Discrepancies in the low-energy quasiparticle dispersion extracted from angle-resolved photoemiss... more Discrepancies in the low-energy quasiparticle dispersion extracted from angle-resolved photoemission, scanning tunneling spectroscopy, and quantum oscillation data are common and have long haunted the field of quantum matter physics. Here, we directly test the consistency of results from these three techniques by comparing data from the correlated metal Sr 2 RhO 4. Using established schemes for the interpretation of the experimental data, we find good agreement for the Fermi surface topography and carrier effective masses. Hence, the apparent absence of such an agreement in other quantum materials, including the cuprates, suggests that the electronic states in these materials are of different, non-Fermi liquid-like nature. Finally, we discuss the potential and challenges in extracting carrier lifetimes from photoemission and quasiparticle interference data.
We report on the fabrication and performance of a new kind of tip for scanning tunneling microsco... more We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications.
The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it w... more The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory [1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to zero [2] , in contradiction to expectation from BCS theory. The origin of this anomalous vanishing is unknown. Our scanning tunneling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ hightemperature superconductor show that it is due to the emergence of puddled superconductivity, featuring nanoscale superconducting islands in a metallic matrix [3,4]. Our measurements further reveal that this puddling is driven by gap filling, while the gap itself persists beyond the breakdown of superconductivity. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair-breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory.
We report on the fabrication and performance of a new kind of tip for scanning tunneling microsco... more We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical or photonic circuits, as well as mechanical systems. We experimentally demonstrate that the performance of the smart tips is on par with conventional ones, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. In addition, these devices can be made to accommodate two isolated tips with sub-50 nm apex-to-apex distance to measure electron correlations at the nanoscale using a new type of double-tip experiment described in this letter.
The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but the ... more The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but the superconductivity at high doping is often believed to be governed by conventional mean-field Bardeen–Cooper–Schrieffer theory1. However, it was shown that the superfluid density vanishes when the transition temperature goes to zero2,3, in contradiction to expectations from Bardeen–Cooper–Schrieffer theory. Our scanning tunnelling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ high-temperature superconductor show that this is due to the emergence of nanoscale superconducting puddles in a metallic matrix4,5. Our measurements further reveal that this puddling is driven by gap filling instead of gap closing. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair breaking by disorder does not play a dominant role and th...
The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it w... more The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory [1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to zero [2] , in contradiction to expectation from BCS theory. The origin of this anomalous vanishing is unknown. Our scanning tunneling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ hightemperature superconductor show that it is due to the emergence of puddled superconductivity, featuring nanoscale superconducting islands in a metallic matrix [3,4]. Our measurements further reveal that this puddling is driven by gap filling, while the gap itself persists beyond the breakdown of superconductivity. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair-breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory.
Materials with strongly correlated electrons show some of the most mysterious and exotic phases o... more Materials with strongly correlated electrons show some of the most mysterious and exotic phases of quantum matter, such as unconventional superconductivity, quantum criticality and strange metal phase. In this thesis, we study strongly-correlated electron materials using spectroscopic-imaging scanning tunneling microscopy. We first describe the design and construction of a novel, ultra-stiff, scanning tunneling microscope that is optimized to have the high signal-to-noise ratio required to study these materials. We then present the discovery of the melting of the Mott insulating phase in the iridate Sr2IrO4 upon electron doping, that results in the formation of puddles of pseudogap and charge order. This is striking similar to the cuprate unconventional superconductors and for the first time we show the universality of these phenomena using scanning tunneling microscopy. We moreover discuss the effect of electric field penetration in a poorly conducting sample, and how this affects ...
We report on the fabrication and performance of a new kind of tip for scanning tunneling microsco... more We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical or photonic circuits, as well as mechanical systems. We experimentally demonstrate that the performance of the smart tips is on par with conventional ones, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. In addition, these devices can be made to accommodate two isolated tips with sub-50 nm apex-to-apex distance to measure electron correlations at the nanoscale using a new type of double-tip experiment described in this letter.
Discrepancies in the low-energy quasiparticle dispersion extracted from angle-resolved photoemiss... more Discrepancies in the low-energy quasiparticle dispersion extracted from angle-resolved photoemission, scanning tunneling spectroscopy, and quantum oscillation data are common and have long haunted the field of quantum matter physics. Here, we directly test the consistency of results from these three techniques by comparing data from the correlated metal Sr 2 RhO 4. Using established schemes for the interpretation of the experimental data, we find good agreement for the Fermi surface topography and carrier effective masses. Hence, the apparent absence of such an agreement in other quantum materials, including the cuprates, suggests that the electronic states in these materials are of different, non-Fermi liquid-like nature. Finally, we discuss the potential and challenges in extracting carrier lifetimes from photoemission and quasiparticle interference data.
We report on the fabrication and performance of a new kind of tip for scanning tunneling microsco... more We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications.
The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it w... more The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory [1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to zero [2] , in contradiction to expectation from BCS theory. The origin of this anomalous vanishing is unknown. Our scanning tunneling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ hightemperature superconductor show that it is due to the emergence of puddled superconductivity, featuring nanoscale superconducting islands in a metallic matrix [3,4]. Our measurements further reveal that this puddling is driven by gap filling, while the gap itself persists beyond the breakdown of superconductivity. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair-breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory.
We report on the fabrication and performance of a new kind of tip for scanning tunneling microsco... more We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical or photonic circuits, as well as mechanical systems. We experimentally demonstrate that the performance of the smart tips is on par with conventional ones, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. In addition, these devices can be made to accommodate two isolated tips with sub-50 nm apex-to-apex distance to measure electron correlations at the nanoscale using a new type of double-tip experiment described in this letter.
The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but the ... more The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but the superconductivity at high doping is often believed to be governed by conventional mean-field Bardeen–Cooper–Schrieffer theory1. However, it was shown that the superfluid density vanishes when the transition temperature goes to zero2,3, in contradiction to expectations from Bardeen–Cooper–Schrieffer theory. Our scanning tunnelling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ high-temperature superconductor show that this is due to the emergence of nanoscale superconducting puddles in a metallic matrix4,5. Our measurements further reveal that this puddling is driven by gap filling instead of gap closing. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair breaking by disorder does not play a dominant role and th...
The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it w... more The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory [1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to zero [2] , in contradiction to expectation from BCS theory. The origin of this anomalous vanishing is unknown. Our scanning tunneling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ hightemperature superconductor show that it is due to the emergence of puddled superconductivity, featuring nanoscale superconducting islands in a metallic matrix [3,4]. Our measurements further reveal that this puddling is driven by gap filling, while the gap itself persists beyond the breakdown of superconductivity. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair-breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory.
Materials with strongly correlated electrons show some of the most mysterious and exotic phases o... more Materials with strongly correlated electrons show some of the most mysterious and exotic phases of quantum matter, such as unconventional superconductivity, quantum criticality and strange metal phase. In this thesis, we study strongly-correlated electron materials using spectroscopic-imaging scanning tunneling microscopy. We first describe the design and construction of a novel, ultra-stiff, scanning tunneling microscope that is optimized to have the high signal-to-noise ratio required to study these materials. We then present the discovery of the melting of the Mott insulating phase in the iridate Sr2IrO4 upon electron doping, that results in the formation of puddles of pseudogap and charge order. This is striking similar to the cuprate unconventional superconductors and for the first time we show the universality of these phenomena using scanning tunneling microscopy. We moreover discuss the effect of electric field penetration in a poorly conducting sample, and how this affects ...
We report on the fabrication and performance of a new kind of tip for scanning tunneling microsco... more We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical or photonic circuits, as well as mechanical systems. We experimentally demonstrate that the performance of the smart tips is on par with conventional ones, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. In addition, these devices can be made to accommodate two isolated tips with sub-50 nm apex-to-apex distance to measure electron correlations at the nanoscale using a new type of double-tip experiment described in this letter.
Uploads
Papers by Irene Battisti