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This paper presents a lifetime reliability-based approach for the optimization of post-tensioned concrete
box-girder bridges under corrosion attack. The proposed approach is illustrated by determining the opti-
mal life-cycle cost and CO2 emissions of several initial designs of post-tensioned box-girder bridges with
different objectives, i.e. the lowest initial costs, the longest corrosion initiation time, or the maximum
safety. The study was conducted in two steps. Firstly, the Pareto set presents initial designs considering
the cross-section geometry, the concrete strength, the reinforcing steel and the prestressing steel.
Secondly, the maintenance optimization was conducted with the proposed method, aimed at minimizing
the economic, environmental and societal impacts of the bridge while satisfying the reliability target dur-
ing its life-span. Effective maintenance is able to extend the service life of the bridge with the minimum
cost and CO2 emissions. It is indicated that a durability-conscious initial design is particularly beneficial
for life-cycle performance. Besides, the emphasis on the initial design can also have an effect on the life-
cycle performance of bridges. It is found that designs with longer corrosion initiation time are associated
with lower life-cycle cost, especially when using concrete of higher strength. Findings from the current
paper also indicate that optimal maintenance strategies are more likely to be those with fewer mainte-
nance actions that repair all deteriorating structures simultaneously.
� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sustainable development requires a balance among the
economic, environmental and societal pillars. In addition,
the Brundtland Report proposes a long-term vision to maintain
the resources necessary to provide future needs [1]. This objective
has been applied to the civil engineering field in different lines of
research. Some researches deal with design optimizations aimed
to achieve the maximum benefit from the minimum resources
[2–5]. Environmental concern has led to the incorporation of CO2

emissions and energy consumptions as important criteria [6–10].
Moreover, environmental effects from other industries during the
civil engineering activities have also been studied in order to
reduce the total CO2 emissions [11,12]. Other studies focus on
the life-cycle perspective. Sarma and Adeli [13] presented a review
on cost optimization of concrete structures and stated that the
focus of further research should switch from initial cost optimiza-
tion to life-cycle cost optimization. This has led to an increased
number of studies on life-cycle performance of structures
[14–17], aiming at optimizing the maintenance cost of structures.
Frangopol and Soliman [18] pointed out that maintenance actions
must be effectively planned throughout the life-cycle of structures
to achieve the maximum possible life-cycle benefits under budget
constraints.

A major portion of the life-cycle cost of long-span coastal
bridges is attributed to the maintenance of corroded components
[19]. A maintenance action can delay the damage propagation or
reduce the degree of damage, and consequently, extend the service
life of a deteriorating structure [20]. Neves and Frangopol [21]
mentioned that including condition states alone is not enough to
reflect the safety and serviceability of a bridge. Thus, both condi-
tion and safety levels have been used as objectives in maintenance
optimization [22–24]. Later, Dong et al. [25] considered the envi-
ronmental and societal aspects of maintenance actions. Sabatino
et al. [26] used multi-attribute utility theory to assess various
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aspects of structural sustainability considering risks associated
with bridge failure and risk attitudes of decision makers.
Penadés-Plà et al. [27] reviewed the sustainable criteria used for
decision-making at each life-cycle phase of a bridge.

The performance of a structure is affected by several uncertain-
ties. Among these, uncertainties in load effects, material properties
and damage occurrence and propagation should be highlighted
[28]. Many design codes, including the Eurocode, have adopted
the partial safety factors to take into account the uncertainties aris-
ing from geometry, material properties, load effects, and design
models. During the planning of maintenance actions, stakeholders
should also be well aware of the uncertainties involved in the
deterioration process and potential inspections/interventions
[17]. A proper consideration of uncertainties can lead to significant
economic benefits for both initial design and life-cycle perfor-
mance [29].

This paper presents a lifetime reliability-based approach for the
optimization of post-tensioned concrete (PTC) box-girder road
bridges through two steps. Firstly, the study relies on a novel
multi-objective optimization technique developed by García-
Segura et al. [30] to arrive at a set of optimum initial bridge solu-
tions considering initial cost, overall safety factor and corrosion
initiation time, constrained by the requirements of the design code.
Secondly, maintenance optimization is conducted with respect to a
design service life of 150 years to determine the optimal mainte-
nance actions in terms of maintenance costs and environmental
impacts. The maintenance actions considered in the study can
delay the damage propagation, which in turn extends the bridge
service life. The economic, environmental and societal impacts
are examined. During the maintenance optimization, the societal
impact due to traffic disruptions is associated with either economic
costs or CO2 emissions based on existing studies [25]. The compar-
ison of life-cycle cost and CO2 emissions among the initial designs
under consideration provides guidance for designing sustainable
PTC box-girder road bridges in a coastal zone.
2. Pareto front of optimal bridge designs

The paper studies the design of a PTC box-girder road bridge
located in a coastal region. The initial designs under consideration
are selected from a set of alternative tradeoff solutions located on a
Pareto front associated with three objectives: initial cost, overall
safety factor, and corrosion initiation time. The determination of
these objectives are described in detail in the following sections.
Bridge designs are obtained from the following optimization
scheme:

Given
A PTC box-girder road bridge with a width of 11.8 m and three

continuous spans of 35.2, 44 and 35.2 m.
Goal
Find the optimal bridge design of a PTC box-girder described

by 34 variables regarding the geometry, the reinforcing and
Fig. 1. Variables regarding geometry and reinfor
prestressing steel, and the concrete grade. Fig. 1 shows the geomet-
ric variables of the bridge section as well as the longitudinal and
transverse reinforcement. The diameters of rebars are denoted as
LR1-10 and TR1-8 for longitudinal and transverse steel respectively.
Note that the deck is divided into two zones: pier zones (L/5 on
both sides of the piers) and girder zones (the rest of the span). In
pier zones, rebars with diameters of LR7 and LR9 are provided as
extra reinforcement in the top and bottom slab, respectively. In
the girder zones, rebars with diameters of LR8 and LR10 are extra
reinforcement in the top and bottom slab, respectively. Regarding
transverse steel, an extra reinforcement with diameter of TR0

4 is
placed at the same position as TR4 and covers the support zone
(L/5 on both sides of all supports). In all zones, TR9 is fixed at
12 mm. The number of longitudinal rebars per meter (NLR) as well
as the spacing of the transverse reinforcement (STR) does not vary
along the longitudinal axis of the bridge section. The post-
tensioning steel is formed by strands symmetrically distributed
through the webs. The variables associated with post-tensioning
steel are the distance from the pier section to the point of inflection
as a ratio of the span length (Lpi), the eccentricity in the external
spans as a ratio of half of the bridge depth (ep), and the number
of strand (NS). The eccentricity in the midspan of the central span
and in the supports is set to be the maximum value allowed in
the design code. The prestressing force in each strand is fixed as
195.52 kN. Finally, the last variable under consideration is the
concrete grade (fck). All these 34 variables should be selected to
simultaneously optimize the following objectives:

� Minimize the initial cost of material production and
construction

� Maximize the overall safety factor with respect to the ultimate
limit states

� Maximize the corrosion initiation time

Subject to
The requirements related to the ultimate and serviceability

limit states described in Fomento [31,32], are based on the Euro-
codes 1 and 2 [33,34]. The ultimate limit states considered herein
include shear, shear between web and flanges, punching shear,
flexure and torsion, whereas the serviceability limit states exam-
ined herein include deflection and cracking. In addition, the codes
require the decompression of prestressing strands in coastal envi-
ronments, i.e. decompression must not occur in the concrete
located 100 mm above and under the strands [33]. For serviceabil-
ity limit states associated with bridges, the codes also limit the
instantaneous and time-dependent deflection due to precamber
effects to 1/1400th of the main span length under the characteris-
tic combination [31], and the deflection associated with the fre-
quent value for the live loads is limited to 1/1000th of the main
span length [32]. The geometrical and constructability require-
ments are also examined according to the codes. Load effects take
into account of the traffic loads [32], the self-weight of parapets
(5 kN/m) and asphalt (24 kN/m3), the thermal gradient [32], the
cing steel of the PTC box-girder road bridge.



Table 2
Parameters of the random variables associated with corrosion.

Random variables Probabilistic distributions

Model error (D) Normal (m = 1, COV = 0.2)
Co Lognormal (m = 2.95, COV = 0.3)
Cr Uniform (0.6–1.2)
Model error for icorr Uniform (m = 1, COV = 0.2)
Cover Normal (m = cc, COV = 0.25)

Table 3
Aggregate-to-cement ratio and water-cement ratio of different concrete grades.

Concrete grade a/c w/c

35 MPa 6.45 0.54
40 MPa 6.03 0.5
45 MPa 5.47 0.45
50 MPa 4.66 0.4
55 MPa 3.92 0.35
60 MPa 3.64 0.33
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prestressing steel effect and the relative settlement of each support
(5 mm).

2.1. Objective 1: initial cost

The initial cost (Cini) is obtained according to Eq. (1). Each unit
cost (concrete (Cco), reinforcing steel (Crs), prestressing steel (Cps)
and formwork (Cf)) is multiplied by the respective measurements
(volume of concrete (Vco), the weight of reinforcement steel
(Wrs), the weight of prestressing steel (Wps) and the area of the
formwork (Af)). The unit costs for the materials are evaluated as
the cost of material production, transport and placement. The cost
of material production includes the raw material extraction,
manufacture and transport. Table 1 summarizes the unit costs used
in the optimization. More details can be found in Garcia-Segura
et al. [6].

Cini ¼ Cco � Vco þ Crs �Wrs þ Cps �Wps þ Cf � Af ð1Þ

70 MPa 3.56 0.31
80 MPa 3.55 0.3
90 MPa 3.52 0.3
100 MPa 3.22 0.3
2.2. Objective 2: overall safety factor

Eq. (2) evaluates the overall safety factor (S) as the minimum
coefficient (cj) of the torsion, flexure, transverse flexure and shear
limit states. The coefficient cj is defined as the ratio of the design
value of the ultimate resistance to the design value of ultimate load
effects. For the determination of these design values, partial safety
factors should be considered as proposed by the codes [31,32].
Therefore, a safety coefficient of 1 indicates strict compliance with
the codes.

Sð~xÞ ¼ Minimumcjð~xÞ ð2Þ
2.3. Objective 3: corrosion initiation time

For structures in a coastal environment, the corrosion initiation
time (tcorr) corresponds to the time when the chloride concentra-
tion on the surface of reinforcing steel exceeds a critical threshold
value (Cr). At time t, the chloride content at a distance x from the
concrete outer surface is calculated based on Fick’s second law
(see Eq. (3)).

Cðx; tÞ ¼ Co 1� erf
x

2
ffiffiffiffiffiffi
tD

p
� �� �

ð3Þ

where D is the apparent diffusion coefficient; Co is the chloride con-
centration on the surface. The current study considers the uncer-
tainties related to the apparent diffusion coefficient, chloride
concentration on the surface, concrete cover, and the threshold
value of chloride content. The apparent diffusion coefficient reflects
Table 1
Unit costs and CO2 emissions.

Unit measurements Cost (€) CO2 emission (kg)

m2 of formwork 33.81 2.08
kg of steel (B-500-S) 1.16 3.03
kg of prestressing steel (Y1860-S7) 3.40 5.64
m3 of concrete 35 MPa 104.57 321.92
m3 of concrete 40 MPa 109.33 338.90
m3 of concrete 45 MPa 114.10 355.88
m3 of concrete 50 MPa 118.87 372.86
m3 of concrete 55 MPa 123.64 389.84
m3 of concrete 60 MPa 128.41 406.82
m3 of concrete 70 MPa 137.95 440.78
m3 of concrete 80 MPa 147.49 474.74
m3 of concrete 90 MPa 157.02 508.70
m3 of concrete 100 MPa 166.56 542.66
the concrete permeability. Eq. (4) is used herein to determine the
diffusion coefficient [35,36]:

D ¼ DH2O0:15 � 1þ qc
w
c

1þ qc
w
c þ qca

qac

qc
w
c � 0:85

1þ qc
w
c

� �3

ð4Þ

where DH20 is the chloride diffusion coefficient in an infinite solu-
tion (=1.6 � 10�5 cm2/s for NaCl); qc is the mass density of cement
(considered to be 3.16 g/cm3); qa is the mass density of aggregates
(considered to be 2.6 g/cm3); a/c is the aggregate-to-cement ratio;
and w/c is the water-cement ratio. The values of aggregate-to-
cement ratio and water-cement ratio are shown in Table 3 accord-
ing to the concrete grades. The parameters of the random variables
associated with the corrosion initiation are summarized in Table 2
[35]. It should be noted that the coefficient of variation of Co is
assumed herein as 0.3 due to the reduced variability of the surface
chloride content in a particular bridge compared to a group of
bridges considered in [37]. The mean value of the surface chloride
content corresponds to a distance of 1000 m from the coast [37].

3. Maintenance optimization

Maintenance optimization seeks sustainable maintenance
actions that maintain the bridge performance requirements during
its life-span. For bridges in coastal zones, deterioration is mainly
caused by chloride-induced steel corrosion. Long-term effects of
prestressing tendons, such as loss of prestress and deflection, are
considered in the initial design phase. The degradation process
due to chloride-induced corrosion is formulated as a reduction of
the reinforcing steel area. Consequently, the structural safety is
reduced. A lifetimereliability-based approach is used to evaluate
the structural performance and to satisfy the annual reliability tar-
get index of 4.7, as proposed in the Eurocode [38]. Maintenance
actions are applied to keep the minimum reliability index above
the target level during the prescribed service life (150 years). The
optimization variables define the maintenance schedule in each
cross-section (see Fig. 2). The maintenance optimization considers
the three pillars of sustainability, i.e. economic, environmental and
societal impacts. The economic impact of maintenance actions
derives from the material and construction costs of maintenance
actions. The environmental impact considers the CO2 emissions
due to the materials and construction activities. The societal
impact is due to the traffic disruptions during maintenance actions.



Fig. 2. Surfaces affected by corrosion propagation.
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In the current study, the societal impact is merged into the eco-
nomic and environmental consequences respectively during the
optimization process. Therefore, two single objective optimizations
are made considering economic and environmental consequences
as objectives, respectively. A harmony search algorithm is used
for the single objective optimization of costs and CO2 emissions
due to maintenance actions. The optimization problem is formu-
lated as follows:

Given
The bridge design from the previous initial design optimization,

as well as the effect of concrete repair on the chloride-induced
corrosion.

Goal
Find the optimal time of the first maintenance application and

the number of applications on surface 1 (t1 and n1) and surface 2
(t2 and n2), as shown in Fig. 2, so that:

� The costs of maintenance actions, which include the direct and
indirect maintenance costs, are minimized
OR

� The CO2 emissions due to maintenance actions, which are
caused by the direct and indirect consequences, are minimized

Subject to
The minimum annual target reliability index of 4.7. Therefore,

the annual reliability index of the bridge must be at least this value
during the entire service life.

3.1. Deterioration process

The deterioration analysis is carried out considering uniform
corrosion of the reinforcing steel. The corrosion rate is expressed
as a time-dependent variable based on the corrosion initiation time
and the corrosion rate at the start of corrosion propagation
(icorr(1)), as indicated below [35]:

icorrðtÞ ¼ icorrð1Þ � 0:85 � ðt � tcorrÞ�0:29 ð5Þ

icorrð1Þ ¼ 37:8ð1�w=cÞ�1:64

Cc
ð6Þ

Db ¼ Db0 � 2 �
Z t

Ti

0:0116 � icorrðtÞdt ð7Þ

The reinforcement diameter decreases after tcorr according to
the assumption of uniform corrosion. Note that 1 mA/cm2 is equiv-
alent to 0.0116 mm/year. It is considered herein that the pavement
thickness increases the cover of the top slab. Therefore, the rein-
forcement located near this surface is not critical. Hence, it is not
considered in the deterioration analysis. Likewise, the prestressing
tendons are considered to be immune from corrosion, since they
are located sufficiently far away from the surface. As a result, the
corrosion propagation affects mainly the longitudinal and trans-
verse reinforcement beneath surfaces 1 and 2 (LRS1, LTS1, LRS2,
LTS2). Table 4 summarizes the limit states affected by the reinforc-
ing steel corrosion.

3.2. Lifetime performance

The lifetime performance of the bridge is evaluated by reliabil-
ity indices (b) computed using the First Order Second Moment
(FOSM) method as follows:

pf ¼ Pr½ðR� SÞ < 0� ð8Þ

b ¼ �U�1ðpf Þ ð9Þ

b ¼
�R� �Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

R þ r2
S

q ð10Þ

where pf is the probability of failure; U-1 is the inverse standard
normal cumulative distribution function; R is the generalized struc-
tural resistance, S is the generalized action effect; �R and �S are mean
values of R and S respectively; and rR and rS are the standard devi-
ations of R and S. Table 5 shows the statistical parameters for mate-
rial properties and loading variables. The uncertainties inherent in
concrete and steel properties are described by a normal distribution
[39]. Mean values are obtained considering that characteristic val-
ues correspond to the 5th percentile of material strength distribu-
tions. The generalized structural resistance is evaluated following
the structural code [31]. It should be noted that no partial safety
factors are considered for the evaluation of the resistance.

Regarding the generalized action effects, the mean value of
permanent load effects can be determined by the coefficient of
variation (COV) and the characteristic value [40]. The variable
loads are represented by Gumbel distributions. The relation
between the characteristic value and the mean annual extreme
can be obtained as follows:

QK ¼ l � ½1� V

ffiffiffi
6

p

p
½0:577þ lnð�lnð1� pÞÞ�� ð11Þ

where QK is the characteristic value; l is the mean annual extreme;
V is the coefficient of variation and p is the probability of being
exceeded. The characteristic values for the temperature-gradient
effects (hereafter termed as the temperature load) and traffic load
effects are obtained from Fomento [32] and Eurocode [34,41].
Regarding the temperature load, the characteristic value corre-
sponds to an annual probability of being exceeded of 0.02 [41],
i.e. p = 0.02 in Eq. (11). The coefficient of variation of the
temperature load is 40% based on available measurement data of



Table 4
Limit states and reinforcement affected by corrosion.

Surface (see Fig. 2) Reinforcement diameter Limit state

1 LRS1 Torsion
Flexure

TR S1 Transverse flexure
Torsion

2 LRS2 Torsion
TR S2 Transverse flexure

Torsion
Shear

Table 5
Statistical parameters for material properties and loading variables.

Random Variables Model type

Concrete compressive strength Normal (COV = 0.18)
Concrete tension strength Normal (COV = 0.18)
Reinforcing steel strength Normal (COV = 0.098)
Prestressing steel strength Normal (COV = 0.025)
Permanent Normal (COV = 0.1)
Gradient Gumbel (COV = 0.4)
Traffic load Gumbel (COV = 0.15)
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existing bridges [42,43]. For the traffic load, the annual characteris-
tic value with a probability of exceedance of 5% is 90% of the
50-year characteristic value [44]. The coefficient of variation for
traffic loads is 0.15 [45,46].

3.3. Design variables

This study considers concrete repair as bridge maintenance
actions. It includes the removal of old concrete cover and its
replacement. As the concrete cover regains its initial state, the
degradation of the structural capacity is halted for a period equal
to the corrosion initiation time of the new cover. The new corro-
sion initiation time (tcorr2) depends on the new water cement ratio
and the thickness of the cover. A water cement ratio of 0.4 and a
thickness of 30 mm are considered. The new cover has a different
corrosion rate. Consequently, the structure after concrete repair
deteriorates at a different rate. The design variables of mainte-
nance optimization include the time of the first application and
the number of applications on surface 1 (t1 and n1) and surface 2
(t2 and n2), respectively. The time interval between applications
is considered constant. The time-dependent evolution of the relia-
bility index depends on the values of design variables.

3.4. Optimization algorithm

This paper uses a modified harmony search algorithm to con-
duct the single objective optimization of maintenance actions. Har-
mony search, proposed by Geem et al. [47], establishes an analogy
between optimization and the tuning for the best musical har-
mony. The following steps explain the algorithm procedure:

Step 1 – Assignment of the algorithm parameters. The algo-
rithm parameters are: harmony memory size (HMS), harmony
memory considering rate (HMCR), pitch adjusting rate (PAR) and
the maximum number of improvisations without improvement
(IWI).

Step 2 – Memory initialization. A harmony memory matrix
(HM) is filled with random values of the design variable pool.
The harmony vectors or solutions must be feasible considering
the exerted constraints.

Step 3 – Improvisation of a new solution. A new harmony vec-
tor is improvised in each iteration. The algorithm selects the values
of the variables by a selection either from design variable pool or
from HM. The new harmony vectors are improvised according to
three procedures:

Option 1- Random selection. The probability of choosing the
values of the variables from the design variable pools is
1-HMCR.
Option 2- Memory consideration. The probability of choosing
the values of the variables from the HM is HMCR.
Option 2.1- Pitch adjustment. After the memory consideration,
the probability of modifying the value one position up or down
is PAR.

Step 4 – HM update. The new solution replaces the worst har-
mony if its objective function value improves the worst one.

Step 5 – Termination criterion. The optimization process
returns to Steps 3 if the iterations without improving the best har-
mony reaches IWI.

In conventional HS, memory consideration chooses each vari-
able from a random HM solution. García-Segura et al. [30] showed
that combining solutions is less effective than taking only one solu-
tion and perturbing some members. According to that, new solu-
tions are the result of random selection, memory consideration
to one random solution of HM, and pitch adjustment. On that basis,
this study improves the algorithm performance by selecting design
variables merely from two HM solutions. In this case, memory con-
sideration chooses two random solutions in each iteration to make
the maintenance of surface 1 and 2 independent. Two variables,
which refer to the maintenance of surface 1, are chosen from one
random selection from the HM and two more variables, regarding
surface 2, are taken from another random selection. The parame-
ters are selected according to the Design of Experiments methodol-
ogy [6]. The calibration process suggested HMS = 10, HMCR = 0.9,
PAR = 0.4 and IWI = 50.
3.5. Sustainability criteria

3.5.1. Economic impact
Economic impact (Cms) of maintenance actions results from the

direct cost of maintenance applications. To transfer future costs of
maintenance actions (t) to the present values, the time value of
money is considered through a discount rate (m). The maintenance
cost is calculated for surfaces 1 (CmS1) and 2 (CmS2) as follows:

Cms ¼
XNms1

j¼1

Cms1j

ð1þ vÞtj þ
XNms2

j¼1

Cms2j

ð1þ vÞtj ð12Þ

where NmS1 and NmS2 are the total numbers of maintenance actions
over each surface, respectively. For concrete repair, water blasting is
required to remove the old concrete cover. In addition, an adhesion
coating is applied to prepare a proper surface for new concrete
cover. Finally, repair mortar is cast to form the new cover. All these
activities are carried out by a truck mounted platform. As a result,
the following equation is used to calculate maintenance costs, i.e.
Cms1 and Cms2 in Eq. (12).

Cmsij ¼ ððCwb þ CrmÞ � Vcsi þ ðCbc þ CtpÞ � AsiÞ ð13Þ

where Cwb is the cost of water blasting, Crm is the cost of the repair
mortar application, Cbc is the cost of the bonding coat application,
Ctp is the cost of the truck mounted platform and Vcsi and Asi are
the volume and the area of concrete replaced on surface i. The thick-
ness of the removed cover is considered to be equal to the old con-
crete cover thickness plus rebar diameter. Table 6 summarizes the
unit costs used for the preceding evaluation [25,48–50]. Note that
lognormal distributions (LN) with coefficients of variation of 0.2
are also considered for these unit costs.



Table 7
Traffic conditions during the detour [25].

Unit measurements Mean value COV Distribution type

Ttruck (%) 12 0.2 LN
ADT (veh/day) 8500 – Deterministic
Ldetour (km) 2.9 – Deterministic
Tdetour (day) 7 – Deterministic
S (km/h) 50 0.15 LN
Ocars 1.5 0.15 LN
Otruck 1.05 0.15 LN
m (%) 2 – Deterministic

Table 6
Costs and emissions associated with the direct and indirect maintenance.

Mean cost Mean CO2 emission COV Distribution type

Cwb = 11.5 (€/m2/cm) [49] Ewb = 0.91 (kg/m2/cm) [48] 0.2 LN
Cbc = 16.41 (€/m2) [48] Ebc = 15.85 (kg/m2) [48] 0.2 LN
Crm = 43.28 (€/m2/cm) [50] Erm = 25.5 (kg/m2/cm) [48] 0.2 LN
Ctp = 53.71 (€/m2) [48] Etp = 142.09 (kg/m2) [48] 0.2 LN
Crun,cars = 0.07 (€/km) [25] Erun,cars = 0.22 (kg/km) [25] 0.2 LN
Crun,truck = 0.34 (€/km) [25] Erun,truck = 0.56 (kg/km) [25] 0.2 LN
Cwage = 20.77 (€/h) [25] 0.15 LN
Cdriver = 24.54 (€/h) [25] 0.15 LN
Ccargo = 3.64 (€/h) [25] 0.2 LN
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3.5.2. Environmental impact
The environmental impact of maintenance actions (Ems)

includes the CO2 emitted during the maintenance actions. The
CO2 emissions produced during a maintenance action, for surfaces
1 (EmS1) and 2 (EmS2), respectively, are obtained as an aggregation of
emissions due to water blasting (Ewb), repair mortar applications
(Erm), bond coating applications (Ebc) and truck platform mounting
(Etp), as shown in Eqs. (14) and (15).

Ems ¼
XNms1

j¼1

Ems1j þ
XNms2

j¼1

Ems2j ð14Þ

Emsij ¼ ððEwb þ ErmÞ � Vcsi þ ðEbc þ EtpÞ � AsiÞ ð15Þ
The maintenance unit emissions can be found in the BEDEC data-
base [48].

3.5.3. Societal impact
The societal impact arises from the traffic disruptions during

maintenance actions. This study considers societal impact only
once if the interval between two maintenance actions is less than
one year. To quantify the loss associated with traffic disruptions,
the societal impact of maintenance actions is converted to eco-
nomic loss or extra emissions depending on which objective is
being considered. The cost of the societal impact (Cs) is computed
based on the running cost (Crun) due to detours and time loss (Ctime)
due to increased travel time. Likewise, extra CO2 emissions (Es) are
induced by running on detours (Erun). The societal impact in terms
of cost and CO2 emission can be determined by the following
equations [25]:

Cs¼Crun þ Ctime ð16Þ

Crun ¼
XNm
i¼1

Crun;cars 1� Ttruck

100

� �
þ Crun;truck

Ttruck

100

� �� �
LdetourTdetourADT

ð1þ vÞt
ð17Þ

Ctime ¼
XNm
i¼1

CwageOcars 1� Ttruck

100

� �
þ ðCdriverOtruck þ CcargoÞ Ttruck

100

� �
LdetourTdetourADT=S

ð1þ vÞt
ð18Þ

ES ¼ Erun

¼
XNm
i¼1

Erun;cars 1� Ttruck

100

� �
þ Erun;truck

Ttruck

100

� �� �
LdetourTdetourADT

ð19Þ
where Nm is the number of traffic disruptions; Crun,cars and Crun,truck
are the unit cost of running cars and trucks, respectively; Ttruck is the
average daily truck traffic ratio; ADT is the average daily traffic;
Ldetour is the detour length; and Tdetour is the detour time; Cwage is
the wage compensation for car drivers; Cdriver is the truck driver
compensation; Ccargo is the value of a cargo; Ocars is the average
vehicle occupancies for cars; Otruck is the average vehicle occupan-
cies for trucks; S is the speed on detours; regarding the running
emissions, Erun,cars and Erun,truck are CO2 emissions for running cars
and trucks respectively. Table 7 summarizes the parameters consid-
ered for the evaluation of the societal impact [25].

The costs and emissions associated with the societal impact are
added to the economic and environmental impacts respectively to
obtain the total cost (TCms) and CO2 emissions (TEms) due to
maintenance actions:

TCms ¼ Cms þ Cs ð20Þ

TEms ¼ Ems þ Es ð21Þ
4. Life-cycle performance of box-girder road bridges

By combining the initial cost and emissions from Section 2 and
those due to maintenance actions in Section 3, one can evaluate the
life-cycle cost and emissions of bridge designs under consideration.
Fig. 3 shows the flowchart followed by the current study for the
determination of life-cycle cost and emissions. Firstly, the mainte-
nance optimization considers the economic, environmental and
societal impacts of maintenance. The initial cost and emissions
are not considered since the optimal maintenance solutions do
not depend on these terms. Then, for the life-cycle evaluation,
the initial costs, which include material and construction costs
obtained from Section 2, are considered. Note that construction
costs are incurred at year zero, i.e. present values. For the life-
cycle emissions, the CO2 emissions with respect to the materials
and construction can be determined similarly by substituting the
unit costs in Eq. (1) with unit emissions:

Eini ¼ Eco � Vco þ Ers �Wrs þ Eps �Wps þ Ef � Af ð22Þ
where the CO2 emissions associated to concrete (Eco), reinforcing
steel (Ers), prestressing steel (Eps) and formwork (Ef) are obtained
from the BEDEC database [48]. Table 1 shows these values.

The initial cost and emissions are added to the maintenance
cost and emissions in order to obtain the life-cycle cost (TC) and
CO2 emissions (TE):



Fig. 3. Flowchart of the optimization procedure.
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TC ¼ TCms þ Cini ð23Þ
TE ¼ TEms þ Eini ð24Þ
Despite the similarity between cost and emission evaluation,

time effects of costs imply different incentives for cost-based and
emission-based maintenance optimization. Generally, costs at a
later time may suggest less present value considering the discount
rate. Thus, there is an incentive to take maintenance actions as late
as possible, even though an earlier maintenance action may result
in a better structural performance. However, CO2 emissions are the
same irrespective of the time of maintenance actions. To minimize
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the emissions, the number of maintenance actions should be the
smallest possible. In general, the emission-based optimization
favors strategies of earlier maintenance actions, while cost-based
optimization gives incentives to postpone the maintenance actions
on both surfaces provided that the postpone does not lead to an
increase of required maintenance actions.

5. Results

Based on the discussion in Section 2, the Pareto front for initial
design optimization is presented in Fig. 4, where nine representa-
tive solutions are denoted. These solutions are classified into 3
levels for the overall safety factor and 6 levels for the corrosion ini-
tiation time. Regarding the overall safety factor, 1.1 and 1.2 values
mark the limits. As for the corrosion initiation time, 15, 30, 45, 60
and 75 years are the boundary markers. Table 8 summarizes the
objective values of these nine solutions. The depth (h), the concrete
cover (cc) and the concrete grade (fck) values are indicated. The
amount of reinforcing steel, concrete and prestressing steel per
square meter of deck are also shown in Table 8. Solution 9 (S9) pre-
sents a corrosion initiation time greater than the service life
(150 years). Therefore, this solution does not need any mainte-
nance action. Optimum maintenance actions are examined for
the other representative solutions according to the discussion in
Section 3.

Fig. 5 shows the time-variant evolution of the reliability index
of solution S1 affected by the corrosion of the transverse reinforce-
ment. The smallest reliability index is considered to be the repre-
sentative value of the entire bridge. In particular, the reliability
index regarding the torsion is affected the most by the steel corro-
sion of transverse reinforcement with respect to surface 2: the reli-
ability index reduces significantly (from 8.6 to 5.5) from tcorr to t2
(year 25). The maintenance application at year 25 delays the dete-
rioration process for about 50 years, which is the time required for
the chloride to penetrate through the new concrete cover and to
reach the threshold concentration. The longitudinal reinforcement
is less affected by the chloride attack since rebars are placed far-
ther away from the surface. Thanks to this increment in concrete
cover, the corresponding limit states are not critical for the struc-
tural failure. In total, two maintenance actions are required for
solution S1 to end the service life with a reliability index greater
than 4.7.

Tables 9, 10 and 11 provide the results of cost optimization.
Table 9 shows the optimum maintenance plan for the representa-
tive solutions. It is worth noting that most of the solutions have
simultaneous maintenance actions for surfaces 1 and 2, which
Fig. 4. Representative solutions
can halve the societal impact. The obtained results suggest that,
in order to promote sustainability, the number of maintenance
actions should be as small as possible to reduce the economic,
environmental and societal impacts. It is usually cheaper to reduce
the total number of maintenance applications even at the price of
advancing the first maintenance date. In addition, it is more sus-
tainable to conduct maintenance activities over all the surfaces
at the same time. As the maintenance actions on surfaces 1 and
2 coincide, the societal impact can be greatly reduced. Actually,
despite the fact that the costs and CO2 emissions are optimized
separately, both optimizations lead to the same number of mainte-
nance actions, and therefore the same amount of CO2 emissions.
Besides, when fixing this number of maintenance applications
and delaying the first maintenance application, the cost is also
minimized. Therefore, cost optimization in general can lead to
optimal solutions with respect to CO2 emissions.

The mean values of total life-cycle costs and life-cycle emissions
are shown in Tables 10 and 11. The order of the total life-cycle cost
from least to greatest is S9, S8, S6, S2, S4, S5, S7, S3 and S1. This
order coincides with the corrosion initiation time, with the excep-
tion of the solution S4. The findings indicate that the increment in
corrosion initiation time reduces the life-cycle cost despite a slight
increase in the initial cost. Comparing S4, S5 and S7, solution S4
uses 45 MPa concrete with 3 cm of concrete cover, while the other
solutions use 35 MPa and a greater length of concrete cover. As a
result, though S4 belongs to a lower level of corrosion initiation
time, the increment in concrete strength results in a better life-
cycle performance. This result indicates that, for similar corrosion
initiation time, increasing the concrete strength may reduce the
number of required maintenance actions and, consequently,
reduce the life-cycle cost. Therefore, even both the increment in
concrete strength and concrete cover results in a better durability
level, the increment in concrete strength has better life-cycle
results for designs with similar corrosion initiation time. The safety
level has less influence on the life-cycle cost. Compared with cor-
rosion initiation time, the safety factor with respect to the critical
limit state of the initial design does not necessarily govern the life-
cycle reliability level due to different deterioration rates. Conse-
quently, a bridge design with higher initial safety level does not
always guarantee a lower life-cycle cost.

Regarding the life-cycle emissions, the order is S9, S2, S6, S8, S5,
S7, S3, S1 and S4. In this case, the order does not follow exactly that
for the corrosion initiation time. This is because emissions depend
only on the total number of maintenance actions regardless of the
time of applications. Therefore, solutions with greater corrosion
initiation time, which delay the maintenance actions but do not
of the Pareto optimal set.



Table 8
Representative solutions of the Pareto front.

Cini (€) S tcorr (years) h (m) cc (m) fck (MPa) Reinforcing steel
(kg/m2 deck)

Concrete
(m3/m2 deck)

Prestressing steel
(kg/m2 deck)

S1 401260 1.07 (L1) 10.45 (L1) 2.30 0.03 35.00 67.10 0.670 21.99
S2 401400 1.03 (L1) 47.41 (L4) 2.30 0.06 35.00 66.89 0.674 21.98
S3 401950 1.06 (L1) 18.26 (L2) 2.30 0.04 35.00 70.03 0.665 21.11
S4 406160 1.21 (L3) 23.81 (L2) 2.65 0.03 45.00 70.44 0.662 19.80
S5 409810 1.10 (L1) 41.04 (L3) 2.30 0.06 35.00 76.81 0.636 21.10
S6 416610 1.14 (L2) 48.15 (L4) 2.60 0.03 50.00 72.31 0.678 19.80
S7 416830 1.27 (L3) 35.09 (L3) 2.30 0.05 35.00 81.36 0.635 21.10
S8 418640 1.18 (L2) 65.68 (L5) 2.65 0.04 50.00 74.67 0.674 19.80
S9 423570 1.15 (L2) 153.90 (L6) 2.55 0.03 55.00 78.50 0.638 20.46

Fig. 5. Reliability index evolution of the limit states affected by maintenance application.

Table 9
Maintenance plan corresponding to the eight representative solutions.

TC (€) TE (kg CO2) t1 (years) n1 t2 (years) n2

S1 813350 1453090 25 2 25 2
S2 532290 1097020 70 1 70 1
S3 743010 1449710 35 2 35 2
S4 619800 1496230 65 2 65 2
S5 621560 1325940 60 1 60 2
S6 485020 1163320 105 1 105 1
S7 663940 1334580 50 1 50 2
S8 468840 1170620 120 1 120 1

Table 10
Mean life-cycle costs.

Cms1 (€) Cms2 (€) Crun (€) Ctime (€) Cini (€) TC (€)

S1 134628 107392 11045 66598 400966 813350
39051 31148 3204 19318

S2 55209 44037 4527 27264 401250 532290
S3 116330 78369 9046 54643 401870 743010

37251 25098 2897 17499
S4 53809 60348 5007 30085 406220 619800

23192 26011 2158 12967
S5 76256 56918 5534.9 33310 410260 621560

23347 2270.4 13664
S6 24413 27748 2271 13704 416886 485020
S7 92540 65389 6753 40347 417120 663940

24294 2509 14990
S8 18077 20276 1681 10153 418650 468840
S9 425710 425710
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Table 11
Mean life-cycle emissions.

Ems1 (kg CO2) Ems2 (kg CO2) Erun (kg CO2) Eini (kg CO2) TE (kg CO2)

S1 170832 141393 44969 738705 1453090
170832 141393 44969

S2 171045 141564 44904 739510 1097020
S3 177518 130747 44938 743308 1449710

177518 130747 44938
S4 145803 175193 45038 764160 1496230

145803 175193 45038
S5 185880 146132 44841 758113 1325940

146132 44841
S6 145951 177822 44997 794550 1163320
S7 185963 141371 44997 775843 1334580

141371 45030
S8 146359 175847 44963 803446 1170620
S9 817970 817970

390 T. García-Segura et al. / Engineering Structures 145 (2017) 381–391
eliminate it, are not effective from the environmental point of
view.

6. Conclusions

This paper compares the life-cycle performance of a set of
alternative tradeoff solutions of a bridge design. A continuous
PTC box-girder road bridge located in a coastal region is studied.
The bridge is optimized in terms of cost, corrosion initiation time
and structural safety. The effect of the objectives on the life-cycle
performance regarding the sustainable goal is examined. The
chloride-induced corrosion deteriorates the reinforcing steel and
decreases the structural capacity. The optimum sustainable main-
tenance is obtained to maintain the reliability of the structure over
the threshold during the service life. The economic, environmental
and societal impacts of bridge maintenance actions are minimized.
The economic impact considers the cost of direct maintenance. The
environmental impact evaluates the CO2 emissions due to mainte-
nance. The impact of traffic disruptions on the society is computed
in terms of cost and CO2 emissions. The following conclusions can
be drawn from this paper:

� The time of initial maintenance application and the number of
maintenance actions control the deterioration of structural per-
formance and the economic, environmental and societal
impacts. The time of initial application influences the present
cost when considering the discount rate. Maintenance actions
that take place earlier result in a better structural performance
but at a greater cost.

� The time of application has no influence on the environmental
impact. Therefore, the strategy to minimize the maintenance
emissions consists of reducing the number of maintenance
actions.

� Generally, cost optimization also results in CO2 emission mini-
mization. This is because, similar to emission minimization, cost
objective seeks to reduce the total number of maintenance
applications. However, cost optimization has an additional
incentive to delay the first application date.

� The deterioration of different surfaces is independent to each
other due to their different deterioration conditions. Neverthe-
less, results in this paper recommend not to adjust the optimum
maintenance over each surface separately. Maintenance actions
should be scheduled at the same time to reduce the impact of
traffic disruptions imposed on society.

� Limit states affected by the corrosion of the transverse reinforc-
ing are more critical than the limit states associated with the
longitudinal reinforcing. Results show that the time-variant
reliability must be studied over each limit state, since the initial
critical limit state may no longer be of relevance when deterio-
ration is considered.

� Findings indicate that it is advisable to improve the durability
during the bridge design by increasing the corrosion initiation
time. This approach increases the initial cost but decreases
the life-cycle cost. However, a higher initial safety level does
not always result in a better life-cycle performance. Regarding
the durability improvement, the increment in concrete strength
can give better life-cycle results when a substantial increase in
cover thickness is not possible.
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