bugs

• Wing adapts to your needs and style

If we are successful, this tutorial will help you understand how Wing does this, by combining deep

code analysis, a focus on interactive development, high-level editing and refactoring, continuous

early error detection, powerful always-on debugger, test-driven development, seamless remote

development, and extreme configurability.

There is a lot to learn about the IDE, but don't be intimidated. You can get started with a subset of

the functionality, adding in other features and tools over time as you become more comfortable. The

user interface can be customized in color and layout, and you can easily remove tools that you are

not yet interested in.

Let's get started! To get to the next page in the tutorial, use the Next Page icon in the toolbar

immediately above this page.

Tutorial: Getting Started
To get started using this tutorial, you will need to:

Install Python

If you don't already have it on your system, install Python from python.org or use Anaconda for

seamless access to many third party Python libraries.

Install Wing

Then install Wing. For detailed instructions, see Installing Wing.

Start Wing

Wing can be started from a menu, desktop, or tray icon, or by using the command line executable.

For detailed instructions, see Running Wing. If you are using Wing Pro and don't have a license, you

can obtain a free 30-day trial (divided into three 10-day periods) the first time you start Wing.

Switch to the Integrated Tutorial

Once Wing is running, you should switch to using the Tutorial listed in Wing's Help menu because it

contains links directly into the IDE's functionality. This includes the next step below.

Copy the Tutorial Directory

Copy the entire tutorial directory out of the Install Directory listed in Wing's About box to another

location on disk. You can do this manually or use the following link, which will prompt you to select

the target directory:

https://python.org/download
https://www.anaconda.com/
https://wingware.com/downloads/wingpro
https://wingware.com/doc/install/installing
https://wingware.com/doc/install/running-the-ide

Copy Tutorial Now

Note

We welcome feedback, which can be submitted with Submit Feedback in Wing's Help

menu or by emailing support@wingware.com

Tutorial: Getting Around Wing
Let's start with some basics that will help you get around Wing while working with this tutorial.

Wing's user interface is divided into an editor area and two toolboxes separated by draggable

dividers. Try pressing F1 and F2 now to show or hide the two toolboxes. Also try Shift-F2 to

maximize the editor area temporarily, hiding both tool areas and toolbar until Shift-F2 is pressed

again.

Tool and editor tabs can be dragged to rearrange the user interface, optionally creating a new split

or moving them to a separate window. Right click on the tabs for a menu of additional options, such

as adding or removing splits or to move the toolbox from right to left. The number of splits shown by

default in toolboxes will vary according to the size of your display.

mailto:support@wingware.com

Notice that you can click on an already-active tool tab to minimize that tool area. Click again on any

tab to restore the toolbox to its previous size.

See User Interface Layout for details.

Context Menus

In general, right-clicking provides a menu for interacting with or configuring a part of the user

interface. On some systems you may need to configure your track pad to allow right-clicking, or use

a keyboard modifier to emulate a right mouse click.

Splitting the Editor Area

Splitting your editor area makes it easier to get around this tutorial. To do this now, right-click on the

editor tab area and select Split Side by Side. On small monitors and laptops, it may be preferable

to create a new window for the tutorial by right-clicking on its tab and selecting

Move Wing Help to New Window.

By default, the editor shows all open files in all splits, making it easy to work on different parts of a

file simultaneously. This can be changed by unchecking Show All Files in All Splits in the

right-click context menu on the editor tabs.

Configuring the Keyboard

Use the Edit > Keyboard Personality menu or User Interface > Keyboard > Personality

preference to tell Wing to emulate another editor, such as Visual Studio, VI/Vim, Emacs, Eclipse,

XCode, MATLAB, or Brief.

The Configure Tab Key item in the Edit > Keyboard Personality menu or the User

Interface > Keyboard > Tab Key Action preference can be used to select among available

behaviors for the Tab key. The default is to match the selected Keyboard Personality.

When the Keyboard Personality is set to Wing, Tab acts differently according to context. For

example, if lines are selected, repeated presses of Tab moves the lines among syntactically valid

indent positions. And, when the caret is at the end of a line, pressing Tab adds one indent level.

See Keyboard Personalities for details.

Auto-Editing

Wing Pro implements a variety of auto-editing operations, which are designed to speed up typing

and reduce common errors. A subset of the available operations that does not require learning

different keystrokes is enabled by default. For example, when (is typed Wing will enter the closing)

https://wingware.com/doc/custom/gui-layout
https://wingware.com/doc/custom/keyboard-personalities

automatically. If the closing) is pressed anyway, Wing just skips over it. Auto-editing can be

disabled as a whole using the Editor > Auto-editing > Enable Auto-Editing preference or

individual operations can be selected.

This topic will be covered in more detail later in the tutorial.

Auto-Completion

There are many options for Wing's auto-completer. These are set in the Editor > Auto-completion

preferences group. For example, if you want to use the Enter key for completion, you may wish to

select that now in the Editor > Auto-completion > Completion Keys preference.

Colors and Dark Mode

Wing's cross-platform user interface (UI) adjusts to the OS on which you are running it, except on

Linux where it cannot use the system-provided UI. You can set the colors used in the editor with the

User Interface > Color Palette preference. To apply this palette also to the rest of the UI, outside of

editors, enable the Use Color Palette Throughout the UI preference.

To set a dark background display style, select One Dark, Monokai, Black Background,

Solarized - Dark, Sun Steel, Positronic, Dracula, or Cherry Blossom as the Color Palette.

The color palette One Dark applied to the whole UI was used to create the following screenshot and

those in the rest of this tutorial:

Other Configuration Options

To set the fonts in the user interface and editor, change the User Interface > Fonts >

Display Font/Size and User Interface > Fonts > Editor Font/Size preferences.

The size and type of tools used in the toolbar at the top of Wing's window can be changed by

right-clicking on one of the enabled tools.

For more information on adjusting the user interface to your needs, see Customization.

Tutorial: Check your Python Integration
Before starting with some code, let's make sure that Wing has succeeded in finding your Python

installation. Bring up the Python Shell tool now from the Tools menu. If all goes well, it should start

up Python and show you the Python command prompt like this:

If this is not working, or the wrong version of Python is being used, you can point Wing in the right

direction with Python Executable in Project Properties, accessed from the Project menu.

https://wingware.com/doc/custom/index

An easy way to determine the value to use for Python Executable is to start the Python you wish to

use with Wing and type the following at Python's >>> prompt:

import sys
print(sys.executable)

You can also use a virtualenv or Anaconda environment by selecting the Activated Env option

here, but for now let's just use the base Python installation.

You will need to Restart Shell from the Options menu in the Python Shell tool after altering

Python Executable.

Once the shell works, copy/paste or drag and drop these lines of Python code into it:

for i in range(0, 10):
 print('*' * i)

This should print a triangle as follows:

Notice that the shell removes common leading white space when blocks of code are copied into it.

This is useful when trying out code from source files.

Now type something into the shell, such as:

import sys
sys.getrefcount(i)

Note that Wing offers auto-completion as you type and shows call signature and documentation in

the Source Assistant tool. Use the Tab key to enter a selected completion. Other keys can be set

up as completion keys with the Editor > Auto-completion > Completion Keys preference.

You can create as many instances of the Python Shell tool as you wish by right-clicking on a tool

tab and selecting Insert Tool. Each one will run in its own process space.

Tutorial: Set Up a Project
Now we're ready to get started with some coding. The first step is to set up a project file so that

Wing can find and analyze your source code and store your work across sessions.

If you haven't already copied the tutorials directory from your Wing installation, please do so now

as described in Tutorial: Getting Started.

https://wingware.com/doc/intro/tutorial-getting-started

Wing starts up initially with the default project. Instead of using that, create a new project now with

New Project in the Project menu. Use the default project type Empty Python Project, leave the

other settings blank, and then click on OK:

Wing will display a confirmation dialog after creating the new blank project:

Click Save Now to save the new project. Use tutorial.wpr as the project file name and place it in

the tutorial directory that you created earlier.

Next, use the Add Existing Directory item in the Project menu to add your copy of the tutorials

directory. Leave the default options checked so that all files in that directory are added to the

project.

Note that most of the time when you are creating a project in Wing you will use New Project in the

Project menu and not Save Project As, which we've done here just to keep things simpler for the

moment. We'll come back to this later in the tutorial.

Note

To make it easier to work on source code and read this tutorial at the same time, you may

want to right-click on the editor tab area and select Split Side by Side.

Opening Files

Files in your project can be opened by double-clicking in the Project tool, by typing fragments into

the Open From Project dialog, and in other ways that will be described later.

Try Open From Project now, from the File menu. Type ex as the file name fragment and then use

the arrow keys and press Enter to open the file example1.py. Now try it again with the fragment

sub ex. This matches only files with both sub and ex in their full path names. In larger projects,

Open From Project is usually the easiest way to open a file, so you'll probably want to learn the key

binding listed for this command in the File menu. The binding varies according to which keyboard

personality you have chosen to use.

Transient, Sticky, and Locked Files

Wing opens files in one of several modes, in order to keep more relevant files open while

auto-closing others. To see this in action, click on os in import os at the top of example1.py and

press F4 to go to the definition of os. The file os.py will be opened in non-sticky transient mode, so

that it is automatically closed in least-recently-used order when you navigate away from it to other

files.

The mode in which a file is opened is indicated with an icon in the top right of the editor area:

 - The file is sticky and will be kept open until it is closed by the user.

 - The file is non-sticky and may be closed when it is no longer visible. When a non-sticky

transient file is edited, it immediately converts to sticky.

 - The file is locked in the editor, so that the editor split will not be used to display other newly

opened files. This mode is only available when multiple editor splits are present.

Clicking on the stick pin icon toggles between the available modes. Right-clicking on the icon

displays a menu of recently visited files. This contains both non-sticky transient and sticky files,

while the Recent list in the File menu contains only sticky files.

The number of non-sticky transient editors to keep open, in addition to those that are visible, is set

with the Editor > Advanced > Maximum Non-Sticky Editors preference (default=5).

This mechanism is also used in multi-file searching, debugging, and other features that navigate

through many files. In general you can ignore the modes and Wing will keep open the files you are

actually working on, while auto-closing those that you have only visited briefly.

Shared Project Files

Wing Pro writes two files for each project, for example tutorial.wpr and tutorial.wpu. If you plan to

use Wing projects with a revision control system such as Git, Mercurial, or Perforce, you should

check in only the *.wpr file.

See the Sharing Projects documentation page for details.

Tutorial: Setting Python Path
Python uses a search path referred to as the Python Path to find modules that are imported into

code with the import statement. Most code only imports modules that are already on the default

path, for example modules in the Python standard library, or modules installed into Python by pip,

pipenv, conda, or some other package manager.

However, in some cases code will depend on a different path provided either by setting the

environment variable PYTHONPATH before starting Python, or by modifying sys.path at runtime

before importing modules.

If the Python Path is changed by one of these methods, you may also need to tell Wing about this

change. This is done with Python Path in Project Properties, accessed from the Project menu:

https://wingware.com/doc/proj/project-types

For this tutorial, you need to add the subdir sub-directory of your tutorials directory to

Python Path, as shown above. This directory contains a module used as part of the first coding

example.

Note that the full path to the directory subdir is used. This is strongly recommended because it

avoids potential problems finding source code during debugging, if the starting directory is

ambiguous or changes over time. If relative paths are needed to make a project work on different

machines, use an environment variable like ${WING:PROJECT_DIR}/subdir. This is described in

more detail in Environment Variable Expansion.

The configuration used here is for illustrative purposes only. You could run the example code

without altering the Python Path by moving the path_example.py file to the same location as the

example scripts.

Startup Environment

Wing uses its startup environment as the default environment for your Python code. As a result, if

PYTHONPATH is set when you start Wing, it will also be used with your code. If this inherited path

matches the needs of your code, then you don't need to set Python Path in Wing. However, if you

have different Python environments on your system or code with different path expectations, then

you should set Python Path in the project so that switching projects will also switch to the correct

environment.

Virtualenv and Anaconda Environments

If you are using virtualenv, Anaconda environments, or pipenv to set up your Python environment,

you don't need to set Python Path. Instead, set Python Executable to Activated Env and enter

the command that activates your environment. This causes Wing to pick up the correct path and

other environment needed to run code in the environment. In this case, Python is launched by

running python in that environment.

You can also create a new virtualenv or Anaconda environment at the same time as creating a Wing

project by selecting the Create New Virtualenv or Create New Anaconda Environment project

types in the New Project dialog, accessed from the Project menu.

But don't do this now; you'll need the current project as you work through this tutorial.

https://wingware.com/doc/proj/variable-expansion

Python Path Analysis

If your main entry point alters sys.path, and the file is set as the Main Entry Point in

Project Properties then Wing may be able to automatically determine the correct path to use.

When in doubt, compare the value of sys.path at runtime in your code with the value reported by

Show Python Environment in the Source menu. If they match then there is no need to set

Python Path in your project.

Tutorial: Introduction to the Editor
Now that you have set up your project, Wing will have found and analyzed the tutorial examples,

and all the modules that are imported and used by them. This analysis process runs in the

background and is used to provide auto-completion, call tips, goto-definition, code warnings, and

other editing and navigation features. With larger code bases, you may notice the CPU load from

this process, and Wing will indicate that processing is active by displaying Analyzing Files in the

status area at the bottom left of the main IDE window:

However, with this tutorial analysis will have happened instantaneously after the project was

configured.

Editing with Wing

Let's start by trying out a subset of Wing's editor features, focusing on the auto-completer,

Source Assistant, and some of Wing's auto-editing operations.

Open the file example1.py from the Project tool. Then bring up the Source Assistant from the

Tools menu or by clicking on its tab. This is where Wing shows documentation, call signature, and

other information as you move around in your source code or work with other tools.

Scroll down to the bottom of example1.py and enter the following code by typing (not pasting) it into

the file:

news = Rea

Wing displays a context-sensitive auto-completer as you type. You can scroll around in the list with

the arrow keys, type Esc or Ctrl-G to abort completion, or Tab to enter the currently selected

completion.

If you are used to using the Enter key for auto-completion, add it to the Editor >

Auto-Completion > Completion Keys preference now.

When you first typed "news" this completer wasn't helpful because you had not yet defined news as

a symbol in your source. However, once you move on to type = Re, Wing displays another

completion list with ReadPythonNews highlighted. Notice that the Source Assistant updates to

show call information for that function, or for whatever symbol is selected in the auto-completer:

Next, press Tab to enter the completion of ReadPythonNews and type ((left parenthesis). In Wing

Pro, you should now see the following code in your editor because Wing auto-enters the argument

list and closing parenthesis:

Notice that when Wing Pro auto-enters arguments, it starts with all arguments selected so you have

the option of simply typing over them. Alternatively, the Tab key can be used to move between and

replace arguments or just the default value in keyword arguments (like force in this example). When

argument entry is completed by pressing) at the end of the list or by moving the caret out of the list,

Wing automatically removes any keyword arguments with unaltered defaults.

Try this a few times now to get a feel for how the tab order works. Undo can be used to easily undo

all changes made during argument entry. If you prefer not to use this feature, it can be turned off

with the Editor > Auto-Editing > Auto-Enter Invocation Args preference. The same preferences

page can be used to disable auto-editing entirely or to enable and disable other operations. The

default set of enabled auto-editing operations are those that should not interfere significantly with

finger memory. The other operations will be described later.

Now edit the code you have entered so it reads as follows and the caret is inside the ():

news = ReadPythonNews()

Then type Get to start entering arguments for your invocation of ReadPythonNews. You will see

the Source Assistant alter its display to highlight the first argument in the call signature for

ReadPythonNews and add information on the argument's completion value:

The docstring for ReadPythonNews is temporarily hidden to conserve screen space. This behavior

can be toggled with the Show docstring during completion option in the Source Assistant's

right-click context menu.

Now continue entering the rest of the line so you have the following complete line of source code:

news = ReadPythonNews(GetItemCount())

Notice that typing a close parenthesis at the end of the invocation in Wing Pro skips over the close

parenthesis that was previously auto-entered.

To play around with the editor a bit more, enter the following additional lines of code:

PrintAsText(news)
PromptToContinue()
PrintAsHTML(news)

At this point you have a complete program that can be run in the debugger. Don't try it yet, however.

It contains some deliberate bugs and first we should take a look at some of Wing's code navigation

features.

Tutorial: Navigating Code
As already noted, the Source Assistant updates as you move your insertion caret around the

editor, or when browsing through the auto-completer. This includes links to the point of definition of

symbols. For example, try moving between the invocation of PrintAsText and the variable news in

the code you just typed. The blue links in the Source Assistant can be used to jump to the points of

definition of each symbol listed there.

After visiting the point of definition with one of these links, use the green back arrow at the top left of

the editor to return from the value or type definition:

The link after Symbol: goes to the point of definition of that variable, while any links after Type: or

Likely Type: go to the point of definition of that data type. These are the same if the symbol is a

function, method, or class, but they differ for variables and attributes. For example, for news the

point of definition is the line where news is first assigned a value and the type is a Python list.

Python Documentation

For built-ins and code in the Python standard library, Wing tries to add links into the Python

documentation. For example, type open in the editor and try out the https://docs.python.org link.

The documentation will be opened in your default web browser.

Now use Undo or the Delete key to remove open from your code.

Goto-Definition

A quicker way to visit the point of definition of a symbol is to click on it and press F4 or right-click

and use one of the Goto Definition context menu items. Again, you can use the history

back/forward arrows at the top left of the editor to return from the point of definition.

Try this for ParseRDFNews in example1.py. Wing will open up the file path_example.py and show

the point of definition of ParseRDFNews.

Source Index

Wing maintains a set of source index menus at the top of the editor area. The menus are updated as

you move around code, and additional levels of menus are added as needed, based on context.

Try these now to navigate to CHandler in path_example.py, and then use the second menu to

navigate to endElement.

Then use the history back arrow at top left of the editor area to return to the invocation of

ParseRDFNews in example1.py. You will need to press the arrow several times to move back

through your visit history.

Find Symbol

If you are looking for a symbol defined in the current scope, use Find Symbol in the Source menu.

This displays a dialog where you can type a fragment matching the symbol name. Use the arrow

keys to traverse the matches and press Enter to visit the symbol's point of definition.

Find Symbol in Project in Wing Pro functions in the same way but searches all files in the project

for a symbol.

Find Points of Use

In Wing Pro it is also possible to enumerate and visit all points of use of a symbol. Try this now by

right-clicking on news and selecting Find Points of Use. Wing will display the Uses tool with a list

of all the points of use for that symbol. Click on the uses to visit them in the editor.

Note that Wing distinguishes between the news that is defined at the top level of example1.py, in

the code that you typed, and the like-named but independent variables news inside the various

functions here. For an example, use F4 to go to the definition of ReadPythonNews and run

Find Uses on the variable news defined at the bottom of the function. The results are distinct from

those returned for the top-level news.

There are many other editor features worth learning, but we'll get back to those later in this tutorial,

after we try out the debugger.

Tutorial: Debugging
The example1.py program you have just created connects to python.org via HTTP, reads and

parses the Python-related news feed in RDF format, and then prints the most recent five items as

text and HTML. Don't worry if you are working offline. The script has canned data it will use when it

cannot connect to python.org.

To start debugging, set a breakpoint on the line that reads return 5 in the GetItemCount function.

This can be done by clicking on the line and selecting the Break toolbar item, or by clicking on

the left-most margin to the left of the line. The breakpoint should appear as a filled red circle:

Next start the debugger with Debug in the toolbar or the Start/Continue item in the Debug

menu. Wing will show the Debug Properties dialog with the properties that will be used during the

debug run. Just ignore this for now, uncheck the Show this dialog before each run checkbox at

the bottom, and press OK.

Wing will run to the breakpoint and stop, placing a red indicator on the line. Notice that the toolbar

changes to include additional debug tools, as shown below:

Your display may vary depending on the size of your screen, or if you have altered the toolbar's

configuration. Wing displays tooltips explaining what the items do when you hover the mouse over

them.

Now you can inspect the program state at that point with the Stack Data tool and by going up and

down the stack with Up Stack and Down Stack in the toolbar or from the Debug menu. The

stack can also be viewed as a list using the Call Stack tool:

Notice that the debug status indicator in the lower left of Wing's main window changes color

depending on the state of the debug process. Hover the mouse over the indicator to see detailed

status in a tooltip.

Next, try stepping out to the enclosing call to ReadPythonNews. In this particular context, you can

achieve this in a single click with the Step Out in the toolbar or Debug menu. Two clicks on

Step Over also work. ReadPythonNews is a good function to step through in order to try out the

basic debugger features described above.

Try stepping or running to a breakpoint on the last line of this function, which reads

return news[:count]. In this context, right-clicking on news under locals in Stack Data allows

viewing the value in textual form or as an array. The latter loads data incrementally for only the

visible portion of the value, which is useful with numpy arrays, pandas DataFrames, sqlite query

results, and other larger data sets.

Data can also be viewed in tooltips on the editor by hovering the mouse over a value. Try this with

count to see the value 5. In Wing Pro, pressing Shift-Space displays tooltips for all values visible in

the editor, if they are defined in the current stack frame. The last line of ReadPythonNews is also a

good place to try that.

Finally, try Step Over to reach the return event in ReadPythonNews, which is indicated by a

change from the solid debug line marker to an underline. Notice that hovering the mouse over

return in the editor displays the value that is being returned from the function. Similarly,

<return value> is added to the locals shown in the Stack Data tool.

9.1. Tutorial: Debug I/O
Before continuing any further in the debugger, bring up the Debug I/O tool so you can watch the

subsequent output from the program. This is also where keyboard input takes place in debug code

that requests it.

Once you step over the line PrintAsText(news) you should see output similar to the following:

For code that reads from stdin or uses input() or Python 2.x's raw_input(), the Debug I/O tool is

where you would type input to your program. Try this now by stepping over the PromptToContinue

call with Step Over in the toolbar. You will see the prompt "Press Enter to Continue" appear in

the Debug I/O tool and the debugger will not complete the Step Over operation until you press

Enter while keyboard focus is in the Debug I/O tool.

You can also configure Wing to use an external console from the Options menu in the Debug I/O

tool. This is useful for programs that requires a more complete console implementation to run

correctly, for example those that use the curses module.

See Debug Process I/O for details.

9.2. Tutorial: Debug Process Exception Reporting
Wing's debugger reports any exceptions that would be printed when running the code outside of the

debugger.

https://wingware.com/doc/debug/debug-process-i-o

Try this out by continuing execution of the debug process with the Debug toolbar icon or

Start / Continue in the Debug menu. Wing will stop on an incorrect line of code in PrintAsHTML

and report the problem in the Exceptions tool:

The Exceptions tool highlights the current stack frame as you move up and down the stack. You

can click on frames to navigate the exception backtrace, showing the source code for each frame.

Whenever you are stopped on an exception, the debugger status indicator in the lower left of Wing's

main window turns red.

After reaching an exception in the debugger, you can correct your code, stop the debugger with the

 Stop icon in the toolbar, and then start debugging again. But don't do this yet, since we'll be

working within the current debug context in the next section.

Exception Handling Options

In Wing Pro and Wing Personal, the debugger provides several exception handling modes, which

differ in how they determine when exceptions should be reported. It is also possible to ignore

specific exceptions and to specify exception types to always report or never report. Most users will

not need to alter these options, but being aware of them is useful.

See Managing Exceptions for details.

9.3. Tutorial: Interactive Debugging
Wing Pro's Debug Console provides a powerful way to find and fix bugs, and to try out new code

interactively in the live runtime state. This works much like the Python Shell tool but lets you

interact directly with your paused debug program, in the context of the current stack frame:

Try it out from the point of exception reached earlier by typing this:

https://wingware.com/doc/debug/managing-exceptions

news[0][0]

This will print the date of the first news item:

Wing offers auto-completion as you type and shows call signature and documentation information in

the Source Assistant, just as it does when you work in the editor.

Next, try this:

news[0][0] = '2013-06-15'

This is one way to change program state while debugging, which can be useful when testing out

code that will go into a bug fix. Try this now:

PrintAsText(news)

This executes the function call and prints its output to the Debug Console using the modified value

for news.

Here is another possibility. Copy/paste or drag and drop this block of code to the Debug Probe:

def PrintAsHTML(news):
 for date, event, url in news:
 print('<p><i>%s</i> %s</p>' % (date, url, event))

This replaces the buggy definition of PrintAsHTML found in the example1.py source file for the life

of the debug process, so that you can now execute it without errors as follows:

PrintAsHTML(news)

The Debug Console is useful in designing fixes for bugs that depend on lots of program state, or

that happen in a context that is hard to reproduce outside of a debugger.

See Interactive Debug Console for details.

Conditional Breakpoints

Since the Debug Console is all about working in a selected runtime context, now is a good time to

take a look at conditional breakpoints, which are a good way to get the debugger to stop in the

context you want to work with.

To set a conditional breakpoint, right-click on the breakpoint margin to the left of the editor and

select Set Conditional Breakpoint. This brings up a dialog in which you can enter any Python

expression. If the expression's truth value is True, or if it raises an exception, then the debugger will

stop on it. If the expression is not True then the debugger will continue running.

Try this now by first selecting Remove All Breakpoints from the Debug menu and then setting a

conditional breakpoint on the print within the for loop in PrintAsText. Use a conditional such as

'beta' in event. You will need to replace the word beta with some other word or fragment to get the

debugger to stop here, since this depends on the news items that are currently listed on

python.org. Look at the output from your previous runs of example1.py to find a word that appears

in only one of the news items.

Once this is done, press the Restart Debug icon in the toolbar or select Restart Debugging in

the Debug menu. Wing should stop on your conditional breakpoint in the loop iteration where it is

True. In more complex code, this would be a quick way to get to the program state that is causing a

bug or for which you want to write some new code.

See Setting Breakpoints for details.

Working in the Editor While Debugging

When the debugger is active, Wing uses both its static analysis of your code and introspection of the

live runtime state to offer auto-completion, call tips, and goto-definition in the editor, whenever you

are working in code that is active on the debug stack.

Try this now by typing the following in the Debug Console:

testvar = 'test'

Then switch to example1.py and in PrintAsText (where you are currently stopped on a conditional

breakpoint) create a new line and type this:

test

Notice that the newly created variable testvar shows up in the completer, with a cog icon to indicate

that it was found in the runtime state:

https://wingware.com/doc/debug/debug-console
https://wingware.com/doc/debug/setting-breakpoints

This is a handy way to get correct auto-completion in dynamic code where static analysis is not able

to find all the symbols that will be defined when code is executed.

9.4. Tutorial: Execution Environment
In this tutorial we've been running code in the default environment and with the default Python

interpreter. In a real project you may want to specify one or more of the following:

• Python interpreter and version

• PYTHONPATH

• Environment variables

• Initial run directory

• Options sent to Python

• Command line arguments

Wing lets you set these for your project as a whole and for specific files.

Project Properties

The Environment and Debug/Execute tabs in the Project Properties dialog, accessed from the

Project menu, can be used to select the Python interpreter that is being used, the effective

PYTHONPATH, the values of environment variables, the initial directory for the debug process, and

any options passed to Python itself.

In most cases, Project Properties is where you will make changes to the runtime environment for

all the project code that you execute and debug.

Try this out now by adding an environment variable TESTPROJECT=1 to Environment in

Project Properties. Then restart debugging and look at os.environ in the Debug Probe to confirm

that the new environment variable is defined.

File Properties and Launch Configurations

File Properties are used to configure the command line arguments sent to a file when it is executed

or debugged, and optionally to override the project-defined environment on a file by file basis.

The File Properties dialog is accessed from the Current File Properties item in the Source menu

or by right-clicking on a file in the editor or Project tool and selecting Properties.

The most common use of File Properties is simply to set the command line arguments to use with

the file. Try this now by bringing up File Properties for example1.py and set the run arguments in

the Debug/Execute tab to test args.

Now if you restart debugging and type the following in the Debug Console you will see that the

environment and arguments have been set:

os.environ.get('TESTPROJECT')
sys.argv[1:]

The output should be:

1
['test', 'args']

To also override the project-defined environment for a particular file, define a Launch

Configuration and select it in File Properties. This sets up an environment like that which can be

specified in Project Properties and pairs it with a particular set of command line arguments. A

launch configuration can be reused with multiple files or in Named Entry Points (see below).

Try this now by bringing up File Properties for example1.py again and selecting

Use Selected Launch Configuration for Environment under the Debug/Execute tab. Press the

New button that appears, use``My Launch Config`` as the name for the new launch configuration,

and press OK. Wing will show the properties dialog for the new launch configuration.

Next enter run arguments other args and change the Environment to Add to Project Values and

enter TESTFILE=2 and TESTPROJECT=. This adds environment variable TESTFILE and removes

the TESTPROJECT from the inherited project-defined environment.

Now restart debugging again and enter this in the Debug Console:

os.environ.get('TESTPROJECT')
os.environ.get('TESTFILE')
sys.argv[1:]

The output should be:

None
2
['other', 'args']

See File Properties and Launch Configurations for details.

Main Entry Point

You can specify one file in your project as the main entry point for debugging and execution. When

this is set, debugging will always start there unless you use Debug Current File in the Debug

menu.

To set a main entry point use Set Current as Main Entry Point in the Debug menu, right click on

the Project tool and select Set as Main Entry Point, or use the Main Entry Point property under

the Debug tab of the Project Properties dialog.

Try this now by setting example1.py as the main entry point. After doing so, it is no longer

necessary to bring example1.py to front in order to start debugging it.

Whether or not you set a main entry point depends on the nature of your project.

See Specifying Main Entry Points for details.

Named Entry Points

In some projects it is more convenient to define multiple entry points for executing and debugging

code. To accomplish this, Named Entry Points can be set up from the Debug menu. Each named

entry point binds an environment, either specified in the project or in a launch configuration, to a

particular file. Once defined, they can be assigned a key binding or accessed from the

Debug Named Entry Point and Execute Named Entry Point items in the Debug menu.

Named Entry Points are a good way to launch a single file with different arguments or environment.

See Named Entry Points for details.

9.5. Tutorial: Debugging from the Python Shell
In addition to launching code to debug from Wing's menu bar and Debug menu, it is also possible to

debug code that is entered into the Python Shell and Debug Console.

Enable this now by clicking on the bug icon in the top right of the Python Shell. Once this is done,

the status message at the top of the Python Shell should change to include

Commands will be debugged and an extra margin is shown in which you can set breakpoints.

Wing will reach those breakpoints, as well as any breakpoints in editors for code that is invoked. Any

exceptions will be reported in the debugger.

Let's try this out. First stop any running debug process with the Stop icon in the toolbar. Then

paste the following into the Python Shell and press Enter so that you are returned to the >>>

prompt:

def test_function():
 x = 10
 print(x)
 x += 5
 y = 20
 print(x+y)

Next place a breakpoint on the line that reads print(x) by clicking in the breakpoint margin to the left

of the prompt on that line.

https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/proj/launch-configs
https://wingware.com/doc/debug/main-entry-point
https://wingware.com/doc/debug/named-entry-points

Then type this into the Python Shell and press Enter:

test_function()

Wing should reach the breakpoint on print(x).

You can now work with the debugger in the same way that you would if you had launched code from

the toolbar or Debug menu. Try stepping and viewing the values of x and y as they change, either

in the Stack Data tool or by hovering the mouse over the variable names.

Take a look at the stack in the Call Stack or Stack Data tool to see how stack frames that occur

within the Python Shell are listed. You can move up and down the stack just as you would if your

stack frames were in an editor.

Notice that if you step off the end of the call, you will return to the shell prompt. If you press the

Stop item in the toolbar or select Stop Debugging from the Debug menu, Wing will complete

execution of the code without debug and return you to the >>> prompt. Note that the code is still

executed to completion in this case becaused there is no way to simply abandon a number of stack

frames in the Python interpreter.

Recursive Debugging

By default Wing will not return you to the >>> prompt until your code has finished executing. In Wing

Pro, it is possible to enable recursive debugging. This is disabled by default because it can be

confusing for users that don't understand it.

To try this out, check the Enable Recursive Debug item in the Options menu in the Python Shell.

Then type test_function() again in the Python Shell, or use the up arrow to retrieve it from

command history.

You will see that the shell returns immediately to the >>> prompt even though you are now at the

breakpoint you set earlier on print(x). The message area in the Python Shell indicates that you are

debugging recursively and gives you the level to which you have recursed. For example

Debugging recursively (R=2) indicates two levels of recursive debugging.

Now enter test_function() again and then press Enter. This is essentially the same thing as

invoking test_function() from the line at which the debugger is currently paused, in this case within

test_function itself.

Try doing this several times. Each time, another level of recursive debugging will be entered. Look

at the Call Stack tool and go up and down the stack to better understand what is happening.

Now if you press Continue in the toolbar or use Start / Continue in the Debug menu you will

exit one level of recursion. Similarly, Stop exits one level of recursion without debugging the

remainder of that recursive invocation.

See Debugging Code in the Python Shell for details.

https://wingware.com/doc/debug/shell-debugging

9.6. Tutorial: Debugging Code Not Launched by the IDE
So far we've been debugging code launched from inside of Wing. Wing can also debug processes

that are running within a web framework, as scripts in a larger application, or that get launched from

the command line. These are cases where a debug process cannot be launched from the IDE, so

another method is needed to initiate debug.

Let's try this now with example2.py in your tutorial directory. First, copy wingdbstub.py out of the

Install Directory listed in Wing's About box. Place wingdbstub.py in the same directory as

example2.py. Next, click on the bug icon in the lower left of Wing's main window and select

Accept Debug Connections. Then set a breakpoint on lines 10 and 22 of example2.py:

If you are working on OS X, or used the Windows zip or Linux tar installers for Wing, you will need

to edit wingdbstub.py in order to set WINGHOME to the full path to the Install Directory you

copied it from. This is done automatically by the other installers. If you are using one of those you

can skip this step.

Now we're ready to debug example2.py when it is launched from outside of the IDE. To launch it,

use the DOS Command prompt on Windows, a bash or similar command prompt on Linux, or

Terminal or an xterm on OS X to type:

python example2.py

You may need to specify the full path to python if it is not on your path.

This should start up the code, print some messages, connect to the IDE, and stop on the breakpoint

on line 22. Notice that the breakpoint on line 10 was not reached because debugging had not yet

been initiated at that point. Read through the code and the messages printed to better understand

what is happening. You can verify that the debugger attached by looking at the color of the bug icon

in the lower left of the IDE window, and by hovering the mouse over it:

Once you are stopped at a breakpoint or exception in externally launched code, the debugger works

just as it would had you launched the debug process from the IDE. The only difference is that the

environment is set up by the process itself and the settings specified in Project Properties and

File Properties are not used.

When you continue the debugger from the toolbar or Debug menu, the program should print the

value of x and exit.

This is a very simple example to illustrate how externally launched code can be debugged. The

import of wingdbstub can also be placed in functions or methods, and there is a debugging API

that provides control over starting and stopping debugging.

See Debugging Externally Launched Code for details, and the How-Tos for help setting this up with

specific frameworks and applications.

Remote Debugging

Using the same mechanism, it is also possible to debug Python code launched on another machine,

as documented in Debugging Externally Launched Remote Code.

This is part of Wing Pro's ability to work with a remote host through a secure SSH tunnel. This

supports all of Wing Pro's features, so you can edit, search, debug, test, and manage remote code

in the same way as if it were stored locally, and you can run the Python Shell and OS Commands

on the remote host.

This is the preferred way to work with code on a remote host, although you may still need to use

wingdbstub to initiate debug if your code cannot be launched from the IDE.

See Remote Hosts for more information.

9.7. Tutorial: Other Debugger Features
Before moving on, let's look at a few other debugger features that are worth knowing about.

Move Program Counter

Wing Pro can move the position of the program counter in the innermost stack frame, when the

debugger is paused and not at an exception. This is done by right-clicking on the line where the

counter should be moved and selecting Move Program Counter Here.

This capability allows stepping through already-executed code, by executing it again, so that a

problem can be inspected without restarting the debugger.

Due to the way Python is implemented, this is possible only in the innermost stack frame and only if

the debugger did not stop at an exception.

Debug Value Tips

https://wingware.com/doc/debug/debugger-api
https://wingware.com/doc/debug/debugging-externally-launched-code
https://wingware.com/doc/howtos/index
https://wingware.com/doc/debug/remote-debugging
https://wingware.com/doc/proj/remote-hosts

Hovering the mouse cursor over symbols in the editor while the debug process is paused will show

the value of that symbol, if it is defined in the current stack frame. Similarly, pressing Shift-Space

will display debug data values for all visible symbols on the editor.

See Viewing Data on the Editor for details.

Viewing Arrays

Selected items in the Stack Data tool can be viewed as arrays from the tool's Options menu. This

works with Python's builtin data types, numpy arrays, pandas DataFrames, and sqlite3 query

results, among other things.

Data is loaded incrementally as needed for display on screen, making this a good way to inspect

large datasets without transferring large amounts of data to the IDE.

See Array and Textual Data Views for details.

Watch Tool

The Watch tool lets you watch variables over time by symbolic name or object reference, by

right-clicking on them in the Stack Data, Modules, or Watch tools.

https://wingware.com/doc/debug/editor-data
https://wingware.com/doc/debug/details-view

Watching a value by object reference is a great way to inspect an instance while debugging even if

you step out of code that contains easily accessible references to it.

You can also watch expressions typed into the Watching column of the Watch tool.

See Watching Values for details.

Modules Data View

By default, Wing filters out modules and some other data types from the values shown in the

Stack Data tool. In some cases, it is useful to view values stored in modules. This can be done with

the Modules tool, which is simply an expandable list of all modules found in sys.modules:

Breakpoint Manager

The Breakpoints tool shows a list of all defined breakpoints and allows enabling or disabling,

editing the breakpoint condition, setting an ignore count, and inspecting the number of times a

breakpoint has been reached during the life of a debug process.

See Setting Breakpoints for details.

Tutorial: Auto-Editing
Let's revisit auto-editing, which was introduced before we tried out the debugger. So far we've seen

the editor auto-enter invocation arguments and closing parentheses. There are a number of other

auto-editing operations available as well:

Applying Characters to a Selection

If you select a range of text in the editor and press a quote, parenthesis, brace, bracket, or #, Wing

applies that key stroke to the selection.

For example, try selecting a few lines of non-comment code and press #. Wing will comment out

those lines using the comment style configured in the Editor > Block Comment Style preference.

Pressing # a second time will remove the comment characters.

https://wingware.com/doc/debug/tracking-values
https://wingware.com/doc/debug/setting-breakpoints

Also, selecting some text and pressing " (double quote) will surround it with double quotes, or

pressing (open parenthesis will surround it with parentheses. This also works when typing single

quotes, triple quotes, back ticks, brackets, and braces.

Similarly, selecting a string and pressing a different quote character will convert that string to using

the type of quote (either single or double quote). This also works if the caret is just after the closing

quote of a string, within the opening or closing triple-quote, or one of the quotes is selected.

The : colon key can also be applied to a selection, in order to create a new block with one or more

selected lines. The : is entered, the selected lines are indented following the : and the caret is

positioned so that the block type can be entered. If try is entered, the corresponding except is also

auto-entered and selected to make it easy to convert it to finally or enter the exception type.

These operations are on by default and may be disabled with the Editor > Auto-editing >

Apply Quotes to Selection, Editor > Auto-editing > Apply Comment Key to Selection,

Editor > Auto-editing > Apply [], (), and {} to Selection, and Editor >

Auto-editing > Apply Colon to Selection preferences.

Auto-Entering Spacing

Wing can also auto-enter spaces as you type code, optionally enforcing PEP 8 style spacing. This

auto-editing operation is off by default but can be turned on with the

Editor > Auto-Editing > Auto-Enter Spaces preference. Try turning this on now and slowly typing

the following into an editor:

import os
if os.environ['TEST'] == 'X' * 3:
 pass

Notice that Wing is auto-entering a space after the], =, and other characters according to the

context in the code. If you press the space anyway, it is ignored.

If you also enable the Editor > Auto-Editing > Enforce PEP 8 Style Spacing preference, Wing will

try to enforce PEP 8 style spacing as you type. For example, typing the following disallows extra

spaces around =:

x = 'test'

According to PEP 8, spaces should not be used in argument lists. This is also the default behavior

for Wing, whether or not PEP 8 enforcement is on. To override this, enable the

Editor > Auto-Editing > Spaces Around = in Argument Lists preference.

Similarly, enforcement of spacing around : in type annotations can be enabled or disabled with the

Editor > Auto-Editing > Spaces Around : in Type Annotations preference.

Managing Blocks with the Colon Key

This operation automatically sets up new blocks and allows reindenting existing code under a newly

added block. Try this now by typing the following into an editor:

if x == 1:

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Notice that Wing auto-inserts a new line and indentation as soon as the colon is entered, so the

contents of the block can be typed right away.

Now try typing the following before text = None on line 38 of example1.py, inside

ReadPythonNews:

if force:

A new line and indent are added as before. Next, without moving the caret, press : again. Wing will

move the first following line txt = None under the new block so it looks like this:

Again without moving the caret press : a third time. Wing moves the entire following block, up until

the next blank line or first line indented less than the current one, so it looks like this:

Line Continuations

If you press Enter inside a comment or a string inside () and there is text after the caret, Wing

auto-continues the line, placing the necessary comment or quote characters. For example, pressing

Enter after the word code on the first line of example1.py results in the following:

This is on by default and can be disabled with the Editor > Auto-Completion > Continue

Comment or String on New Line preference.

Correcting Out-of-Order Typing

Wing also tries to correct out-of-order typing. For example, type the following in an editor:

def y(:)

Wing figures out that the colon is misplaced and auto-corrects this to read:

def y():

Similarly, if you type the following:

y()x

Wing figures out that a . is probably missing and auto-corrects this to read:

y().x

By relying on this, it is possible to save key strokes for caret movement when coding.

This auto-editing operation is on by default and can be disabled with the Editor >

Auto-Completion > Correct Out-of-Order Typing preference.

See the Auto-editing documentation page for details.

Tutorial: Turbo Completion Mode
Auto-completion normally requires pressing a completion key, as configured in the

Editor > Auto-completion > Completion Keys preference, before a completion is entered into the

editor.

Wing also provides a Python Turbo Mode for auto-completion where where completion occurs on

any key that cannot be part of a symbol. It takes some effort to learn to use this feature, but it can

greatly reduce typing once you get used to it.

Try it now by enabling the Editor > Auto-completion > Python Turbo Mode preference. Then go

to the bottom of example1.py and press the following keys in order: R e (G e t (. You will see the

following code in the editor produced by these seven key strokes:

ReadPythonNews(GetItemCount())

Depending on your Python version you may not need as many keystrokes before GetItemCount is

selected in the completer. As soon as it is, the final (may be pressed.

Turbo completion mode distinguishes between contexts where a new symbol may be defined and

those where an existing symbol must be used. For example, try typing the following keystrokes on a

new line: c, =. Wing knows that the = indicates you may be defining a new symbol so it does not

place the current selection from the auto-completer. If you did want completion to occur in a defining

context, you would still have to press Tab or another completion key.

In a context where you are trying to type something other than what is in the completer, pressing

Ctrl, Alt or Command briefly by itself will hide the auto-completer and thus disable turbo-completion

until you type more symbol characters and the completer is shown again.

Tutorial: Code Warnings
As you probably noticed while working through the tutorial, Wing flags some types of incorrect code

by underlining it. This is done for syntax errors, indentation errors, code that can't be reached,

undefined variables or attributes, imports that cannot be resolved, and some other types of errors.

Hovering the mouse cursor over an indicator on the editor displays details for that warning or error in

a tooltip:

https://wingware.com/doc/edit/auto-editing

A Code Warnings icon is shown in the top right of any editor that has code warnings, and the

Code Warnings tool can be used to view and manage the warnings.

The Code Warnings tool's Configuration tab can be used to set up external sources for code

warnings, including Pylint, pep8, and mypy:

The Editor > Code Warnings preference group is used to change the style of the warning

indicators on the editor or to globally disable the feature.

See the Code Warnings documentation for details.

Tutorial: Refactoring
Refactoring is a general term for renaming or restructuring code in a way that does not alter its

functionality. It is useful for cleaning up code or to prepare code for easier extension or reuse.

Wing implements a number of refactoring operations. Let's try some of these now in example1.py.

Rename Symbol

Click on kCannedData in the import statement at the top of the file and select Rename Symbol

from the Refactor menu.

Wing will bring up the refactoring tool and enumerate the points of use for the symbol that you have

selected:

https://wingware.com/doc/warnings/index

Now enter kCannedTuna as the new name to use and press Enter or the Rename Checked

button. Wing instantly renames all uses of the symbol.

Move Symbol

Now try moving PromptToContinue into subdir/path_example.py with the Move Symbol

operation. In the refactoring tool, use Browse... to select subdir/path_example.py as the target

location and leave Scope set to <module global scope>. Then press Move & Update Checked.

Wing moves the point of definition into the target file and introduces the necessary import so it can

still be used from example1.py.

Note that the whole module is imported and you would have to manually fix up the import if you

instead wished to add the symbol to the existing from path_example import statement.

Extract Function/Method

Next select the first larger block in ReadPythonNews as follows:

Then select the Extract Function/Method refactoring operation and enter ReadNewsCache as the

name for a new top-level function. Wing will create a new function and convert the point of use to a

call to that function, as follows, inserting all the necessary arguments and return values:

txt = ReadNewsCache(force, newscache)

Click on ReadNewsCache and use F4 to visit its point of definition. Then use the history back arrow

to get back to the point of use and press Revert in the Refactoring tool to undo this change.

Try it again now after selecting Nested Function instead to see how that operation differs. Then

press Revert again.

Introduce Variable

Wing can also introduce new variables for an expression. For example, select time.time() - mtime

in ReadPythonNews and use Introduce Variable to create a variable called duration. Wing

inserts the variable and substitutes it into the original expression:

If there had been multiple instances of time.time() - mtime in the scope, all of them would have

been replaced.

Symbol to *

Several refactoring operations are given to easily convert the name of a symbol between

UpperCamelCase, lowerCamelCase, under_scored_name, and UNDER_SCORED_NAME

naming styles. These work the same way as Rename Symbol but prefill the new symbol name field

with the selected style of name.

See the Refactoring documentation for details.

Tutorial: Indentation Features
Since indentation is syntactically significant in Python, Wing provides a number of features to make

working with indentation easier.

Auto-Indentation

By now you will have noticed that Wing auto-indents lines as you type, according to context. This

can be disabled with the Editor > Indentation > Auto-Indent preference.

Wing also adjusts the indentation of blocks of code that are pasted into the editor. If the indentation

change is not what you wanted, a single Undo removes the indentation adjustment, if there was

one.

See Auto-indent for details.

Block Indentation

One or more selected lines can be increased or reduced in indentation, or adjusted to match

indentation according to context, from the Indentation toolbar group:

Repeated presses of the Match Indent tool will move the selected lines among the possible

syntactically correct indent levels for that context. The default action of the Tab key does the same

thing.

These indentation features are also available in the Source menu, where their key bindings are

listed.

Converting Indentation Styles

In Wing Pro and Wing Personal, the Indentation tool can be used to analyze and convert the style

of indentation found in source files.

https://wingware.com/doc/refactoring/index
https://wingware.com/doc/edit/auto-indent

See Indentation Tool for details.

Folding

Unless the feature is disabled with the Editor > Folding > Enable Folding preference, Wing Pro

and Wing Personal can fold editor code by indentation levels to hide areas that are not currently of

interest, or as a way to see a quick summary of the contents of a source file.

The folding operations are enumerated in the Folding sub-menu of the Source menu and in the fold

margin's right-click context menu.

Folding acts in such a way that selecting across a fold and copying will copy the text, including its

hidden portions.

See Folding for details.

Other Features

Wing Pro and Wing Personal can also show indentation guides on the editor and set preferred

indentation style and policies, among other things. See Indent Guides, Policies, and Warnings for

details.

Tutorial: Other Editor Features
There are a number of other editor features that are worth knowing about:

Goto-Line

You can navigate quickly to a numbered source line with Goto Line in the Edit menu, or with the

key binding displayed there. Type the line number and then press Enter to complete the action.

In Wing Pro and Wing Personal, line numbers can be shown in the editor with the Show

Line Numbers item in the Edit menu.

Multiple Selections

In Wing Pro and Wing Personal, multiple selections can be made on the editor with the

Edit > Multiple Selections menu items and Multiple Selections in the toolbar.

This provides a quick way to select several identical occurrences of text either sequentially, or within

a particular file, class, function, or block:

Once there are multiple selections, edits made will be applied to all the selections concurrently.

https://wingware.com/doc/edit/indentation-manager
https://wingware.com/doc/edit/folding
https://wingware.com/doc/edit/indent-guides

Multiple selections may also be made by pressing Ctrl+Alt (or Command+Option on the Mac)

while making a selection with the mouse.

Selection Mode and Structural Code Selection

Wing supports character, line, and block mode selection from Selection Mode in the Edit menu,

and the key bindings shown there.

In Python code, the Select sub-menu in the Edit menu can be used to easily select and traverse

logical blocks of code. The Select More and Select Less operations are particularly useful when

preparing to type over or copy/paste ranges of text.

Try these out now on urllib in ReadPythonNews in example1.py. Each repeated press of Ctrl-Up

will select more code in logical units. Press Ctrl-Down to select less code.

The other operations in the Select sub-menu can be used for selecting and moving forward or

backward over whole statements, blocks, or scopes.

See Selecting Text for details.

Line Editing

In Wing Pro and Wing Personal, lines can quickly be inserted, deleted, duplicated, swapped, or

moved up or down with the operations in the Line Editing sub-menu of the Source menu.

If your keyboard personality does not support them, then you can add your own key bindings with

the User Interface > Keyboard > Custom Key Bindings preference. The command names are:

new-line-before, new-line-after, duplicate-line-above, duplicate-line, move-line-up,

move-line-down, delete-line, and swap-lines.

Code Snippets

In Wing Pro, the Snippets tool in the Tools menu can be used to define and use code snippets for

commonly repeated motifs, such as class or def skeletons or documentation templates.

You may already have noticed that these appear in Wing's auto-completer. Try this now by typing

def into the top level of a file in the editor. Then select the def (snippet) completion choice. Wing

will place the snippet into the editor and enter into a data entry mode similar to the mode used for

entering arguments when the Auto-Enter Invocation Arg auto-editing operation is enabled. Type

any text you want in each field within the snippet and press Tab to move between the fields.

Data-entry mode will end at the last tab stop or if you move out of the snippet body.

Now try it again with class and then inside the scope of the class use the def snippet again. Notice

that the form of snippet in this context differs from the one used at the top level; it includes self.

Like-named snippets can be defined in this way for the following contexts: module, class, function,

method, attribute (after a period), comment, and string.

See Code Snippets for details.

Block Commenting

Lines of code can be commented out or un-commented quickly from the Source menu or, in Wing

Pro, by pressing the # key while several lines of Python code are selected . In Python code, the

Editor > Block Commenting Style preference controls the type of commenting that is used. The

https://wingware.com/doc/edit/selecting
https://wingware.com/doc/edit/snippets

default is to use indented single # characters since this works better with some of Wing's other

features.

Brace Matching

Wing highlights brace matches as you type, unless this is disabled from the Editor >

Brace Matching > Brace Highlighting preference. The Match Braces item in the Source menu

causes Wing to select all the code that is contained in the nearest matching braces, as found from

the current insertion point on the editor. Repeated invocations of the command will traverse outward

or forward in the file.

Text Reformatting

Code can be re-wrapped to the column configured in the preference Editor > Line Wrapping

> Reformatting Wrap Column with the Rewrap Text item in the Source menu. This will limit

wrapping to a single logical line of code, so it can be used to reformat function or method arguments

or long list or tuple without altering surrounding code.

Bookmarks

In Wing Pro, you can define and jump to marked locations in the editor with the bookmarking

commands in the Source menu, the editor's right-click context menu, and the bookmark toolbar

group.

In Python files, these bookmarks are defined relative to the named scope in the file so they move

around with the scope as the file is edited outside of Wing. Bookmarks can be categorized and

managed in the Bookmarks tool in the Tools menu.

See Bookmarks for details.

Tutorial: Unit Testing
Wing Pro's Testing tool makes it easy to run and debug units tests written for the unittest, doctest,

pytest, nose, and Django unit testing frameworks.

Let's try this out now. First, open up Project Properties and under the Testing tab insert a

Test File Pattern that is set to Glob / Wildcard and test_*.py. This tells Wing which of your project

files are unit test files. Press OK or Apply and bring up the Testing tool from the Tools menu. This

should now contain an entry for the file test_example1.py:

Next comment out the line that reads PromptToContinue in example1.py so that the module can

be loaded by the tests without prompting.

Then press Run Tests in the Testing tool. You should see two of the three tests pass, and one will

fail:

https://wingware.com/doc/edit/bookmarks

You can expand the tree to see details of the failed tests, including any output printed by the test

and the exception that occurred. Double-clicking on the test results and exception will take you to

the relevant code.

Note that you can also run tests from the editor by clicking on the test you want to run and selecting

Run Tests at Cursor from the Testing menu.

Debugging Tests

Now run the failed testFailure in the debugger by clicking on it in the Testing tool and pressing

Debug Tests at the top of the tool. Wing should stop at the exception and you can use the

debugger on the test as you would for any other Python code.

Environment

When unit tests are run in the Testing tool, by default they run in the same environment that is used

for debugging and executing code. This can be changed with Environment under the Testing tab

of Project Properties or in the File Properties for the unit test file.

See Unit Testing for details.

Tutorial: Version Control Systems
Wing Pro includes revision control integrations for Git, Mercurial, Subversion, Perforce, Bazaar,

and CVS. These auto-enable based on the contents of your project and provide the most commonly

used operations such as commit, status, log, diff, pull, revert, and update. The set of operations

supported varies for each version control system.

If you have a code base that is in revision control you might want to try this out now, by adding your

code to the tutorial project with Add Existing Directory in the Project menu.

Once that is done, Wing should auto-detect the revision control system and add a menu to the menu

bar. You can now select Project Status from that menu or use the Tools menu to bring up the

appropriate revision control tool. Use the menu or right-click on the tool to initiate operations.

If you have a project with files in multiple revision control systems, or if you want to keep a particular

system active at all times, you can do this from the Version Control preference group.

See Version Control for details.

Difference and Merge

https://wingware.com/doc/proj/project-properties
https://wingware.com/doc/proj/file-properties
https://wingware.com/doc/testing/index
https://wingware.com/doc/versioncontrol/index

When a revision control system is active, you can compare the working copy of your code to the

repository revision it is based on by right-clicking on items in the revision control tool or on the editor

or Project tool.

This tool can also be used to compare two files, two directories, and an unsaved file with the disk.

Try it now by making several changes to example1.py without saving them to disk. Then click on

the Difference/Merge icon in the toolbar to select Compare Buffer With Disk.

Wing splits the editor area to show two editors side by side and shows additional icons in the toolbar

to control the difference and merge session:

Use the Previous Difference and Next Difference items to move through the differences and the

Merge A->B tool to undo unsaved changes.

When comparing directories, Wing shows the Diff/Merge tool while the session is active, and

highlights the current file being compared as you move through the session. You can also click on

files in this tool to move to a specific comparison.

Difference/Merge is particularly useful for reviewing and undoing any unwanted changes before

committing to a revision control repository.

See Difference and Merge for details.

Tutorial: Searching
Wing Pro provides several different interfaces for searching your code. Which you use depends on

what you want to search and how you prefer to interact with the search and replace functionality.

18.1. Tutorial: Toolbar Search
A quick way to search through the current editor or documentation page is to enter your search

string into the search area provided by the toolbar:

https://wingware.com/doc/diff/index

If you enter only lower case letters, then the search will be case-insensitive. Entering one or more

upper-case letters causes the search to become case-sensitive.

Try this now in example1.py: Type GetItem into the toolbar search area. Wing will search

incrementally, starting when the first letter is typed. Press the Enter key to move on to the next

match, wrapping around to the top of the file if necessary.

Toolbar-based searches always go forward in the file from the current editor caret position.

See Toolbar Quick Search for details.

18.2. Tutorial: Keyboard-Driven Search and Replace
If you prefer a more powerful search interface using the keyboard only, try the key bindings listed in

the Mini-search sub-menu of the Edit menu. The bindings vary according to the currently selected

Keyboard Personality.

Mini-search supports searching forward and backward in the current editor, documentation,

Python Shell, Debug Console, or Debug I/O tool, optionally using the current selection in the

editor as the search string, or using regular expression matching. You can also initiate replace

operations.

Try this in the example1.py file: If you are using the default keyboard personality, press Ctrl-U. For

other keyboard personalities, refer to Mini-search in the Edit menu.

This will display an entry area at the bottom of the IDE window and will place focus there:

Continue by typing G, then e, then t. Notice how Wing searches incrementally with each key press.

Search Behavior

As in toolbar search, typing only lower case letters results in case-insensitive search, while using

one or more upper case letters results in case-sensitive search.

While the mini-search area is still active, try pressing the same key combination you used to display

it again. Wing will search for the next matching occurrence.

If no match is found Failed Search will be displayed. After this, pressing the mini-search key

combination again will wrap around and start searching at the top of the file, if there are any

matches.

To start searching again using the most recently used search string, press the key combination for

search twice, once to display the search entry area, and once again to recall the previous search

string.

Search direction can be changed during a search session, by switching to the key bindings assigned

to the desired direction.

You can exit from the search by pressing the Esc key or Ctrl-G, or with arrow keys and other editor

commands.

https://wingware.com/doc/edit/toolbar-quick-search
https://wingware.com/doc/custom/keyboard-personalities

Regular Expression Search

The regular expression search options found in Mini-search in the Edit menu work similarly but

expect regular expressions for the search criteria.

Replace

Keyboard-driven mini-replace works similarly, except that you will be presented with two entry

areas, one for your search string and one for the replace string.

Two replace operations are available. Both of these operate only on text that follows the caret in the

file and do not wrap:

Query/Replace prompts for Y and N for each replace location

Replace String replaces all following matches in the file without prompting.

See Keyboard-Driven Search and Replace for details.

18.3. Tutorial: Search Tool
The Search tool provides simple search and replace operations on the current editor or

documentation page. Key bindings for operations on this tool are given in the Search and Replace

group in the Edit menu.

Searches may span the whole file or be constrained to the current selection, can be case sensitive

or insensitive, and may optionally be constrained to matching only whole words.

By default, searching is incremental while you type your search string. To disable this, uncheck

Incremental in the Options menu.

Replacing

When the tool is displayed with Replace, or when the Show Replace item in the Options menu is

activated, Wing will show an area for entering a replace string and add Replace and Replace All

buttons to the Search tool:

Try replacing example1.py with search string PrintAs and replace string OutputAs.

Select the first result match and then Replace repeatedly. One search match will be replaced at a

time. Search will occur again after each replace automatically unless you turn off the

https://wingware.com/doc/edit/mini-search

Find After Replace option. Changes can be undone in the editor, one at a time. Do this now to

avoid saving this replace operation.

Next, try Replace All instead. Wing will simply replace all occurrences in the file at the same time.

When this is done, a single undo in the editor will cancel the entire replace operation.

Wildcard Searching

By default, Wing searches for straight text matches on the strings you type. In Wing Pro and Wing

Personal, wildcard and regular expression searching are also available in the Search tool's Options

menu.

Wildcard searching allows you to specify a search string that contains * to match anything, ? to

match a single character, or ranges of characters specified within [and] to match any of the

specified characters. This is the same syntax supported by the Python glob module and is

described in more detail in Wildcard Search Syntax.

Try a wildcard search now by selecting Wild Card from the Options menu while example1.py is

your current editor. Set the search string to PrintAs*(. This should display all occurrences of the

string PrintAs, followed by zero or more characters, followed by (:

Also try searching on PrintAs*[A-Z](with the Case Sensitive search option turned on. This

matches all strings starting with PrintAs followed by zero or more characters, followed by any

capital letter from A to Z, followed by (.

Finally, try PrintAsT???, which will match any string starting with PrintAsT followed by any three

characters.

Regular Expression Search

Regular expressions are most useful for complex search tasks, such as finding all calls to a

particular function that occur as part of an assignment statement.

For example, open\(newscache()?,.*\) matches only calls to the function open where the first

argument is named newscache and there are at least two parameters. If you try this with

example1.py after selecting Regex search from the Options menu then you should get exactly

one search match:

https://wingware.com/doc/edit/search-wildcard

In this mode, the replace string can reference regex match groups with ■, ■, etc, as in the Python

re.sub() call.

The details of regular expression syntax and usage see Regular Expression Syntax in the Python

manual.

See also Search Tool for more information.

18.4. Tutorial: Search in Files
The Search in Files tool in Wing Pro and Wing Personal supports multi-file batch search of the

disk, project, open editors, documentation, or other sets of files. It can also search and replace using

wildcards and regular expressions.

https://docs.python.org/library/re.html
https://wingware.com/doc/edit/search-tool

Before worrying about the details, try a simple batch search on the example1.py file. Select

Current File from the Look in selector on the Search in Files tool. Then enter PrintAs into the

search area.

Wing will start searching immediately, restarting the search whenever you alter the search string or

make other changes that affect the result set, or if the files being searched change.

When you are done typing, you should see results similar to those shown in the screen shot above.

Click on the first result line to display example1.py in the editor with the corresponding search

match highlighted.

Next, change the Look in selector to Project Files and change your search string to HTML. This

works the same way as searching a single file, but lists the results for all files that have been added

to your project.

You can also search all currently open files or within Wing's documentation by instead selecting

Open Files or Documentation from Look in.

File Filters

In many cases, searching is more useful if constrained to a subset of files in your projects such as

only Python files. This can be done with by selecting Python Files in the Filter selector. You can

also define your own file filters using the Create/Edit Filters item in the Filter selector. This will

display the Files > File Types > File Filters preference:

Each file filter has a name and a list of include and exclude specifications. Each of these

specifications can be applied to the file name, directory name, or the file's MIME type. An example

would be to specify *.js wildcard for matching Javascript files by name, or using the text/html mime

type for all HTML files.

Searching Disk

Wing can also search directly on disk. Try this by typing a directory path in the Look in area.

Assuming you haven't changed the search string, this should search for HTML in all text files in that

directory.

Disk search can be recursive, in which case Wing searches all sub-directories as well. This is done

by selecting a directory in the Look in scope selector and enabling Recursive Directory Search in

the Options menu.

You can alter the format of the result list with the Show Line Numbers item and Result File Name

group in the Options menu.

Note that searching Project Files is usually faster than searching a directory structure because the

set of files is precomputed and thus the search only needs to look in the files and not spend time

discovering them.

Multi-file Replace

When replacing within multiple files, Wing opens each changed file into an editor, whether or not it is

already open. This allows you to undo changes by not saving files or by issuing Undo within each

editor.

If you check Replace Operates on Disk in the Options menu, Wing will change files directly on

disk instead of opening editors into the IDE. This can be much faster but is not recommended

unless you are using a revision control system that can be used to undo mistakes.

Note that even when operating directly on disk, Wing will replace changes in already-open editors

only within the IDE. This avoids creating two versions of a file if there are already edits in the IDE's

copy. We recommend selecting Save All from the file menu immediately after each replace

operation. This avoids losing parts of a global replace operation.

See Multi-File Search and Replace for details.

Tutorial: Other IDE Features
By now you have seen many of the IDE's features. Before we call it a day, let's look at a few other

major features that are worth knowing about.

Remote Development

Wing Pro makes it possible to work with Python source code that resides on a remote host,

container, or virtual machine. This is done by setting up SSH access to the remote host, then

https://wingware.com/doc/edit/search-in-files

configuring Wing using Remote Hosts in the Project menu, and pointing Python Executable in

Project Properties at that remote host.

Once this is done, remote files and directories can be added to the project with Add

Existing Directory in the Project menu. Then Wing will be able to edit, debug, test, search,

inspect, refactor, and manage remote files, and it can run Python Shell and OS Commands on the

remote host.

See Remote Hosts for details.

OS Commands

The OS Commands tool can be used to set up, execute, and interact with external commands, for

building, deployment, and other tasks. The Build Command field in the Debug/Execute tab of

Project Properties can be used to configure and select one command to execute automatically

before any debug session begins. OS Commands can also be bound to keys, and the

Start Terminal item in the Tools menu uses it to start command prompt in Wing:

See OS Commands Tool for details.

Source Browser

The Source Browser in Wing Pro and Wing Personal can be used to inspect and navigate the

module and class structure of your Python source code.

Double-clicking on items in the Source Browser opens them into an editor. When

Follow Selection is enabled in the Options menu, Wing also opens files that are single-clicked or

visited by keyboard navigation within the Source Browser.

https://wingware.com/doc/proj/remote-hosts
https://wingware.com/doc/oscommands/index

The popup menu at the top left of the Source Browser selects whether to browse the current file, all

project modules, or all project classes. The Options menu in the top right allows sorting and filtering

symbols by type.

Notice that the Source Assistant tool is integrated with the Source Browser, and will update its

content as you move around the Source Browser.

File Sets

Wing allows you to create named sets of files which you can open as a group or search in the

Search in Files tool. See File Sets for details.

File Operations

Files can be created, deleted, moved, and renamed from the Project tool by right-clicking, dragging,

and clicking on names in the tree. Deleted files are moved to the system's trash or recycling bin.

When files are in a revision control system, Wing will also issue the necessary revision control

commands to create, delete, move, or rename the file in the repository.

See File Operations for details.

Perspectives

Perspectives are a way to store and later revisit particular arrangements of the user interface. For

example, you may set up one set of visible tools to use when testing, another for working on

documentation, and still another for debugging.

Perspectives are accessed from the Tools menu.

Wing can optionally switch perspectives automatically whenever debugging starts or stops, so that

the user interface differs according to how the tools were left when last editing or debugging. This is

done by selecting Enable Auto-Perspectives in the Tools menu.

See Perspectives for details.

Command Set and Key Bindings

Wing's complete command set is documented in the Command Reference. Any of these commands

can be bound to a key binding with the User Interface > Keyboard > Custom Key Bindings

preference. A key binding may be a single chord such as Shift-Ctrl-X or a sequence like Ctrl-; A.

To invoke a command directly even if it does not appear in a menu or toolbar item, use the

Command by Name item in the Edit menu.

https://wingware.com/doc/edit/file-sets
https://wingware.com/doc/proj/file-operations
https://wingware.com/doc/custom/perspectives
https://wingware.com/doc/commands/index

The default key bindings are documented in Key Binding Reference. You can check what command

a key is bound to using the command describe-key-briefly, also invoked from Command by Name

in the Edit menu.

Extending the IDE

Wing can be extended by writing Python scripts that call into the IDE's scripting API. This is useful

for adding everything from simple editor commands and debugger add-ons to new tools.

Script-defined commands may be bound to keys, added to menus, or invoked from the toolbar just

like Wing's built-in commands.

There is a collection of user-contributed scripts for Wing in the contributed materials area.

For details see Scripting and Extending Wing.

Tutorial: Further Reading
Congratulations, you've finished the tutorial!

As you work with Wing Pro on your own software development projects, the following resources

may be useful:

How-Tos with instructions for using Wing with third party frameworks, applications, and tool, like

Django, Jupyter, matplotlib, Autodesk Maya, Raspberry Pi, pygame, and many others.

Wing Reference Manual which documents all the features in detail.

Wing Support Website which includes a Q&A support forum, mailing lists, documentation, links to

social media, and other information for Wing users.

Wing Tips displayed at startup help you continue learning about the feature set over time. These

are also accessible from the Help menu.

Thanks for using Wing Pro!

https://wingware.com/doc/keymaps/index
http://bitbucket.org/sdeibel/wing-contrib
https://wingware.com/doc/scripting/index
https://wingware.com/doc/howtos/index
https://wingware.com/doc/manual
https://wingware.com/support

	Wing Pro Tutorial
	Tutorial: Why Wing?
	Tutorial: Getting Started
	Tutorial: Getting Around Wing
	Tutorial: Check your Python Integration
	Tutorial: Set Up a Project
	Tutorial: Setting Python Path
	Tutorial: Introduction to the Editor
	Tutorial: Navigating Code
	Tutorial: Debugging
	9.1. Tutorial: Debug I/O
	9.2. Tutorial: Debug Process Exception Reporting
	Exception Handling Options

	9.3. Tutorial: Interactive Debugging
	9.4. Tutorial: Execution Environment
	9.5. Tutorial: Debugging from the Python Shell
	9.6. Tutorial: Debugging Code Not Launched by the IDE
	9.7. Tutorial: Other Debugger Features

	Tutorial: Auto-Editing
	Tutorial: Turbo Completion Mode
	Tutorial: Code Warnings
	Tutorial: Refactoring
	Tutorial: Indentation Features
	Tutorial: Other Editor Features
	Tutorial: Unit Testing
	Tutorial: Version Control Systems
	Tutorial: Searching
	18.1. Tutorial: Toolbar Search
	18.2. Tutorial: Keyboard-Driven Search and Replace
	18.3. Tutorial: Search Tool
	18.4. Tutorial: Search in Files

	Tutorial: Other IDE Features
	Tutorial: Further Reading

