This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Purpose: Therapies targeting the androgen receptor (AR) have improved the outcome for patients wi... more Purpose: Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. Experimental Design: We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. Results: In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre-nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. Conclusions: This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.
bioRxiv (Cold Spring Harbor Laboratory), Oct 5, 2021
HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) function ... more HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) function and promotes androgen-dependent prostate cancer (PCa) growth. However, the functions of HOXB13 in an AR-independent context remain elusive. Here we report an essential role of HOXB13 in directly suppressing lipogenic transcriptional programs in both AR-positive and-negative PCa cells. The MEIS domain (aa70-150) of HOXB13 interacts with the histone deacetylase HDAC3, which is disrupted by HOXB13 G84E mutation that has been associated with early-onset PCa. Thus, HOXB13 wildtype (WT), but not G84E mutant, recruits HDAC3 to lipogenic enhancers to catalyze histone de-acetylation and suppress lipogenic programs. HOXB13 knockdown unleashes the expression of key lipogenic regulators such as fatty acid synthase (FASN), requiring HDAC3. Analysis of human tissues revealed that HOXB13 is lost in about 30% of metastatic castration-resistant PCa, at least in part, through DNA hypermethylation. Functionally, loss of HOXB13 leads to massive lipid accumulation in PCa cells, thereby promoting cell motility in vitro and fueling xenograft tumor metastasis in vivo, which is mitigated by pharmaceutical inhibitors of FASN. In summary, our study discovers an essential AR-independent function of HOXB13 in repressing de novo lipogenesis and inhibiting tumor metastasis and defines a subclass of PCa that may benefit from lipogenic pathway inhibitors. .
The functional consequences of genetic variants within 5' untranslated regions (UTRs) on a genome... more The functional consequences of genetic variants within 5' untranslated regions (UTRs) on a genome-wide scale are poorly understood in disease. Here we develop a high-throughput multi-layer functional genomics method called PLUMAGE (Pooled full-length UTR Multiplex Assay on Gene Expression) to quantify the molecular consequences of somatic 5' UTR mutations in human prostate cancer. We show that 5' UTR mutations can control transcript levels and mRNA translation rates through the creation of DNA binding elements or RNAbased cis-regulatory motifs. We discover that point mutations can simultaneously impact transcript and translation levels of the same gene. We provide evidence that functional 5' UTR mutations in the MAP kinase signaling pathway can upregulate pathway-specific gene expression and are associated with clinical outcomes. Our study reveals the diverse mechanisms by which the mutational landscape of 5' UTRs can co-opt gene expression and demonstrates that single nucleotide alterations within 5' UTRs are functional in cancer.
Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinical... more Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classifi...
We report the inverse association between the expression of androgen receptor (AR) and IL1β in a ... more We report the inverse association between the expression of androgen receptor (AR) and IL1β in a cohort of patients with metastatic castration-resistant prostate cancer. We also discovered that AR represses the IL1β gene by binding an androgen response element half-site located within the promoter, which explains the IL1β expression in AR-negative (ARNEG) cancer cells. Consistently, androgen depletion or AR-pathway inhibitors (ARI) derepressed IL1β in AR-positive cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone deacetylation at the H3K27 mark in the IL1β promoter. Notably, patients’ data suggest that DNA methylation prevents IL1β expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL1β supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in patients with prostate cancer harboring ARNEG tumor cells or treated with androgen-deprivation th...
Background Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) ... more Background Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) targeted therapies is an aggressive variant of prostate cancer with an unfavorable prognosis. The underlying mechanisms for early neuroendocrine differentiation are poorly defined and diagnostic and prognostic biomarkers are needed. Methods We performed transcriptomic analysis on the enzalutamide-resistant prostate cancer cell line C4-2B MDVR and NEPC patient databases to identify neural lineage signature (NLS) genes. Correlation of NLS genes with clinicopathologic features was determined. Cell viability was determined in C4-2B MDVR and H660 cells after knocking down ARHGEF2 using siRNA. Organoid viability of patient-derived xenografts was measured after knocking down ARHGEF2. Results We identify a 95-gene NLS representing the molecular landscape of neural precursor cell proliferation, embryonic stem cell pluripotency, and neural stem cell differentiation, which may indicate an early or ...
Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive disease with few t... more Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive disease with few therapeutic options. Hyperactive androgen receptor (AR) signaling plays a key role in CRPC progression. Previously, we identified RAR-related orphan receptor gamma (RORγ) as a novel key driver of AR gene overexpression and increased AR signaling. We report here that several RORγ antagonists/inverse agonists including XY018 and compound 31 were orally effective in potent inhibition of the growth of tumor models including patient-derived xenograft (PDX) tumors. RORγ controls the expression of multiple aggressive-tumor gene programs including those of epithelial-mesenchymal transition (EMT) and invasion. We found that PDZ binding kinase (PBK), a serine/threonine kinase, is a downstream target of RORγ that exerts the cellular effects. Alterations of RORγ expression or function significantly downregulated the mRNA and protein level of PBK. Our further analyses demonstrated that elevated PBK as...
Conflict of interest: JTD reports receiving royalty payments related to patents for SARM developm... more Conflict of interest: JTD reports receiving royalty payments related to patents for SARM development and royalty distributions from the University of Tennessee Research Foundation related to SARM patents (US 2019/0055192 A1). PSN has served as an advisor to Astellas Pharma, Janssen Pharmaceuticals, and Bristol Myers Squibb.
Comprehensive genomic studies have delineated key driver mutations linked to disease progression ... more Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory – reverts tumor progression and macro...
Bone metastasis frequently occurs in advanced-stage prostate cancer (PCa) patients. Understanding... more Bone metastasis frequently occurs in advanced-stage prostate cancer (PCa) patients. Understanding the mechanisms that promote PCa-mediated bone destruction is important for the identification of therapeutic targets against this lethal disease. We found that forkhead box A2 (FOXA2) is expressed in a subset of PCa bone metastasis specimens. To determine the functional role of FOXA2 in PCa metastasis, we knocked down the expression of FOXA2 in PCa PC3 cells, which can grow in bones and elicit an osteolytic reaction. The PC3/FOXA2-knockdown cells generated fewer bone lesions following intra-tibial injection compared to control cells. Further, we found that FOXA2 knockdown decreased the expression of PTHLH, which encodes PTHrP, a well-established factor that regulates bone remodeling. These results indicate that FOXA2 is involved in PCa bone metastasis.
Purpose: Neuroendocrine prostate cancer (NEPC) is an aggressive form of castration-resistant pros... more Purpose: Neuroendocrine prostate cancer (NEPC) is an aggressive form of castration-resistant prostate cancer (CRPC) for which effective therapies are lacking. We previously identified carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) as a promising NEPC cell surface antigen. Here we investigated the scope of CEACAM5 expression in end-stage prostate cancer, the basis for CEACAM5 enrichment in NEPC, and the therapeutic potential of the CEACAM5 antibody–drug conjugate labetuzumab govitecan in prostate cancer. Experimental Design: The expression of CEACAM5 and other clinically relevant antigens was characterized by multiplex immunofluorescence of a tissue microarray comprising metastatic tumors from 34 lethal metastatic CRPC (mCRPC) cases. A genetically defined neuroendocrine transdifferentiation assay of prostate cancer was developed to evaluate mechanisms of CEACAM5 regulation in NEPC. The specificity and efficacy of labetuzumab govitecan was determined in CEACAM5+ p...
Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that ca... more Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that can arise at different anatomic sites but have strong histological and clinical similarities. Here we report the chromatin landscapes of a range of human NECs and show convergence to the activation of a common epigenetic program. With a particular focus on treatment emergent neuroendocrine prostate cancer (NEPC), we analyzed cell lines, patient-derived xenograft (PDX) models and human clinical samples to show the existence of two distinct NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single cell analysis of human clinical samples exhibit a more complex tumor structure with subtypes coexisting as separate sub-populations within the same tumor. These tumor sub-populations differ genetically and epigenetically contributing to intra- and inter-tumoral heterogeneity in huma...
Androgen deprivation therapy and second-generation androgen receptor signaling inhibitors such as... more Androgen deprivation therapy and second-generation androgen receptor signaling inhibitors such as enzalutamide are standard treatments for advanced/metastatic prostate cancer. Unfortunately, most men develop resistance and relapse; signaling via insulin-like growth factor (IGF) has been implicated in castration-resistant prostate cancer. We evaluated the antitumor activity of xentuzumab (IGF ligand–neutralizing antibody), alone and in combination with enzalutamide, in prostate cancer cell lines (VCaP, DuCaP, MDA PCa 2b, LNCaP, and PC-3) using established in vitro assays, and in vivo, using LuCaP 96CR, a prostate cancer patient-derived xenograft (PDX) model. Xentuzumab + enzalutamide reduced the viability of phosphatase and tensin homolog (PTEN)-expressing VCaP, DuCaP, and MDA PCa 2b cells more than either single agent, and increased antiproliferative activity and apoptosis induction in VCaP. Xentuzumab or xentuzumab + enzalutamide inhibited IGF type 1 receptor and AKT serine/threoni...
BACKGROUND: After long-term androgen deprivation therapy, 25-30% prostate cancer (PCa) acquires a... more BACKGROUND: After long-term androgen deprivation therapy, 25-30% prostate cancer (PCa) acquires an aggressive neuroendocrine (NE) phenotype. Dysregulation of YAP1, a key transcription coactivator of the Hippo pathway, has been related to cancer progression. However, its role in neuroendocrine prostate cancer (NEPC) has not been assessed. METHODS Immunohistochemistry was used to evaluate YAP1 protein levels during PCa initiation and progression. YAP1 knockdown and luciferase reporter assays were used to evaluate the ability of YAP1 to modulate Wnt/beta-Catenin signaling. RESULTS YAP1 expression was present in the basal epithelial cells in benign prostatic tissues, lost in low grade PCa, but elevated in high grade prostate adenocarcinomas. Interestingly, the expression of YAP1 was reduced/lost in both human and mouse NEPC. Finally, YAP1 knockdown in PCa cells activates Wnt/beta-Catenin signaling, which has been implicated in NE differentiation of PCa, supporting a functional involveme...
Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive va... more Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive variants that are androgen receptor-(AR-) independent. Here we identify the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC). OC2 acts as a survival factor in mCRPC models, suppresses the AR transcriptional program by direct regulation of AR target genes and the AR licensing factor FOXA1, and activates genes associated with neural differentiation and progression to lethal disease. OC2 appears active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors. Inhibition of OC2 by a newly identified small molecule suppresses metastasis in mice. These findings suggest that OC2 displaces AR-dependent growth and survival mechanisms in many cases where AR remains expressed, but where its activity is bypassed. OC2 is also a potential drug target in the metastatic phase of aggressive PC.
BackgroundWhile it has been challenging to establish prostate cancer patient‐derived xenografts (... more BackgroundWhile it has been challenging to establish prostate cancer patient‐derived xenografts (PDXs), with a take rate of 10‐40% and long latency time, multiple groups throughout the world have developed methods for the successful establishment of serially transplantable human prostate cancer PDXs using a variety of immune deficient mice. In 2014, the Movember Foundation launched a Global Action Plan 1 (GAP1) project to support an international collaborative prostate cancer PDX program involving eleven groups. Between these Movember consortium members, a total of 98 authenticated human prostate cancer PDXs were available for characterization. Eighty three of these were derived directly from patient material, and 15 were derived as variants of patient‐derived material via serial passage in androgen deprived hosts. A major goal of the Movember GAP1 PDX project was to provide the prostate cancer research community with a summary of both the basic characteristics of the 98 available a...
Clinical cancer research : an official journal of the American Association for Cancer Research, Jan 4, 2018
Tumor androgens in castration resistant prostate cancer (CRPC) reflect de novo intra-tumoral synt... more Tumor androgens in castration resistant prostate cancer (CRPC) reflect de novo intra-tumoral synthesis or adrenal androgens. We used C.B.-17 SCID mice in which we observed adrenal CYP17A activity to isolate the impact of adrenal steroids on CRPC tumors in vivo Experimental Design: We evaluated tumor growth and androgens in LuCaP35CR and LuCaP96CR xenografts in response to adrenalectomy. We assessed protein expression of key steroidogenic enzymes in 185 CRPC metastases from 42 patients. Adrenal glands of intact and castrated mice expressed CYP17A. Serum DHEA, AED and T in castrated mice became undetectable after adrenalectomy (all p<0.05). Adrenalectomy prolonged median survival (days) in both CRPC models (33 vs 179; 25 vs 301) and suppressed tumor steroids vs castration alone (T 0.64 vs 0.03pg/mg; DHT 2.3 vs 0.23pg/mg; and T 0.81 vs 0.03pg/mg, DHT 1.3 vs 0.04pg/mg; all p=<0.001). A subset of tumors recurred with increased steroid levels, and/or induction of AR, truncated AR va...
Prostate specific membrane antigen (PSMA) is a membrane bound glutamate carboxypeptidase that is ... more Prostate specific membrane antigen (PSMA) is a membrane bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site-specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust ant...
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Purpose: Therapies targeting the androgen receptor (AR) have improved the outcome for patients wi... more Purpose: Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. Experimental Design: We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. Results: In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre-nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. Conclusions: This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.
bioRxiv (Cold Spring Harbor Laboratory), Oct 5, 2021
HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) function ... more HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) function and promotes androgen-dependent prostate cancer (PCa) growth. However, the functions of HOXB13 in an AR-independent context remain elusive. Here we report an essential role of HOXB13 in directly suppressing lipogenic transcriptional programs in both AR-positive and-negative PCa cells. The MEIS domain (aa70-150) of HOXB13 interacts with the histone deacetylase HDAC3, which is disrupted by HOXB13 G84E mutation that has been associated with early-onset PCa. Thus, HOXB13 wildtype (WT), but not G84E mutant, recruits HDAC3 to lipogenic enhancers to catalyze histone de-acetylation and suppress lipogenic programs. HOXB13 knockdown unleashes the expression of key lipogenic regulators such as fatty acid synthase (FASN), requiring HDAC3. Analysis of human tissues revealed that HOXB13 is lost in about 30% of metastatic castration-resistant PCa, at least in part, through DNA hypermethylation. Functionally, loss of HOXB13 leads to massive lipid accumulation in PCa cells, thereby promoting cell motility in vitro and fueling xenograft tumor metastasis in vivo, which is mitigated by pharmaceutical inhibitors of FASN. In summary, our study discovers an essential AR-independent function of HOXB13 in repressing de novo lipogenesis and inhibiting tumor metastasis and defines a subclass of PCa that may benefit from lipogenic pathway inhibitors. .
The functional consequences of genetic variants within 5' untranslated regions (UTRs) on a genome... more The functional consequences of genetic variants within 5' untranslated regions (UTRs) on a genome-wide scale are poorly understood in disease. Here we develop a high-throughput multi-layer functional genomics method called PLUMAGE (Pooled full-length UTR Multiplex Assay on Gene Expression) to quantify the molecular consequences of somatic 5' UTR mutations in human prostate cancer. We show that 5' UTR mutations can control transcript levels and mRNA translation rates through the creation of DNA binding elements or RNAbased cis-regulatory motifs. We discover that point mutations can simultaneously impact transcript and translation levels of the same gene. We provide evidence that functional 5' UTR mutations in the MAP kinase signaling pathway can upregulate pathway-specific gene expression and are associated with clinical outcomes. Our study reveals the diverse mechanisms by which the mutational landscape of 5' UTRs can co-opt gene expression and demonstrates that single nucleotide alterations within 5' UTRs are functional in cancer.
Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinical... more Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classifi...
We report the inverse association between the expression of androgen receptor (AR) and IL1β in a ... more We report the inverse association between the expression of androgen receptor (AR) and IL1β in a cohort of patients with metastatic castration-resistant prostate cancer. We also discovered that AR represses the IL1β gene by binding an androgen response element half-site located within the promoter, which explains the IL1β expression in AR-negative (ARNEG) cancer cells. Consistently, androgen depletion or AR-pathway inhibitors (ARI) derepressed IL1β in AR-positive cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone deacetylation at the H3K27 mark in the IL1β promoter. Notably, patients’ data suggest that DNA methylation prevents IL1β expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL1β supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in patients with prostate cancer harboring ARNEG tumor cells or treated with androgen-deprivation th...
Background Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) ... more Background Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) targeted therapies is an aggressive variant of prostate cancer with an unfavorable prognosis. The underlying mechanisms for early neuroendocrine differentiation are poorly defined and diagnostic and prognostic biomarkers are needed. Methods We performed transcriptomic analysis on the enzalutamide-resistant prostate cancer cell line C4-2B MDVR and NEPC patient databases to identify neural lineage signature (NLS) genes. Correlation of NLS genes with clinicopathologic features was determined. Cell viability was determined in C4-2B MDVR and H660 cells after knocking down ARHGEF2 using siRNA. Organoid viability of patient-derived xenografts was measured after knocking down ARHGEF2. Results We identify a 95-gene NLS representing the molecular landscape of neural precursor cell proliferation, embryonic stem cell pluripotency, and neural stem cell differentiation, which may indicate an early or ...
Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive disease with few t... more Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive disease with few therapeutic options. Hyperactive androgen receptor (AR) signaling plays a key role in CRPC progression. Previously, we identified RAR-related orphan receptor gamma (RORγ) as a novel key driver of AR gene overexpression and increased AR signaling. We report here that several RORγ antagonists/inverse agonists including XY018 and compound 31 were orally effective in potent inhibition of the growth of tumor models including patient-derived xenograft (PDX) tumors. RORγ controls the expression of multiple aggressive-tumor gene programs including those of epithelial-mesenchymal transition (EMT) and invasion. We found that PDZ binding kinase (PBK), a serine/threonine kinase, is a downstream target of RORγ that exerts the cellular effects. Alterations of RORγ expression or function significantly downregulated the mRNA and protein level of PBK. Our further analyses demonstrated that elevated PBK as...
Conflict of interest: JTD reports receiving royalty payments related to patents for SARM developm... more Conflict of interest: JTD reports receiving royalty payments related to patents for SARM development and royalty distributions from the University of Tennessee Research Foundation related to SARM patents (US 2019/0055192 A1). PSN has served as an advisor to Astellas Pharma, Janssen Pharmaceuticals, and Bristol Myers Squibb.
Comprehensive genomic studies have delineated key driver mutations linked to disease progression ... more Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory – reverts tumor progression and macro...
Bone metastasis frequently occurs in advanced-stage prostate cancer (PCa) patients. Understanding... more Bone metastasis frequently occurs in advanced-stage prostate cancer (PCa) patients. Understanding the mechanisms that promote PCa-mediated bone destruction is important for the identification of therapeutic targets against this lethal disease. We found that forkhead box A2 (FOXA2) is expressed in a subset of PCa bone metastasis specimens. To determine the functional role of FOXA2 in PCa metastasis, we knocked down the expression of FOXA2 in PCa PC3 cells, which can grow in bones and elicit an osteolytic reaction. The PC3/FOXA2-knockdown cells generated fewer bone lesions following intra-tibial injection compared to control cells. Further, we found that FOXA2 knockdown decreased the expression of PTHLH, which encodes PTHrP, a well-established factor that regulates bone remodeling. These results indicate that FOXA2 is involved in PCa bone metastasis.
Purpose: Neuroendocrine prostate cancer (NEPC) is an aggressive form of castration-resistant pros... more Purpose: Neuroendocrine prostate cancer (NEPC) is an aggressive form of castration-resistant prostate cancer (CRPC) for which effective therapies are lacking. We previously identified carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) as a promising NEPC cell surface antigen. Here we investigated the scope of CEACAM5 expression in end-stage prostate cancer, the basis for CEACAM5 enrichment in NEPC, and the therapeutic potential of the CEACAM5 antibody–drug conjugate labetuzumab govitecan in prostate cancer. Experimental Design: The expression of CEACAM5 and other clinically relevant antigens was characterized by multiplex immunofluorescence of a tissue microarray comprising metastatic tumors from 34 lethal metastatic CRPC (mCRPC) cases. A genetically defined neuroendocrine transdifferentiation assay of prostate cancer was developed to evaluate mechanisms of CEACAM5 regulation in NEPC. The specificity and efficacy of labetuzumab govitecan was determined in CEACAM5+ p...
Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that ca... more Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that can arise at different anatomic sites but have strong histological and clinical similarities. Here we report the chromatin landscapes of a range of human NECs and show convergence to the activation of a common epigenetic program. With a particular focus on treatment emergent neuroendocrine prostate cancer (NEPC), we analyzed cell lines, patient-derived xenograft (PDX) models and human clinical samples to show the existence of two distinct NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single cell analysis of human clinical samples exhibit a more complex tumor structure with subtypes coexisting as separate sub-populations within the same tumor. These tumor sub-populations differ genetically and epigenetically contributing to intra- and inter-tumoral heterogeneity in huma...
Androgen deprivation therapy and second-generation androgen receptor signaling inhibitors such as... more Androgen deprivation therapy and second-generation androgen receptor signaling inhibitors such as enzalutamide are standard treatments for advanced/metastatic prostate cancer. Unfortunately, most men develop resistance and relapse; signaling via insulin-like growth factor (IGF) has been implicated in castration-resistant prostate cancer. We evaluated the antitumor activity of xentuzumab (IGF ligand–neutralizing antibody), alone and in combination with enzalutamide, in prostate cancer cell lines (VCaP, DuCaP, MDA PCa 2b, LNCaP, and PC-3) using established in vitro assays, and in vivo, using LuCaP 96CR, a prostate cancer patient-derived xenograft (PDX) model. Xentuzumab + enzalutamide reduced the viability of phosphatase and tensin homolog (PTEN)-expressing VCaP, DuCaP, and MDA PCa 2b cells more than either single agent, and increased antiproliferative activity and apoptosis induction in VCaP. Xentuzumab or xentuzumab + enzalutamide inhibited IGF type 1 receptor and AKT serine/threoni...
BACKGROUND: After long-term androgen deprivation therapy, 25-30% prostate cancer (PCa) acquires a... more BACKGROUND: After long-term androgen deprivation therapy, 25-30% prostate cancer (PCa) acquires an aggressive neuroendocrine (NE) phenotype. Dysregulation of YAP1, a key transcription coactivator of the Hippo pathway, has been related to cancer progression. However, its role in neuroendocrine prostate cancer (NEPC) has not been assessed. METHODS Immunohistochemistry was used to evaluate YAP1 protein levels during PCa initiation and progression. YAP1 knockdown and luciferase reporter assays were used to evaluate the ability of YAP1 to modulate Wnt/beta-Catenin signaling. RESULTS YAP1 expression was present in the basal epithelial cells in benign prostatic tissues, lost in low grade PCa, but elevated in high grade prostate adenocarcinomas. Interestingly, the expression of YAP1 was reduced/lost in both human and mouse NEPC. Finally, YAP1 knockdown in PCa cells activates Wnt/beta-Catenin signaling, which has been implicated in NE differentiation of PCa, supporting a functional involveme...
Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive va... more Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive variants that are androgen receptor-(AR-) independent. Here we identify the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC). OC2 acts as a survival factor in mCRPC models, suppresses the AR transcriptional program by direct regulation of AR target genes and the AR licensing factor FOXA1, and activates genes associated with neural differentiation and progression to lethal disease. OC2 appears active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors. Inhibition of OC2 by a newly identified small molecule suppresses metastasis in mice. These findings suggest that OC2 displaces AR-dependent growth and survival mechanisms in many cases where AR remains expressed, but where its activity is bypassed. OC2 is also a potential drug target in the metastatic phase of aggressive PC.
BackgroundWhile it has been challenging to establish prostate cancer patient‐derived xenografts (... more BackgroundWhile it has been challenging to establish prostate cancer patient‐derived xenografts (PDXs), with a take rate of 10‐40% and long latency time, multiple groups throughout the world have developed methods for the successful establishment of serially transplantable human prostate cancer PDXs using a variety of immune deficient mice. In 2014, the Movember Foundation launched a Global Action Plan 1 (GAP1) project to support an international collaborative prostate cancer PDX program involving eleven groups. Between these Movember consortium members, a total of 98 authenticated human prostate cancer PDXs were available for characterization. Eighty three of these were derived directly from patient material, and 15 were derived as variants of patient‐derived material via serial passage in androgen deprived hosts. A major goal of the Movember GAP1 PDX project was to provide the prostate cancer research community with a summary of both the basic characteristics of the 98 available a...
Clinical cancer research : an official journal of the American Association for Cancer Research, Jan 4, 2018
Tumor androgens in castration resistant prostate cancer (CRPC) reflect de novo intra-tumoral synt... more Tumor androgens in castration resistant prostate cancer (CRPC) reflect de novo intra-tumoral synthesis or adrenal androgens. We used C.B.-17 SCID mice in which we observed adrenal CYP17A activity to isolate the impact of adrenal steroids on CRPC tumors in vivo Experimental Design: We evaluated tumor growth and androgens in LuCaP35CR and LuCaP96CR xenografts in response to adrenalectomy. We assessed protein expression of key steroidogenic enzymes in 185 CRPC metastases from 42 patients. Adrenal glands of intact and castrated mice expressed CYP17A. Serum DHEA, AED and T in castrated mice became undetectable after adrenalectomy (all p<0.05). Adrenalectomy prolonged median survival (days) in both CRPC models (33 vs 179; 25 vs 301) and suppressed tumor steroids vs castration alone (T 0.64 vs 0.03pg/mg; DHT 2.3 vs 0.23pg/mg; and T 0.81 vs 0.03pg/mg, DHT 1.3 vs 0.04pg/mg; all p=<0.001). A subset of tumors recurred with increased steroid levels, and/or induction of AR, truncated AR va...
Prostate specific membrane antigen (PSMA) is a membrane bound glutamate carboxypeptidase that is ... more Prostate specific membrane antigen (PSMA) is a membrane bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site-specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust ant...
Uploads
Papers by Eva Corey