
1

Hooks in PostgreSQL

Hooks in PostgreSQL

2

Who's Guillaume Lelarge?

●French translator of the PostgreSQL manual
●Member of pgAdmin's team
●Vice-treasurer of PostgreSQL Europe
●CTO of Dalibo

●Mail: guillaume@lelarge.info
●Twitter: g_lelarge
●Blog: http://blog.guillaume.lelarge.info

mailto:guillaume@lelarge.info
mailto:guillaume@lelarge.info

3

PostgreSQL

●Well known for its extensibility
●For example, a user can add

– Types

– Functions

– Operators

– Etc

●Less known is the hook system

4

Hooks

●Interrupt, and modify behaviour
●Different kinds of hooks
●Not known because

– not explained in the documentation

– Usually quite recent

5

Most used hooks

Hook Initial release

check_password_hook 9.0

ClientAuthentication_hook 9.1

ExecutorStart_hook 8.4

ExecutorRun_hook 8.4

ExecutorFinish_hook 8.4

ExecutorEnd_hook 8.4

ExecutorCheckPerms_hook 9.1

ProcessUtility_hook 9.0

6

Other hooks

Hook Used in Initial release

explain_get_index_name_hook 8.3

ExplainOneQuery_hook IndexAdvisor 8.3

fmgr_hook sepgsql 9.1

get_attavgwidth_hook 8.4

get_index_stats_hook 8.4

get_relation_info_hook plantuner 8.3

get_relation_stats_hook 8.4

join_search_hook saio 8.3

needs_fmgr_hook sepgsql 9.1

object_access_hook sepgsql 9.1

planner_hook planinstr 8.3

shmem_startup_hook pg_stat_statements 8.4

http://www.sai.msu.su/~megera/wiki/plantuner
http://archives.postgresql.org/pgsql-patches/2007-05/msg00421.php
http://pgxn.org/dist/saio/

7

And one plugin

●PlpgSQL_plugin
●Used by EDB's PL/pgsql debugger, and profiler

8

How do they work inside PG

●Hooks consist of global function pointers
●Initially set to NULL
●When PostgreSQL wants to use a hook

– It checks the global function pointer

– And executes it if it is set

9

How do we set the function pointer?

●A hook function is available in a shared library
●At load time, PostgreSQL calls the _PG_init()

function of the shared library
●This function needs to set the pointer

– And usually saves the previous one!

10

How do we unset the function
pointer?

●At unload time, PostgreSQL calls the _PG_fini()
function of the shared library

●This function needs to unset the pointer
– And usually restores the previous one!

11

Example with
ClientAuthentication_hook

●Declaration
– extract from src/include/libpq/auth.h, line 27

/* Hook for plugins to get control in ClientAuthentication() */

typedef void (*ClientAuthentication_hook_type) (Port *, int);

extern PGDLLIMPORT ClientAuthentication_hook_type ClientAuthentication_hook;

12

Example with
ClientAuthentication_hook

●Set
– extract from src/backend/libpq/auth.c, line 215

/*

 * This hook allows plugins to get control following client authentication,

 * but before the user has been informed about the results. It could be used

 * to record login events, insert a delay after failed authentication, etc.

 */

ClientAuthentication_hook_type ClientAuthentication_hook = NULL;

13

Example with
ClientAuthentication_hook

●Check, and execute
– extract from src/backend/libpq/auth.c, line 580

 if (ClientAuthentication_hook)

 (*ClientAuthentication_hook) (port, status);

14

Writing hooks

●Details on some hooks
– ClientAuthentication

– Executor

– check_password

●And various examples

15

ClientAuthentication_hook details

●Get control
– After client authentication

– But before informing the user

●Usefull to
– Record login events

– Insert a delay after failed authentication

16

ClientAuthentication_hook use

●Modules using this hook
– auth_delay

– sepgsql

– connection_limits
(https://github.com/tvondra/connection_limits)

17

ClientAuthentication_hook function

●Two parameters
– f (Port *port, int status)

●Port is a complete structure described in
include/libpq/libpq-be.h

– remote_host, remote_hostname, remote_port,
database_name, user_name, guc_options,
etc.

●Status is a status code
– STATUS_ERROR, STATUS_OK

18

Writing a ClientAuthentication_hook

●Example: forbid connection if a file is present
●Needs two functions

– One to install the hook

– Another one to check availability of the file, and
allow or deny connection

19

Writing a ClientAuthentication_hook

●First, initialize the hook

static ClientAuthentication_hook_type next_client_auth_hook = NULL;
/* Module entry point */
void
_PG_init(void)
{
 next_client_auth_hook = ClientAuthentication_hook;
 ClientAuthentication_hook = my_client_auth;
}

20

Writing a ClientAuthentication_hook

●Check availability of the file, and allow or deny
connection

static void my_client_auth(Port *port, int status)
{
 struct stat buf;

 if (next_client_auth_hook)
 (*next_client_auth_hook) (port, status);

 if (status != STATUS_OK)
 return;

 if(!stat("/tmp/connection.stopped", &buf))
 ereport(FATAL, (errcode(ERRCODE_INTERNAL_ERROR),
 errmsg("Connection not authorized!!")));
}

21

Executor hooks details

●Start
– beginning of execution of a query plan

●Run
– Accepts direction, and count

– May be called more than once

●Finish
– After the final ExecutorRun call

●End
– End of execution of a query plan

22

Executor hooks use

●Usefull to get informations on executed queries
●Already used by

– pg_stat_statements

– auto_explain

– pg_log_userqueries
http://pgxn.org/dist/pg_log_userqueries/

– query_histogram
http://pgxn.org/dist/query_histogram/

– query_recorder
http://pgxn.org/dist/query_recorder/

23

Writing an ExecutorEnd_hook

●Example: log queries executed by superuser
only

●Needs three functions
– One to install the hook

– One to uninstall the hook

– And a last one to do the job :-)

24

Writing a ExecutorEnd_hook

●First, install the hook

/* Saved hook values in case of unload */
static ExecutorEnd_hook_type prev_ExecutorEnd = NULL;

void _PG_init(void)
{
 prev_ExecutorEnd = ExecutorEnd_hook;
 ExecutorEnd_hook = pgluq_ExecutorEnd;
}

25

Writing a ExecutorEnd_hook
●The hook itself:

– check if the user has the superuser attribute

– log (or not) the query

– fire the next hook or the default one
static void
pgluq_ExecutorEnd(QueryDesc *queryDesc)
{
 Assert(query != NULL);

 if (superuser())
 elog(log_level, "superuser %s fired this query %s",
 GetUserNameFromId(GetUserId()),
 query);

 if (prev_ExecutorEnd)
 prev_ExecutorEnd(queryDesc);
 else
 standard_ExecutorEnd(queryDesc);
}

26

Writing a ExecutorEnd_hook

●Finally, uninstall the hook

void _PG_fini(void)
{
 ExecutorEnd_hook = prev_ExecutorEnd;
}

27

check_password hook details
●Get control

– When CREATE/ALTER USER is executed

– But before commiting

●Usefull to
– Check the password according to some

enterprise rules

– Log change of passwords

– Disallow plain text passwords

●Major issue
– Less effective with encrypted passwords :-/

28

check_password hook use

●Usefull to check password strength
●Already used by

– passwordcheck

29

check_password_hook function

●Five parameters
– const char *username, const char *password,

int password_type, Datum validuntil_time,
bool validuntil_null

●password_type
– PASSWORD_TYPE_PLAINTEXT

– PASSWORD_TYPE_MD5

30

Writing a check_password_hook

●Example: disallow plain text passwords
●Needs two functions

– One to install the hook

– One to check the password

31

Writing a check_password_hook

●First, install the hook

void _PG_init(void)
{
 check_password_hook = check_password;
}

32

Writing a check_password_hook
●The hook itself:

– check if the password is encrypted
static void
check_password(const char *username,
 const char *password, int password_type,
 Datum validuntil_time, bool validuntil_null)
{
 if (password_type == PASSWORD_TYPE_PLAINTEXT)
 {
 ereport(ERROR,
 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
 errmsg("password is not encrypted")));
 }
}

33

Compiling hooks

●Usual Makefile
MODULE_big = your_hook
OBJS = your_hook.o

ifdef USE_PGXS
PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)
else
subdir = contrib/your_hook
top_builddir = ../..
include $(top_builddir)/src/Makefile.global
include $(top_srcdir)/contrib/contrib-global.mk
endif

34

Compiling hooks – example

●Make is your friend (and so is pg_config)
$ make USE_PGXS=1
gcc -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-

statement -Wendif-labels -Wformat-security -fno-strict-aliasing -fwrapv
-fexcess-precision=standard -fpic -I. -I. -I/opt/postgresql-
9.1/include/server -I/opt/postgresql-9.1/include/internal -D_GNU_SOURCE
-c -o your_hook.o your_hook.c

gcc -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-
statement -Wendif-labels -Wformat-security -fno-strict-aliasing -fwrapv
-fexcess-precision=standard -fpic -shared -o your_hook.so
only_encrypted_passwords.o -L/opt/postgresql-9.1/lib -Wl,--as-needed -Wl,-
rpath,'/opt/postgresql-9.1/lib',--enable-new-dtags

35

Installing hooks – from source

●Make is still your friend
$ make USE_PGXS=1 install
/bin/mkdir -p '/opt/postgresql-9.1/lib'
/bin/sh /opt/postgresql-9.1/lib/pgxs/src/makefiles/../../config/install-sh -c

-m 755 your_hook.so '/opt/postgresql-9.1/lib/your_hook.so'

36

Using hooks

●Install the shared library
●In postgresql.conf

– shared_preload_libraries

– And possibly other shared library GUCs

●Restart PG

37

Using hooks – example

●Install the hook...
●In postgresql.conf
shared_preload_libraries = 'only_encrypted_passwords'

●Restart PostgreSQL
$ pg_ctl start
server starting
2012-01-28 16:01:32 CET LOG: loaded library "only_encrypted_passwords"

38

Using hooks – example

●Use the hook...
postgres=# CREATE USER u1 PASSWORD 'supersecret';
ERROR: password is not encrypted

postgres=# CREATE USER u1 PASSWORD 'md5f96c038c1bf28d837c32cc62fa97910a';
CREATE ROLE

postgres=# ALTER USER u1 PASSWORD 'f96c038c1bf28d837c32cc62fa97910a';
ERROR: password is not encrypted

postgres=# ALTER USER u1 PASSWORD 'md5f96c038c1bf28d837c32cc62fa97910a';
ALTER ROLE

39

Future hooks?

●Logging hook, by Martin Pihlak
– https://commitfest.postgresql.org/action/patch_v

iew?id=717

●Planner hook, by Peter Geoghegan
– parse_analyze() and

parse_analyze_varparams()

– Query normalisation within pg_stat_statements

40

Conclusion

●Hooks are an interesting system to extend the
capabilities of PostgreSQL

●Be cautious to avoid adding many of them
●We need more of them :-)

●Examples and slides available on:
– https://github.com/gleu/Hooks-in-PostgreSQL

1

Hooks in PostgreSQL

Hooks in PostgreSQL

This talk will present a quite unknown feature of
PostgreSQL: its hook system.

2

Who's Guillaume Lelarge?

●French translator of the PostgreSQL manual
●Member of pgAdmin's team
●Vice-treasurer of PostgreSQL Europe
●CTO of Dalibo

●Mail: guillaume@lelarge.info
●Twitter: g_lelarge
●Blog: http://blog.guillaume.lelarge.info

3

PostgreSQL

●Well known for its extensibility
●For example, a user can add

– Types

– Functions
– Operators

– Etc

●Less known is the hook system

PostgreSQL is well known for its extensibility. Many
people know that you can add your own user types,
add functions that handle them, add operators
which use those functions, and lots of other stuff.

Heikki even did an interesting talk at last year's
FOSDEM about user types and how to use them.

Many procedural languages are supported.
Actually, the extensibility is so important to the

PostgreSQL project that one of the most interesting
features of 9.1 is the new EXTENSION object,
which helps the handling of external modules,
plugins, or whatever you want to call that.

With all this going on with the extensibility, it's quite
strange that the hook system is quite unknown,
even if the first hooks were available since the 8.3
release.

4

Hooks

●Interrupt, and modify behaviour
●Different kinds of hooks
●Not known because

– not explained in the documentation
– Usually quite recent

The aim of hooks is to interrupt and modify the usual
behaviour of PostgreSQL. It allows a developer to
add new features without having to add it to the
core.

Of course, there are different kinds of hooks, mostly
around the planner and the executor.

It's not well known because it's a rather recent
feature. The first hook appeared in 8.3. Actually, 5
hooks appeared in 8.3, 8 in 8.4, 2 in 9.0, and 5 in
9.1. But the biggest issue is probably that it's not
discussed in the documentation.

5

Most used hooks

Hook Initial release

check_password_hook 9.0

ClientAuthentication_hook 9.1

ExecutorStart_hook 8.4

ExecutorRun_hook 8.4

ExecutorFinish_hook 8.4

ExecutorEnd_hook 8.4

ExecutorCheckPerms_hook 9.1

ProcessUtility_hook 9.0

There are many hooks available. These are the most
used hooks. We'll discuss them in the rest of these
slides.

All the Executor hooks help running functions that will
use information from the executor. Mostly used to
know which queries are executed, so that you can
compute statistics, or log them.

The check_password hook is a way to check
passwords according to enterprise rules.

The ClientAuthentication hook makes it possible to
add other checks to allow or deny connections.

6

Other hooks

Hook Used in Initial release

explain_get_index_name_hook 8.3

ExplainOneQuery_hook IndexAdvisor 8.3

fmgr_hook sepgsql 9.1

get_attavgwidth_hook 8.4

get_index_stats_hook 8.4

get_relation_info_hook plantuner 8.3

get_relation_stats_hook 8.4

join_search_hook saio 8.3

needs_fmgr_hook sepgsql 9.1

object_access_hook sepgsql 9.1

planner_hook planinstr 8.3

shmem_startup_hook pg_stat_statements 8.4

shmem_startup_hook, called when PostgreSQL initializes its shared
memory segment

explain_get_index_name_hook, called when explain finds indexes'
names

planner_hook, runs when the planner begins, so plugins can monitor or
even modify the planner's behavior (http://pgxn.org/dist/planinstr/) to
measure planner running time

get_relation_info_hook, allows modification of expansion of the
information PostgreSQL gets from the catalogs for a particular
relation, including adding fake indexes (
http://www.sai.msu.su/~megera/wiki/plantuner to enable planner
hints which allow enable/disable indexes, fix empty table)

ExplainOneQuery_hook see
http://archives.postgresql.org/pgsql-patches/2007-05/msg00421.php

join_search_hook, to let plugins override the join search order portion
of the planner; this is specifically intended to simplify developing a
replacement for GEQO planning, example module saio (
http://pgxn.org/dist/saio/), a join order search plugin using simulated
annealing which provides an experimental planner module that uses
a randomised algorithm to try to find the optimal join order

explain_get_index_name, to allow plugins to get control here so that
plans involving hypothetical indexes can be explained

fmgr_hook, function manager hook (security definer stuff?)
object_access_hook, module sepgsql

7

And one plugin

●PlpgSQL_plugin
●Used by EDB's PL/pgsql debugger, and profiler

The PL/pgsql language allows a shared library to
hook plugins. AFAIK, its only use is by the
debugger, and the profiler written by EnterpriseDB.

Another name (plugin), but same idea behind.

8

How do they work inside PG

●Hooks consist of global function pointers
●Initially set to NULL
●When PostgreSQL wants to use a hook

– It checks the global function pointer
– And executes it if it is set

Each hook consists of a global function pointer. It's
initialy set to NULL. When PostgreSQL may have
to execute it, it checks if the global function pointer
is still set to NULL. If it's set to something else, it
executes the function pointer.

9

How do we set the function pointer?

●A hook function is available in a shared library
●At load time, PostgreSQL calls the _PG_init()

function of the shared library
●This function needs to set the pointer

– And usually saves the previous one!

When PostgreSQL has to load a shared library, it first
loads it into memory, and then executes a function
called _PG_init. This function is available in most of
shared libraries, so that they can initialize memory
and stuff like that. For example, we can use that
function to set the global function pointer with our
own function. It's usually better to save the previous
pointer. We may launch it at the beginning or at the
end of our own function. We may reset it at unload
time.

10

How do we unset the function
pointer?

●At unload time, PostgreSQL calls the _PG_fini()
function of the shared library

●This function needs to unset the pointer
– And usually restores the previous one!

We have one function called at load time, we also
have one at unload time.

When PostgreSQL needs to unload a shared library,
it calls the _PG_fini() function of the shared library.
This is the good time to restore the previous value
of the function pointer, or at least to set it to NULL.

11

Example with
ClientAuthentication_hook

●Declaration
– extract from src/include/libpq/auth.h, line 27

/* Hook for plugins to get control in ClientAuthentication() */

typedef void (*ClientAuthentication_hook_type) (Port *, int);

extern PGDLLIMPORT ClientAuthentication_hook_type ClientAuthentication_hook;

These two lines declare the ClientAuthentication
hook.

12

Example with
ClientAuthentication_hook

●Set
– extract from src/backend/libpq/auth.c, line 215

/*

 * This hook allows plugins to get control following client authentication,

 * but before the user has been informed about the results. It could be used

 * to record login events, insert a delay after failed authentication, etc.

 */

ClientAuthentication_hook_type ClientAuthentication_hook = NULL;

This line declares and sets the
ClientAuthentication_hook to its initial value: NULL.

13

Example with
ClientAuthentication_hook

●Check, and execute
– extract from src/backend/libpq/auth.c, line 580

 if (ClientAuthentication_hook)

 (*ClientAuthentication_hook) (port, status);

These two lines say that the ClientAuthentication
hook will be launched if it has been set previously.

14

Writing hooks

●Details on some hooks
– ClientAuthentication
– Executor
– check_password

●And various examples

This part will go into much greater details on some of
the available hooks: ClientAuthentication, the
Executor ones, and check_password

We'll explain how usefull they are, list the already
available extensions using them. We'll also see
how to write a shared library that use each of these
hooks

15

ClientAuthentication_hook details

●Get control
– After client authentication
– But before informing the user

●Usefull to
– Record login events

– Insert a delay after failed authentication

The ClientAuthentication_hook helps a plugin to get
control after the client authentication, but before the
client is informed of the result of the authentication.

Therefore, the plugin can do other stuff, like record
login events (with the result of the authentication),
or insert a delay after a failed authentication to
avoid DOS attacks.

16

ClientAuthentication_hook use

●Modules using this hook
– auth_delay
– sepgsql
– connection_limits

(https://github.com/tvondra/connection_limits)

Three extensions already use this hook:
● auth_delay adds a configurable delay

(auth_delay.milliseconds GUC) after a failed
attempt to connect

● sepgsql adds specific SELinux context to allow a
connection

● connection_limits, written by Tomas Vondra, and
available on GitHub, allows more control on the
limit of connections than the max_connections
GUC (per user, per database, and per IP)

17

ClientAuthentication_hook function

●Two parameters
– f (Port *port, int status)

●Port is a complete structure described in
include/libpq/libpq-be.h

– remote_host, remote_hostname, remote_port,
database_name, user_name, guc_options,
etc.

●Status is a status code
– STATUS_ERROR, STATUS_OK

The ClientAuthentication_hook function requires two
parameters: a Port structure, and a status code.

The first one gives lots of information on the
connection to the hook function: user name,
database name, GUC options, etc.

The second one is a status code, mostly a boolean
value (OK or error).

18

Writing a ClientAuthentication_hook

●Example: forbid connection if a file is present
●Needs two functions

– One to install the hook

– Another one to check availability of the file, and
allow or deny connection

Here is an example of a new extension using the
ClientAuthentication_hook.

Our example will deny connections if a specific file is
present.

We need two functions:
● The first one will install the hook (IOW, set the

ClientAuthentication_hook global function pointer)
;

● The second one will check the availability of the file,
and choose to allow or deny connections.

19

Writing a ClientAuthentication_hook

●First, initialize the hook

static ClientAuthentication_hook_type next_client_auth_hook = NULL;
/* Module entry point */
void
_PG_init(void)
{
 next_client_auth_hook = ClientAuthentication_hook;
 ClientAuthentication_hook = my_client_auth;
}

The initialization of the hook must happen in the
_PG_init function. This function is called when
PostgreSQL loads the shared library.

The first line saves the previous
ClientAuthentication_hook. The second line
changes the hook with our own function.

20

Writing a ClientAuthentication_hook

●Check availability of the file, and allow or deny
connection

static void my_client_auth(Port *port, int status)
{
 struct stat buf;

 if (next_client_auth_hook)
 (*next_client_auth_hook) (port, status);

 if (status != STATUS_OK)
 return;

 if(!stat("/tmp/connection.stopped", &buf))
 ereport(FATAL, (errcode(ERRCODE_INTERNAL_ERROR),
 errmsg("Connection not authorized!!")));
}

Here is the function that does the actual work.
If a previous hook was set, we first call it.
If the result of its execution is to deny the connection,

there is no need to execute our own code. We
simply return with a “not OK” status.

If the previous hook allows the connection, we then
need to check for the presence of the file (here,
/tmp/connection.stopped). If it cannot find the file,
we use ereport() to deny properly the connection.

21

Executor hooks details

●Start
– beginning of execution of a query plan

●Run
– Accepts direction, and count
– May be called more than once

●Finish
– After the final ExecutorRun call

●End
– End of execution of a query plan

There are four hooks for the Executor. The
ExecutorStart_hook is executed at the beginning of
the execution of a query plan. The
ExecutorRun_hook may be called more than once,
to process all tuples for a plan. Sometimes, it may
stop before processing all tuples. It accepts
direction (forward, or backward), and tuples count.
The ExecutorFinish_hook is executed after the final
ExecutorRun call, and before the ExecutorEnd.
This last hook function is called at the end of the
execution of the query plan.

22

Executor hooks use

●Usefull to get informations on executed queries
●Already used by

– pg_stat_statements

– auto_explain
– pg_log_userqueries

http://pgxn.org/dist/pg_log_userqueries/
– query_histogram

http://pgxn.org/dist/query_histogram/
– query_recorder

http://pgxn.org/dist/query_recorder/

The executor hooks are the most used hooks in
PostgreSQL. There are two contrib modules, and
three extensions available that use these hooks.

pg_stat_statement is a contrib module that grabs
some statistics on the queries executed.

auto_explain uses the hooks to automatically log the
explain plan of each query.

pg_log_userqueries is an extension that logs all
queries according to some new GUC (per
database, user, user attribute).

query_histogram is another extension that builds a
duration histogram of the executed queries.

query_recorder is yet another extension to log
queries in one or more files, according to the
configuration (GUC parameters).

23

Writing an ExecutorEnd_hook

●Example: log queries executed by superuser
only

●Needs three functions
– One to install the hook
– One to uninstall the hook

– And a last one to do the job :-)

For this example, we'll log queries executed only by
superusers.

To do that, we need three functions. One to install the
hook, one to uninstall it (which is optional for us),
and a last one to write the log if the user has the
SUPERUSER attribute.

24

Writing a ExecutorEnd_hook

●First, install the hook

/* Saved hook values in case of unload */
static ExecutorEnd_hook_type prev_ExecutorEnd = NULL;

void _PG_init(void)
{
 prev_ExecutorEnd = ExecutorEnd_hook;
 ExecutorEnd_hook = pgluq_ExecutorEnd;
}

This function saves the previous hook on
ExecutorEnd_hook, and installs our own function
as the new hook.

25

Writing a ExecutorEnd_hook
●The hook itself:

– check if the user has the superuser attribute

– log (or not) the query
– fire the next hook or the default one

static void
pgluq_ExecutorEnd(QueryDesc *queryDesc)
{
 Assert(query != NULL);

 if (superuser())
 elog(log_level, "superuser %s fired this query %s",
 GetUserNameFromId(GetUserId()),
 query);

 if (prev_ExecutorEnd)
 prev_ExecutorEnd(queryDesc);
 else
 standard_ExecutorEnd(queryDesc);
}

This function first checks if the user is a superuser. If
he is, it calls elog() to log the query and the
username.

Then, it executes the previous ExecutorEnd_hook if
there was one.

26

Writing a ExecutorEnd_hook

●Finally, uninstall the hook

void _PG_fini(void)
{
 ExecutorEnd_hook = prev_ExecutorEnd;
}

And this last function sets the hook with the previous
ExecutorEnd_hook.

27

check_password hook details
●Get control

– When CREATE/ALTER USER is executed

– But before commiting

●Usefull to
– Check the password according to some

enterprise rules
– Log change of passwords
– Disallow plain text passwords

●Major issue
– Less effective with encrypted passwords :-/

The check_password hook enables an extension to
get control when a user executes a CREATE USER
or ALTER USER query. It gets control before the
statement is commited.

It's pretty usefull to check the password according to
some enterprise rules. It can be used to log
changes of passwords, and to deny using plain text
passwords in CREATE/ALTER USER statements.

It also has a major drawback: it's quite less effective
with encrypted passwords. It's much more difficult
and time consuming to check the password against
a plain text dictionary because you need to
compute the MD5 checksum for each word, and
compare the result to the encrypted password.

28

check_password hook use

●Usefull to check password strength
●Already used by

– passwordcheck

The main use of this hook is to check password
strength.

Hence, the only extension known now is
passwordcheck, which is a contrib module available
in the PostgreSQL distribution. It makes a few
checks to be sure the password is not too weak. If
you want to use it, make sure you read the source
to make the changes you want, so that it really stick
to your entreprise rules. Using Cracklib is quite
easy to, just a few lines to uncomment.

29

check_password_hook function

●Five parameters
– const char *username, const char *password,

int password_type, Datum validuntil_time,
bool validuntil_null

●password_type
– PASSWORD_TYPE_PLAINTEXT
– PASSWORD_TYPE_MD5

This hook function takes much more parameters.
Username and password are self explanatory.

password_type allows the hook function to know if it
is an encrypted password or a plain text one. An
encrypted password is always encrypted with MD5.
Crypt was available until the 8.4 release.

The validuntil_* parameters give informations on the
validity timestamp limit on the password.

30

Writing a check_password_hook

●Example: disallow plain text passwords
●Needs two functions

– One to install the hook

– One to check the password

For this third example, we'll disallow the use of plain
text passwords. We need two functions: one to
install the hook, one to check the password.

31

Writing a check_password_hook

●First, install the hook

void _PG_init(void)
{
 check_password_hook = check_password;
}

Installing the hook is really easy. We just need to
initialize the global function pointer to our function.
We could save the previous value, but don't show
this here as we already showed that before.

32

Writing a check_password_hook
●The hook itself:

– check if the password is encrypted
static void
check_password(const char *username,
 const char *password, int password_type,
 Datum validuntil_time, bool validuntil_null)
{
 if (password_type == PASSWORD_TYPE_PLAINTEXT)
 {
 ereport(ERROR,
 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
 errmsg("password is not encrypted")));
 }
}

The hook itself is here. It only checks the password
type, and calls the ereport() function if it is a
plaintext password.

33

Compiling hooks

●Usual Makefile
MODULE_big = your_hook
OBJS = your_hook.o

ifdef USE_PGXS
PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)
else
subdir = contrib/your_hook
top_builddir = ../..
include $(top_builddir)/src/Makefile.global
include $(top_srcdir)/contrib/contrib-global.mk
endif

Compiling hooks is really easy. You need this usual
Makefile for shared library.

You can compile the code outside of the PostgreSQL
source tree if you use PGXS. It relies on pg_config,
which may only be available if you install the -devel
package of PostgreSQL.

If you already has the source tree, you can simply put
the directory of the source in the contrib directory of
PostgreSQL. You don't need pg_config if you did
that.

34

Compiling hooks – example

●Make is your friend (and so is pg_config)
$ make USE_PGXS=1
gcc -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-

statement -Wendif-labels -Wformat-security -fno-strict-aliasing -fwrapv
-fexcess-precision=standard -fpic -I. -I. -I/opt/postgresql-
9.1/include/server -I/opt/postgresql-9.1/include/internal -D_GNU_SOURCE
-c -o your_hook.o your_hook.c

gcc -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-
statement -Wendif-labels -Wformat-security -fno-strict-aliasing -fwrapv
-fexcess-precision=standard -fpic -shared -o your_hook.so
only_encrypted_passwords.o -L/opt/postgresql-9.1/lib -Wl,--as-needed -Wl,-
rpath,'/opt/postgresql-9.1/lib',--enable-new-dtags

To compile outside of the PostgreSQL source tree,
add USE_PGXS=1 to the make command.
Remember you need to have the pg_config tool in
your PATH.

You don't need to set this environment variable if you
had put the source code inside the contrib directory
of the PostgreSQL source tree.

35

Installing hooks – from source

●Make is still your friend
$ make USE_PGXS=1 install
/bin/mkdir -p '/opt/postgresql-9.1/lib'
/bin/sh /opt/postgresql-9.1/lib/pgxs/src/makefiles/../../config/install-sh -c

-m 755 your_hook.so '/opt/postgresql-9.1/lib/your_hook.so'

You'll still use make to install the shared library.

36

Using hooks

●Install the shared library
●In postgresql.conf

– shared_preload_libraries

– And possibly other shared library GUCs

●Restart PG

To use a hook, you first need to install the shared
library.

After that, you need to change the configuration in
the postgresql.conf file. There is at least one GUC
to change (shared_preload_libraries). It consists on
a list of library names, separated by commas. For
example shared_preload_libraries =
'pg_stat_statements,pg_log_userqueries'

Don't forget to uncomment the line if it's commented.
Then, the only remaining work is to restart

PostgreSQL.

37

Using hooks – example

●Install the hook...
●In postgresql.conf
shared_preload_libraries = 'only_encrypted_passwords'

●Restart PostgreSQL
$ pg_ctl start
server starting
2012-01-28 16:01:32 CET LOG: loaded library "only_encrypted_passwords"

Here is example showing how to install the
only_encrypted_password shared library, that used
the checkpassword_hook.

38

Using hooks – example

●Use the hook...
postgres=# CREATE USER u1 PASSWORD 'supersecret';
ERROR: password is not encrypted

postgres=# CREATE USER u1 PASSWORD 'md5f96c038c1bf28d837c32cc62fa97910a';
CREATE ROLE

postgres=# ALTER USER u1 PASSWORD 'f96c038c1bf28d837c32cc62fa97910a';
ERROR: password is not encrypted

postgres=# ALTER USER u1 PASSWORD 'md5f96c038c1bf28d837c32cc62fa97910a';
ALTER ROLE

And here is an example that shows its use.

39

Future hooks?

●Logging hook, by Martin Pihlak
– https://commitfest.postgresql.org/action/patch_v

iew?id=717

●Planner hook, by Peter Geoghegan
– parse_analyze() and

parse_analyze_varparams()
– Query normalisation within pg_stat_statements

For 9.2, there is at least one patch offering a new
hook. It is a logging hook. The main idea behind
this hook is to send logs to something else than
PostgreSQL or syslog.

Another patch, not yet available, is written by Peter
Geoghegan to get query normalisation inside
pg_stat_statements.

40

Conclusion

●Hooks are an interesting system to extend the
capabilities of PostgreSQL

●Be cautious to avoid adding many of them
●We need more of them :-)

●Examples and slides available on:
– https://github.com/gleu/Hooks-in-PostgreSQL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

