Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-h... more Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is associated with increased MAPK signaling and expression of the UPR inducer IRE-1α. These signal transduction processes characterize the cellular stress response to the virus promoting a pro-inflammatory environment and caspase activation in the host cell. Inhibition of viral replication by the viral protease inhibitor Nelfinavir reverts all these molecular changes also stimulating c-Jun expression, a key component of the JNK/AP-1 pathway with important role in the IRE-1αmediated transcriptional regulation of stress response genes with antiinflammatory and cytoprotection function. The present study demonstrates that UPR signaling and its interaction with cellular MAPKs and the NF-kB activity are important aspects of SARS-CoV-2-host cell interaction that deserve further investigation to identify more efficient therapies for this viral infection.
Paolo PuccettiOrabona, Maria Cristina Fioretti, Ursula Grohmann andBianchi, Carmine Vacca, France... more Paolo PuccettiOrabona, Maria Cristina Fioretti, Ursula Grohmann andBianchi, Carmine Vacca, Francesca Fallarino, Ciriana Maria Laura Belladonna, Jean-Christophe Renauld, Robertahttp://www.jimmunol.org/content/168/11/5448J Immunol€2002; 168:5448-5454; ;Referenceshttp://www.jimmunol.org/content/168/11/5448.full#ref-list-1This article cites 34 articles, 24 of which you can access for free at: Subscriptionshttp://jimmunol.org/subscriptionsInformation about subscribing to The Journal of Immunology is online at: Permissionshttp://www.aai.org/ji/copyright.htmlSubmit copyright permission requests at: Email Alertshttp://jimmunol.org/cgi/alerts/etocReceive free email-alerts when new articles cite this article. Sign up at:
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Napolioni et al. IDOs Polymorphisms in Human Aspergillosis and this effect appeared to be linked ... more Napolioni et al. IDOs Polymorphisms in Human Aspergillosis and this effect appeared to be linked to a deficit in the antifungal effector phagocytic activity. Thus, our study confirms and extends the role of IDO1 in the response to Aspergillus, and shed light on the possible involvement of IDO2 in specific clinical settings.
Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by Candida spp., most frequen... more Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by Candida spp., most frequently by Candida albicans, which may become recurrent and severely impacting the quality of life of susceptible women. Although it is increasingly being recognized that mucosal damage is mediated by an exaggerated inflammatory response, current therapeutic approaches are only based on antifungals that may relieve the symptomatology, but fail to definitely prevent recurrences. The unrestrained activation of the NLRP3 inflammasome with continuous production of IL-1β and recruitment of neutrophils is recognized as a pathogenic factor in VVC. We have previously shown that IL-22 is required to dampen pathogenic inflammasome activation in VVC via the NLRC4/IL-1Ra axis. However, IL-22 also regulates IL-18, a product of the inflammasome activity that regulates IL-22 expression. Here we describe a cross-regulatory circuit between IL-18 and IL-22 in murine VVC that is therapeutically druggable. We found that IL-18 production was dependent on IL-22 and NLRC4, and that IL-18, in turn, contributes to IL-22 activity. Like in IL-22 deficiency, IL-18 deficiency was associated with an increased susceptibility to VVC and unbalanced Th17/Treg response, suggesting that IL-18 can regulate both the innate and the adaptive responses to the fungus. Administration of the microbial metabolite indole-3-aldehyde, known to stimulate the production of IL-22 via the aryl hydrocarbon receptor (AhR), promoted IL-18 expression and protection against Candida infection. Should low levels of IL-18 be demonstrated in the vaginal fluids of women with recurrent VVC, targeting the AhR/IL-22/IL-18 pathway could be exploited for future therapeutic approaches in VVC. This study suggests that a deeper understanding of the mechanisms regulating inflammasome activity may lead to the identification of novel targets for intervention in VVC.
(2020) Effects of probiotic administration on immune responses of children and adolescents with t... more (2020) Effects of probiotic administration on immune responses of children and adolescents with type 1 diabetes to a quadrivalent inactivated influenza vaccine,
Glucocorticoid-induced tumor necrosis factor receptor (GITR) on T cells and its natural ligand, G... more Glucocorticoid-induced tumor necrosis factor receptor (GITR) on T cells and its natural ligand, GITRL, on accessory cells contribute to the control of immune homeostasis. Here we show that reverse signaling through GITRL after engagement by soluble GITR initiates the immunoregulatory pathway of tryptophan catabolism in mouse plasmacytoid dendritic cells, by means of noncanonical NF-jB-dependent induction of indoleamine 2,3-dioxygenase (IDO). The synthetic glucocorticoid dexamethasone administered in vivo activated IDO through the symmetric induction of GITR in CD4 + T cells and GITRL in plasmacytoid dendritic cells. The drug exerted IDO-dependent protection in a model of allergic airway inflammation. Modulation of tryptophan catabolism via the GITR-GITRL coreceptor system might represent an effective therapeutic target in immune regulation. Induction of IDO could be an important mechanism underlying the anti-inflammatory action of corticosteroids.
Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diab... more Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes
Knowledge of a protein’s spatial dynamics at the subcellular level is key to understanding its fu... more Knowledge of a protein’s spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3‐dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long‐lasting immunosuppression. Whether the two activities—namely, the catalytic and signaling functions—are spatially segregated has been unclear. We found that, under conditions favoring signaling rather than catabolic events, IDO1 shifts from the cytosol to early endosomes. The event requires interaction with class IA phosphoinositide 3‐kinases (PI3Ks), which become activated, resulting in full expression of the immunoregulatory phenotype in vivo in pDCs as resulting from IDO1‐dependent signaling events. Thus, IDO1’s spatial dynamics meet the needs for short‐acting as well as durable mechanisms of immune suppression, both under acute and chronic inflammatory conditions. These data expand the theoretical basis for an IDO1‐centered therapy in inflammation and autoimmunity.
Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress an... more Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband’s PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1β, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA inte...
A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory trypt... more A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) - an IL-6 receptor blocker - would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was ...
Resistance to primary fungal pathogens is usually attributed to the proinflammatory mechanisms of... more Resistance to primary fungal pathogens is usually attributed to the proinflammatory mechanisms of immunity conferred by interferon-γ activation of phagocytes that control microbial growth, whereas susceptibility is attributed to anti-inflammatory responses that deactivate immunity. This study challenges this paradigm by demonstrating that resistance to a primary fungal pathogen such ascan be mediated by disease tolerance, a mechanism that preserves host fitness instead of pathogen clearance. Among the mechanisms of disease tolerance described, a crucial role has been ascribed to the enzyme indoleamine-2,3 dioxygenase (IDO) that concomitantly controls pathogen growth by limiting tryptophan availability and reduces tissue damage by decreasing the inflammatory process. Here, we demonstrated in a pulmonary model of paracoccidioidomycosis that IDO exerts a dual function depending on the resistant pattern of hosts. IDO activity is predominantly enzymatic and induced by IFN-γ signaling in ...
The B-type natriuretic peptide (BNP) hormone plays a crucial role in the regulation of cardiovasc... more The B-type natriuretic peptide (BNP) hormone plays a crucial role in the regulation of cardiovascular and energy homeostasis. Obesity is associated with low circulating levels of BNP, a condition known as "natriuretic handicap." Recent evidences suggest an altered expression of BNP receptors-both the signaling natriuretic peptide receptors (NPR)-A and the clearance NPR-C receptor-in adipose tissue (AT) as one of the putative causes of natriuretic handicap. The current study aims at clarifying the molecular mechanisms behind the natriuretic handicap, focusing on NPR modulation in the AT of obese and control subjects. The study enrolled 34 obese and 20 control subjects undergoing bariatric or abdominal surgery, respectively. The main clinical and biochemical parameters, including circulating BNP, were assessed. In visceral (VAT) and subcutaneous AT (SAT) samples, collected during surgery, the adipocytes and stromal vascular fraction (SVF) expression of NPR-A and NPR-C and the SVF secretion of interleukin 6 (IL-6) were determined. Both VAT and SAT from obese patients expressed a lower NPR-A/NPR-C ratio in adipocytes and the SVF secreted a higher level of IL-6, compared with the controls. Moreover, NPR-A/NPR-C ratio expressed by VAT and SAT adipocytes negatively correlated with body mass index, insulin, the Homeostasis Model Assessment of Insulin resistance, and IL-6 secreted by SVF, and the expression of the clearance receptor NPR-C, in both the VAT and SAT adipocytes, showed a negative correlation with circulating BNP. Overall, insulin resistance/hyperinsulinemia and AT inflammation (ie, high level of IL-6) are the major determinants of the lower NPR-A/NPR-C ratio in adipocytes, thus contributing to the natriuretic handicap in obese subjects.
The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the initial, rate-limiting step in tryp... more The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the initial, rate-limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1-dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine-based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP-1 and SHP-2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine-phosphorylated ITIMs will instead bind the suppressor of cytok...
Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzin... more Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1(+) myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation ...
Bortezomib (BTZ) is a first-in-class proteasome inhibitor approved for the therapy of multiple my... more Bortezomib (BTZ) is a first-in-class proteasome inhibitor approved for the therapy of multiple myeloma that also displays unique regulatory activities on immune cells. The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan metabolizing enzyme exerting potent immunoregulatory effects when expressed in dendritic cells (DCs), the most potent antigen-presenting cells capable of promoting either immunity or tolerance. We previously demonstrated that, in inflammatory conditions, IDO1 is subjected to proteasomal degradation in DCs, turning these cells from immunoregulatory to immunostimulatory. In non-obese diabetic (NOD) mice, an experimental model of autoimmune diabetes, we also identified an IDO1 defect such that the DCs do not develop tolerance toward pancreatic islet autoantigens. We found that BTZ rescues IDO1 protein expression in vitro in a particular subset of DCs, i.e., plasmacytoid DCs (pDCs) from NOD mice. When administered in vivo to prediabetic mice, the drug prevent...
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory, demyelinating disease of the ... more Experimental autoimmune encephalomyelitis (EAE) is an inflammatory, demyelinating disease of the CNS that mimics human multiple sclerosis (MS), and it is thought to be driven by Th1 and Th17 myelin-reactive cells. Although adaptive immunity is clearly pivotal in the pathogenesis of EAE, with an essential role of CD4(+) T cells, little is known of early, innate responses in this experimental setting. CpG-rich oligodeoxynucleotides (ODNs), typically found in microbial genomes, are potent activators of TLR9 in plasmacytoid dendritic cells (pDCs). In this study, we compared the effects of two types of CpG, namely, type A and type B, on EAE. We found that treatment with CpG type A ODN (CpG-A), known to induce high amounts of IFN-α in pDCs, significantly reduced disease severity in EAE, relative to controls (12.63 ± 1.86 versus 23.49 ± 1.46, resp.; p = 0.001). Treatment also delayed onset of neurological deficits and reduced spinal cord demyelination, while increasing the percentage of sp...
Obesity has a great impact on cardiovascular morbidity and mortality, the treatment of this patho... more Obesity has a great impact on cardiovascular morbidity and mortality, the treatment of this pathological state is important given the significant health consequences. Lifestyle and behaviour changes play a significant role in weight management. The purpose of this study was to investigate the impact of an intensive multidisciplinary lifestyle intervention on well-known atherogenic factors in a group of overweight and obese subjects. A total of 44 people with overweight/obesity underwent a lifestyle intervention based on nutritional education, psychological support and a 3-month exercise training program with a frequency of twice a week. Several anthropometric and biochemical parameters were measured before and after the lifestyle intervention. Lifestyle intervention led to a significant reduction in metabolic profile including body mass index (BMI), waist circumference, systolic and diastolic blood pressure, plasma glucose, and plasma triglycerides. These reductions were also accompanied by a significant increase in maximal oxygen consumption and muscle strength. Furthermore, paraoxonase and lactonase activities and the concentration of Apoliproteins A1 (APO A1) were significantly increased and the serum levels of oxLDL reduced without any changes in the circulating levels of LDL and HDL. In conclusion, our study suggests that an intensive lifestyle intervention in obese subjects promotes a series of beneficial antiatherogenic changes which included increased enzyme activites of paraoxonase and lactonase, concentration of Apoliproteins A1 and decreased circulating levels of oxLDL.
Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-h... more Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is associated with increased MAPK signaling and expression of the UPR inducer IRE-1α. These signal transduction processes characterize the cellular stress response to the virus promoting a pro-inflammatory environment and caspase activation in the host cell. Inhibition of viral replication by the viral protease inhibitor Nelfinavir reverts all these molecular changes also stimulating c-Jun expression, a key component of the JNK/AP-1 pathway with important role in the IRE-1αmediated transcriptional regulation of stress response genes with antiinflammatory and cytoprotection function. The present study demonstrates that UPR signaling and its interaction with cellular MAPKs and the NF-kB activity are important aspects of SARS-CoV-2-host cell interaction that deserve further investigation to identify more efficient therapies for this viral infection.
Paolo PuccettiOrabona, Maria Cristina Fioretti, Ursula Grohmann andBianchi, Carmine Vacca, France... more Paolo PuccettiOrabona, Maria Cristina Fioretti, Ursula Grohmann andBianchi, Carmine Vacca, Francesca Fallarino, Ciriana Maria Laura Belladonna, Jean-Christophe Renauld, Robertahttp://www.jimmunol.org/content/168/11/5448J Immunol€2002; 168:5448-5454; ;Referenceshttp://www.jimmunol.org/content/168/11/5448.full#ref-list-1This article cites 34 articles, 24 of which you can access for free at: Subscriptionshttp://jimmunol.org/subscriptionsInformation about subscribing to The Journal of Immunology is online at: Permissionshttp://www.aai.org/ji/copyright.htmlSubmit copyright permission requests at: Email Alertshttp://jimmunol.org/cgi/alerts/etocReceive free email-alerts when new articles cite this article. Sign up at:
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Napolioni et al. IDOs Polymorphisms in Human Aspergillosis and this effect appeared to be linked ... more Napolioni et al. IDOs Polymorphisms in Human Aspergillosis and this effect appeared to be linked to a deficit in the antifungal effector phagocytic activity. Thus, our study confirms and extends the role of IDO1 in the response to Aspergillus, and shed light on the possible involvement of IDO2 in specific clinical settings.
Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by Candida spp., most frequen... more Vulvovaginal candidiasis (VVC) is a common mucosal infection caused by Candida spp., most frequently by Candida albicans, which may become recurrent and severely impacting the quality of life of susceptible women. Although it is increasingly being recognized that mucosal damage is mediated by an exaggerated inflammatory response, current therapeutic approaches are only based on antifungals that may relieve the symptomatology, but fail to definitely prevent recurrences. The unrestrained activation of the NLRP3 inflammasome with continuous production of IL-1β and recruitment of neutrophils is recognized as a pathogenic factor in VVC. We have previously shown that IL-22 is required to dampen pathogenic inflammasome activation in VVC via the NLRC4/IL-1Ra axis. However, IL-22 also regulates IL-18, a product of the inflammasome activity that regulates IL-22 expression. Here we describe a cross-regulatory circuit between IL-18 and IL-22 in murine VVC that is therapeutically druggable. We found that IL-18 production was dependent on IL-22 and NLRC4, and that IL-18, in turn, contributes to IL-22 activity. Like in IL-22 deficiency, IL-18 deficiency was associated with an increased susceptibility to VVC and unbalanced Th17/Treg response, suggesting that IL-18 can regulate both the innate and the adaptive responses to the fungus. Administration of the microbial metabolite indole-3-aldehyde, known to stimulate the production of IL-22 via the aryl hydrocarbon receptor (AhR), promoted IL-18 expression and protection against Candida infection. Should low levels of IL-18 be demonstrated in the vaginal fluids of women with recurrent VVC, targeting the AhR/IL-22/IL-18 pathway could be exploited for future therapeutic approaches in VVC. This study suggests that a deeper understanding of the mechanisms regulating inflammasome activity may lead to the identification of novel targets for intervention in VVC.
(2020) Effects of probiotic administration on immune responses of children and adolescents with t... more (2020) Effects of probiotic administration on immune responses of children and adolescents with type 1 diabetes to a quadrivalent inactivated influenza vaccine,
Glucocorticoid-induced tumor necrosis factor receptor (GITR) on T cells and its natural ligand, G... more Glucocorticoid-induced tumor necrosis factor receptor (GITR) on T cells and its natural ligand, GITRL, on accessory cells contribute to the control of immune homeostasis. Here we show that reverse signaling through GITRL after engagement by soluble GITR initiates the immunoregulatory pathway of tryptophan catabolism in mouse plasmacytoid dendritic cells, by means of noncanonical NF-jB-dependent induction of indoleamine 2,3-dioxygenase (IDO). The synthetic glucocorticoid dexamethasone administered in vivo activated IDO through the symmetric induction of GITR in CD4 + T cells and GITRL in plasmacytoid dendritic cells. The drug exerted IDO-dependent protection in a model of allergic airway inflammation. Modulation of tryptophan catabolism via the GITR-GITRL coreceptor system might represent an effective therapeutic target in immune regulation. Induction of IDO could be an important mechanism underlying the anti-inflammatory action of corticosteroids.
Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diab... more Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes
Knowledge of a protein’s spatial dynamics at the subcellular level is key to understanding its fu... more Knowledge of a protein’s spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3‐dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long‐lasting immunosuppression. Whether the two activities—namely, the catalytic and signaling functions—are spatially segregated has been unclear. We found that, under conditions favoring signaling rather than catabolic events, IDO1 shifts from the cytosol to early endosomes. The event requires interaction with class IA phosphoinositide 3‐kinases (PI3Ks), which become activated, resulting in full expression of the immunoregulatory phenotype in vivo in pDCs as resulting from IDO1‐dependent signaling events. Thus, IDO1’s spatial dynamics meet the needs for short‐acting as well as durable mechanisms of immune suppression, both under acute and chronic inflammatory conditions. These data expand the theoretical basis for an IDO1‐centered therapy in inflammation and autoimmunity.
Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress an... more Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband’s PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1β, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA inte...
A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory trypt... more A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) - an IL-6 receptor blocker - would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was ...
Resistance to primary fungal pathogens is usually attributed to the proinflammatory mechanisms of... more Resistance to primary fungal pathogens is usually attributed to the proinflammatory mechanisms of immunity conferred by interferon-γ activation of phagocytes that control microbial growth, whereas susceptibility is attributed to anti-inflammatory responses that deactivate immunity. This study challenges this paradigm by demonstrating that resistance to a primary fungal pathogen such ascan be mediated by disease tolerance, a mechanism that preserves host fitness instead of pathogen clearance. Among the mechanisms of disease tolerance described, a crucial role has been ascribed to the enzyme indoleamine-2,3 dioxygenase (IDO) that concomitantly controls pathogen growth by limiting tryptophan availability and reduces tissue damage by decreasing the inflammatory process. Here, we demonstrated in a pulmonary model of paracoccidioidomycosis that IDO exerts a dual function depending on the resistant pattern of hosts. IDO activity is predominantly enzymatic and induced by IFN-γ signaling in ...
The B-type natriuretic peptide (BNP) hormone plays a crucial role in the regulation of cardiovasc... more The B-type natriuretic peptide (BNP) hormone plays a crucial role in the regulation of cardiovascular and energy homeostasis. Obesity is associated with low circulating levels of BNP, a condition known as "natriuretic handicap." Recent evidences suggest an altered expression of BNP receptors-both the signaling natriuretic peptide receptors (NPR)-A and the clearance NPR-C receptor-in adipose tissue (AT) as one of the putative causes of natriuretic handicap. The current study aims at clarifying the molecular mechanisms behind the natriuretic handicap, focusing on NPR modulation in the AT of obese and control subjects. The study enrolled 34 obese and 20 control subjects undergoing bariatric or abdominal surgery, respectively. The main clinical and biochemical parameters, including circulating BNP, were assessed. In visceral (VAT) and subcutaneous AT (SAT) samples, collected during surgery, the adipocytes and stromal vascular fraction (SVF) expression of NPR-A and NPR-C and the SVF secretion of interleukin 6 (IL-6) were determined. Both VAT and SAT from obese patients expressed a lower NPR-A/NPR-C ratio in adipocytes and the SVF secreted a higher level of IL-6, compared with the controls. Moreover, NPR-A/NPR-C ratio expressed by VAT and SAT adipocytes negatively correlated with body mass index, insulin, the Homeostasis Model Assessment of Insulin resistance, and IL-6 secreted by SVF, and the expression of the clearance receptor NPR-C, in both the VAT and SAT adipocytes, showed a negative correlation with circulating BNP. Overall, insulin resistance/hyperinsulinemia and AT inflammation (ie, high level of IL-6) are the major determinants of the lower NPR-A/NPR-C ratio in adipocytes, thus contributing to the natriuretic handicap in obese subjects.
The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the initial, rate-limiting step in tryp... more The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the initial, rate-limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1-dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine-based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP-1 and SHP-2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine-phosphorylated ITIMs will instead bind the suppressor of cytok...
Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzin... more Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1(+) myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation ...
Bortezomib (BTZ) is a first-in-class proteasome inhibitor approved for the therapy of multiple my... more Bortezomib (BTZ) is a first-in-class proteasome inhibitor approved for the therapy of multiple myeloma that also displays unique regulatory activities on immune cells. The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan metabolizing enzyme exerting potent immunoregulatory effects when expressed in dendritic cells (DCs), the most potent antigen-presenting cells capable of promoting either immunity or tolerance. We previously demonstrated that, in inflammatory conditions, IDO1 is subjected to proteasomal degradation in DCs, turning these cells from immunoregulatory to immunostimulatory. In non-obese diabetic (NOD) mice, an experimental model of autoimmune diabetes, we also identified an IDO1 defect such that the DCs do not develop tolerance toward pancreatic islet autoantigens. We found that BTZ rescues IDO1 protein expression in vitro in a particular subset of DCs, i.e., plasmacytoid DCs (pDCs) from NOD mice. When administered in vivo to prediabetic mice, the drug prevent...
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory, demyelinating disease of the ... more Experimental autoimmune encephalomyelitis (EAE) is an inflammatory, demyelinating disease of the CNS that mimics human multiple sclerosis (MS), and it is thought to be driven by Th1 and Th17 myelin-reactive cells. Although adaptive immunity is clearly pivotal in the pathogenesis of EAE, with an essential role of CD4(+) T cells, little is known of early, innate responses in this experimental setting. CpG-rich oligodeoxynucleotides (ODNs), typically found in microbial genomes, are potent activators of TLR9 in plasmacytoid dendritic cells (pDCs). In this study, we compared the effects of two types of CpG, namely, type A and type B, on EAE. We found that treatment with CpG type A ODN (CpG-A), known to induce high amounts of IFN-α in pDCs, significantly reduced disease severity in EAE, relative to controls (12.63 ± 1.86 versus 23.49 ± 1.46, resp.; p = 0.001). Treatment also delayed onset of neurological deficits and reduced spinal cord demyelination, while increasing the percentage of sp...
Obesity has a great impact on cardiovascular morbidity and mortality, the treatment of this patho... more Obesity has a great impact on cardiovascular morbidity and mortality, the treatment of this pathological state is important given the significant health consequences. Lifestyle and behaviour changes play a significant role in weight management. The purpose of this study was to investigate the impact of an intensive multidisciplinary lifestyle intervention on well-known atherogenic factors in a group of overweight and obese subjects. A total of 44 people with overweight/obesity underwent a lifestyle intervention based on nutritional education, psychological support and a 3-month exercise training program with a frequency of twice a week. Several anthropometric and biochemical parameters were measured before and after the lifestyle intervention. Lifestyle intervention led to a significant reduction in metabolic profile including body mass index (BMI), waist circumference, systolic and diastolic blood pressure, plasma glucose, and plasma triglycerides. These reductions were also accompanied by a significant increase in maximal oxygen consumption and muscle strength. Furthermore, paraoxonase and lactonase activities and the concentration of Apoliproteins A1 (APO A1) were significantly increased and the serum levels of oxLDL reduced without any changes in the circulating levels of LDL and HDL. In conclusion, our study suggests that an intensive lifestyle intervention in obese subjects promotes a series of beneficial antiatherogenic changes which included increased enzyme activites of paraoxonase and lactonase, concentration of Apoliproteins A1 and decreased circulating levels of oxLDL.
Uploads
Papers by Carmine Vacca