Face recognition is an apparently straightforward but, in fact, complex ability, encompassing the... more Face recognition is an apparently straightforward but, in fact, complex ability, encompassing the activation of at least visual and somatosensory representations. Understanding how identity shapes the interplay between these face-related affordances could clarify the mechanisms of self-other discrimination. To this aim, we exploited the so-called "face inversion effect" (FIE), a specific bias in the mental rotation of face images (of other people): with respect to inanimate objects, face images require longer time to be mentally rotated from the upside-down. Via the FIE, which suggests the activation of somatosensory mechanisms, we assessed identity-related changes in the interplay between visual and somatosensory affordances between self-and other-face representations. Methodologically, to avoid the potential interference of the somatosensory feedback associated with musculoskeletal movements, we introduced the tracking of gaze direction to record participants' response. Response times from twenty healthy participants showed the larger FIE for self-than other-faces, suggesting that the impact of somatosensory affordances on mental representation of faces varies according to identity. The present study lays the foundations of a quantifiable method to implicitly assess self-other discrimination, with possible translational benefits for early diagnosis of face processing disturbances (e.g. prosopagnosia), and for neurophysiological studies on self-other discrimination in ethological settings.
The present review focuses on the flow and interaction of somatosensory-motor signals in the cent... more The present review focuses on the flow and interaction of somatosensory-motor signals in the central and peripheral nervous system. Specifically, where incoming sensory signals from the periphery are processed and interpreted to initiate behaviors, and how ongoing behaviors produce sensory consequences encoded and used to fine-tune subsequent actions. We describe the structure-function relations of this loop, how these relations can be modeled and aspects of somatosensory-motor rehabilitation. The work reviewed here shows that it is imperative to understand the fundamental mechanisms of the somatosensory-motor system to restore accurate motor abilities and appropriate somatosensory feedback. Knowledge of the salient neural mechanisms of sensory-motor integration has begun to generate innovative approaches to improve rehabilitation training following neurological impairments such as stroke. The present work supports the integration of basic science principles of sensory-motor integration into rehabilitation procedures to create new solutions for sensory-motor disorders.
Rhythmic brain activity plays an important role in neural processing and behavior. Features of th... more Rhythmic brain activity plays an important role in neural processing and behavior. Features of these oscillations, including amplitude, phase, and spectrum, can be influenced by internal states (e.g., shifts in arousal, attention or cognitive ability) or external stimulation. Electromagnetic stimulation techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial alternating current stimulation are used increasingly in both research and clinical settings. Currently, the mechanisms whereby time-dependent external stimuli influence population-scale oscillations remain poorly understood. Here, we provide computational insights regarding the mapping between periodic pulsatile stimulation parameters such as amplitude and frequency and the response dynamics of recurrent, nonlinear spiking neural networks. Using a cortical model built of excitatory and inhibitory neurons, we explored a wide range of stimulation intensities and frequencies systematically. Our results suggest that rhythmic stimulation can form the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. Our results show that, in addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network. Such nonlinear acceleration of spontaneous and synchronous oscillatory activity in a neural network occurs in regimes of intense, high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research.
Spinal cord injury (SCI) interrupts the brain-body input-output exchange and modifies the mental ... more Spinal cord injury (SCI) interrupts the brain-body input-output exchange and modifies the mental representation of disconnected body parts, with decreased reliance on sensorimotor aspects of body representation and increased weighting of visuospatial ones. We hypothesized that physiotherapy-related benefits might extend to the re-establishment of the typical interplay between these two types of strategies. To test this hypothesis, we asked 42 participants (21 individuals with SCI pre-and post-physiotherapy, plus 21 controls) to perform mental rotation of corporal images (a cognitive task than can activate one or the other strategy). Results showed that only after physiotherapy the individuals with SCI showed the sensorimotor biomechanical effect (orientation-dependent modulation of response times) for the mental rotation of foot images (absent in pre-physiotherapy). This highlights that body representation is adaptable to contingent conditions, in that the reliance on sensorimotor or visuospatial strategies can be altered and, at least partially, restored as a function of physiotherapy.
Previous studies have shown that individuals with overweight and obesity may experience attention... more Previous studies have shown that individuals with overweight and obesity may experience attentional biases and reduced inhibition toward food stimuli. However, evidence is scarce as to whether the attentional bias is present even before stimuli are consciously recognized. Moreover, it is not known whether or not differences in the underlying brain morphometry and connectivity may co-occur with attentional bias and impulsivity towards food in individuals with different BMIs. To address these questions, we asked fifty-three participants (age M = 23.2, SD = 2.9, 13 males) to perform a breaking Continuous Flash Suppression (bCFS) task to measure the speed of subliminal processing, and a Go/No-Go task to measure inhibition, using food and nonfood stimuli. We collected whole-brain structural magnetic resonance images and functional resting-state activity. A higher BMI predicted slower subliminal processing of images independently of the type of stimulus (food or nonfood, p = 0.001, p 2 = 0.17). This higher threshold of awareness is linked to lower grey matter (GM) density of key areas involved in awareness, high-level sensory integration, and reward, such as the orbitofrontal cortex [ t = 4.55, p = 0.003], the right temporal areas [ t = 4.18, p = 0.002], the operculum and insula [ t = 4.14, p = 0.005] only in individuals with a higher BMI. In addition, individuals with a higher BMI exhibit a specific reduced inhibition to food in the Go/No-Go task [ p = 0.02, p 2 = 0.02], which is associated with lower GM density in reward brain regions [orbital gyrus, t = 4.97, p = 0.005, and parietal operculum, t = 5.14, p < 0.001] and lower resting-state connectivity of the orbital gyrus to visual areas [fusiform gyrus, t =-4.64, p < 0.001 and bilateral occipital cortex, t =-4.51, p < 0.001 and t =-4.34, p < 0.001]. Therefore, a higher BMI is predictive of non food-specific slower visual subliminal processing, which is linked to morphological alterations of key areas involved in awareness, high-level sensory integration, and reward. At a late, conscious stage of visual processing a higher BMI is associated with a specific bias towards food and with lower GM density in reward brain regions. Finally, independently of BMI, volumetric variations and connectivity patterns in different brain regions are associated with variability in bCFS and Go/No-Go performances.
Dyslexia is a neurobiological learning disability in the reading domain that has symptoms in earl... more Dyslexia is a neurobiological learning disability in the reading domain that has symptoms in early childhood and persists throughout life. Individuals with dyslexia experience difficulties in academia and cognitive and emotional challenges that can affect wellbeing. Early intervention is critical to minimize the long-term difficulties of these individuals. However, the behavioral and neural correlates which predict dyslexia are challenging to depict before reading is acquired. One of the precursors for language and reading acquisition is executive functions (EF). The present review aims to highlight the current atypicality found in individuals with dyslexia in the domain of EF using behavioral measures, brain mapping, functional connectivity, and diffusion tensor imaging along development. Individuals with dyslexia show EF abnormalities in both behavioral and neurobiological domains, starting in early childhood that persist into adulthood. EF impairment precedes reading disability, therefore adding an EF assessment to the neuropsychological testing is recommended for early intervention. EF training should also be considered for the most comprehensive outcomes.
Fundamental human feelings such as body ownership ("this" body is "my" body) and vicariousness (f... more Fundamental human feelings such as body ownership ("this" body is "my" body) and vicariousness (first-person-like experience of events occurring to others) are based on multisensory integration. Behavioral links between body ownership and vicariousness have been shown, but the neural underpinnings remain largely unexplored. To fill this gap, we investigated the neural effects of altered body ownership on vicarious somatosensation. While recording functional brain imaging data, first, we altered participants' body ownership by robotically delivering tactile stimulations ("tactile" stroking) in synchrony or not with videos of a virtual hand being brushed ("visual" stroking). Then, we manipulated vicarious somatosensation by showing videos of the virtual hand being touched by a syringe's plunger (touch) or needle (pain). Only after the alteration of body ownership (synchronous visuo-tactile stroking) and specifically during late epochs of vicarious somatosensation, vicarious pain was associated with lower activation in premotor and anterior cingulate cortices with respect to vicarious touch. At the methodological level, the present study highlights the importance of the neural response's temporal evolution. At the theoretical level, it shows that the higher-level (cognitive) impact of a lower-level (sensory) body-related processing (visuo-tactile) is not limited to body ownership but also extends to other psychological body-related domains, such as vicarious somatosensation.
Different aspects of attention can be assessed through psychological tests, in order to identify ... more Different aspects of attention can be assessed through psychological tests, in order to identify stable individual or group differences as well as alterations after interventions. Aiming for a wide applicability of psychological assessments, Psychology Experiment Building Language (PEBL) is an open-source software system for designing and running computerized tasks that tax various attentional functions. Here, we evaluated the reliability and validity of several widely used computerized attention tasks as provided with the PEBL package, namely the Continuous Performance Task (CPT), the Switcher task, the Psychomotor Vigilance Task (PVT), the Mental Rotation task, and the Attentional Network Test. For all tasks, we evaluated test–retest reliability using the intraclass correlation coefficient (ICC), as well as internal consistency through within-test correlations and split-half ICC. Across tasks, response time scores showed adequate reliability, whereas scores of performance accuracy...
International Journal of Environmental Research and Public Health
Paraplegia following spinal cord injury (SCI) affects the mental representation and peripersonal ... more Paraplegia following spinal cord injury (SCI) affects the mental representation and peripersonal space of the paralysed body parts (i.e., lower limbs). Physical rehabilitation programs can improve these aspects, but the benefits are mostly partial and short-lasting. These limits could be due to the absence of trainings focused on SCI-induced cognitive deficits combined with traditional physical rehabilitation. To test this hypothesis, we assessed in 15 SCI-individuals the effects of adding cognitive recovery protocols (motor imagery–MI) to standard physical rehabilitation programs (Motor + MI training) on mental body representations and space representations, with respect to physical rehabilitation alone (control training). Each training comprised at least eight sessions administered over two weeks. The status of participants’ mental body representation and peripersonal space was assessed at three time points: before the training (T0), after the training (T1), and in a follow-up ass...
Face recognition requires comparing the current visual input with stored mental representations o... more Face recognition requires comparing the current visual input with stored mental representations of faces. Based on its role in visual recognition of faces and mental representation of the body, we hypothesized that the right temporo-parietal junction (rTPJ) could be implicated also in processing mental representation of faces. To test this hypothesis, we asked 30 neurotypical participants to perform mental rotation (laterality judgment of rotated pictures) of self-and other-face images, before and after the inhibition of rTPJ through repetitive transcranial magnetic stimulation. After inhibition of rTPJ the mental rotation of self-face was slower than other-face. In the control condition the mental rotation of self/other faces was not significantly different. This supports that the role of rTPJ extends to mental representation of faces, specifically for the self. Since the experimental task did not require to explicitly recognize identity, we propose that unconscious identity attribution affects also the mental representation of faces. The present study offers insights on the involvement rTPJ in mental representation of faces and proposes that the neural substrate dedicated to mental representation of faces goes beyond the traditional visual and memory areas.
Following the COVID-19 pandemic, many countries worldwide have put lockdowns in place to prevent ... more Following the COVID-19 pandemic, many countries worldwide have put lockdowns in place to prevent the virus from spreading. Evidence shows that lockdown measures can affect mental health; it is, therefore, important to identify the psychological characteristics making individuals more vulnerable. The present study aimed, first, to identify, through a cluster analysis, the psychological attributes that characterize individuals with similar psychological responses to the COVID-19 home confinement; second, to investigate whether different psychological characteristics, such as personality traits, alexithymia, and resilience, specifically influence anxiety, stress, and depression, depending on the scope of the confinement. We analyzed data from 393 participants who completed an online survey on their experiences during two different phases of the Italian lockdown, characterized by more or less strict measures of confinement. Two clusters were identified which included participants report...
Vision is the main entrance for environmental input to the human brain. Even if vision is our mos... more Vision is the main entrance for environmental input to the human brain. Even if vision is our most used sensory modality, its importance is not limited to environmental exploration. Rather it has strong links to motor competences, further extending to cognitive and social aspects of human life. These multifaceted relationships are particularly important in developmental age and become dramatically evident in presence of complex deficits originating from visual aberrancies. The present review summarizes the available neuropsychological evidence on the development of visual competences, with a particular focus on the associated visuo-motor integration skills in health and disease. With the aim of supporting future research and interventional settings, the goal of the present review is to constitute a solid base to help the translation of neuropsychological hypotheses into straightforward empirical investigations and rehabilitation/training protocols. This approach will further increas...
The so-called cortical silent period (CSP) refers to the temporary interruption of electromyograp... more The so-called cortical silent period (CSP) refers to the temporary interruption of electromyographic signal from a muscle following a motor-evoked potential (MEP) triggered by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). The neurophysiological origins of the CSP are debated. Previous evidence suggests that both spinal and cortical mechanisms may account for the duration of the CSP. However, contextual factors such as cortical fatigue, experimental procedures, attentional load, as well as neuropathology can also influence the CSP duration. The present paper summarizes the most relevant evidence on the mechanisms underlying the duration of the CSP, with a particular focus on the central role of the basal ganglia in the “direct” (excitatory), “indirect” (inhibitory), and “hyperdirect” cortico-subcortical pathways to manage cortical motor inhibition. We propose new methods of interpretation of the CSP related, at least partially, to the inhibitory hyperdir...
Due to the spread of COVID 2019, the Italian government imposed a lockdown on the national territ... more Due to the spread of COVID 2019, the Italian government imposed a lockdown on the national territory. Initially, citizens were required to stay at home and not to mix with others outside of their household (Phase 1); eventually, some of these restrictions were lifted (Phase 2). To investigate the impact of lockdown on emotional and binge eating, an online survey was conducted to compare measures of self-reported physical (BMI), psychological (Alexithymia), affective (anxiety, stress, and depression) and social (income, workload) state during Phase 1 and Phase 2. Data from 365 Italian residents showed that increased emotional eating was predicted by higher depression, anxiety, quality of personal relationships, and quality of life, while the increase of bingeing was predicted by higher stress. Moreover, we showed that higher alexithymia scores were associated by increased emotional eating and higher BMI scores were associated with both increased emotional eating and binge eating. Fin...
Personal and vicarious experience of pain activate partially overlapping brain networks. This bra... more Personal and vicarious experience of pain activate partially overlapping brain networks. This brain activity is further modulated by low-and high-order factors, e.g., the perceived intensity of the model's pain and the model's similarity with the onlooker, respectively. We investigated which specific aspect of similarity modulates such empathic reactivity, focusing on the potential differentiation between visual similarity and psychological closeness between the onlooker and different types of models. To this aim, we recorded fMRI data in neurotypical participants who observed painful and tactile stimuli delivered to an adult human hand, a baby human hand, a puppy dog paw, and an anthropomorphic robotic hand. The interaction between type of vicarious experience (pain, touch) and nature of model (adult, baby, dog, robot) showed that the right supramarginal gyrus (rSMG) was selectively active for visual similarity (more active during vicarious pain for the adult and baby models), while the anterior cingulate cortex (ACC) was more sensitive to psychological closeness (specifically linked to vicarious pain for the baby model). These findings indicate that visual similarity and psychological closeness between onlooker and model differentially affect the activity of brain regions specifically implied in encoding interindividual sharing of sensorimotor and affective aspects of vicarious pain, respectively.
The brain regions supporting sustained attention (sustained attention network; SAN) and mind-wand... more The brain regions supporting sustained attention (sustained attention network; SAN) and mind-wandering (default-mode network; DMN) have been extensively studied. Nevertheless, this knowledge has not yet been translated into advanced brain-based attention training protocols. Here, we used network-based real-time functional magnetic resonance imaging (fMRI) to provide healthy individuals with information about current activity levels in SAN and DMN. Specifically, 15 participants trained to control the difference between SAN and DMN hemodynamic activity and completed behavioral attention tests before and after neurofeedback training. Through training, participants improved controlling the differential SAN-DMN feedback signal, which was accomplished mainly through deactivating DMN. After training, participants were able to apply learned self-regulation of the differential feedback signal even when feedback was no longer available (i.e., during transfer runs). The neurofeedback group improved in sustained attention after training, although this improvement was temporally limited and rarely exceeded mere practice effects that were controlled by a test-retest behavioral control group. The learned self-regulation and the behavioral outcomes suggest that neurofeedback training of differential SAN and DMN activity has the potential to become a non-invasive and non-pharmacological tool to enhance attention and mitigate specific attention deficits.
Face recognition is an apparently straightforward but, in fact, complex ability, encompassing the... more Face recognition is an apparently straightforward but, in fact, complex ability, encompassing the activation of at least visual and somatosensory representations. Understanding how identity shapes the interplay between these face-related affordances could clarify the mechanisms of self-other discrimination. To this aim, we exploited the so-called "face inversion effect" (FIE), a specific bias in the mental rotation of face images (of other people): with respect to inanimate objects, face images require longer time to be mentally rotated from the upside-down. Via the FIE, which suggests the activation of somatosensory mechanisms, we assessed identity-related changes in the interplay between visual and somatosensory affordances between self-and other-face representations. Methodologically, to avoid the potential interference of the somatosensory feedback associated with musculoskeletal movements, we introduced the tracking of gaze direction to record participants' response. Response times from twenty healthy participants showed the larger FIE for self-than other-faces, suggesting that the impact of somatosensory affordances on mental representation of faces varies according to identity. The present study lays the foundations of a quantifiable method to implicitly assess self-other discrimination, with possible translational benefits for early diagnosis of face processing disturbances (e.g. prosopagnosia), and for neurophysiological studies on self-other discrimination in ethological settings.
The present review focuses on the flow and interaction of somatosensory-motor signals in the cent... more The present review focuses on the flow and interaction of somatosensory-motor signals in the central and peripheral nervous system. Specifically, where incoming sensory signals from the periphery are processed and interpreted to initiate behaviors, and how ongoing behaviors produce sensory consequences encoded and used to fine-tune subsequent actions. We describe the structure-function relations of this loop, how these relations can be modeled and aspects of somatosensory-motor rehabilitation. The work reviewed here shows that it is imperative to understand the fundamental mechanisms of the somatosensory-motor system to restore accurate motor abilities and appropriate somatosensory feedback. Knowledge of the salient neural mechanisms of sensory-motor integration has begun to generate innovative approaches to improve rehabilitation training following neurological impairments such as stroke. The present work supports the integration of basic science principles of sensory-motor integration into rehabilitation procedures to create new solutions for sensory-motor disorders.
Rhythmic brain activity plays an important role in neural processing and behavior. Features of th... more Rhythmic brain activity plays an important role in neural processing and behavior. Features of these oscillations, including amplitude, phase, and spectrum, can be influenced by internal states (e.g., shifts in arousal, attention or cognitive ability) or external stimulation. Electromagnetic stimulation techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial alternating current stimulation are used increasingly in both research and clinical settings. Currently, the mechanisms whereby time-dependent external stimuli influence population-scale oscillations remain poorly understood. Here, we provide computational insights regarding the mapping between periodic pulsatile stimulation parameters such as amplitude and frequency and the response dynamics of recurrent, nonlinear spiking neural networks. Using a cortical model built of excitatory and inhibitory neurons, we explored a wide range of stimulation intensities and frequencies systematically. Our results suggest that rhythmic stimulation can form the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. Our results show that, in addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network. Such nonlinear acceleration of spontaneous and synchronous oscillatory activity in a neural network occurs in regimes of intense, high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research.
Spinal cord injury (SCI) interrupts the brain-body input-output exchange and modifies the mental ... more Spinal cord injury (SCI) interrupts the brain-body input-output exchange and modifies the mental representation of disconnected body parts, with decreased reliance on sensorimotor aspects of body representation and increased weighting of visuospatial ones. We hypothesized that physiotherapy-related benefits might extend to the re-establishment of the typical interplay between these two types of strategies. To test this hypothesis, we asked 42 participants (21 individuals with SCI pre-and post-physiotherapy, plus 21 controls) to perform mental rotation of corporal images (a cognitive task than can activate one or the other strategy). Results showed that only after physiotherapy the individuals with SCI showed the sensorimotor biomechanical effect (orientation-dependent modulation of response times) for the mental rotation of foot images (absent in pre-physiotherapy). This highlights that body representation is adaptable to contingent conditions, in that the reliance on sensorimotor or visuospatial strategies can be altered and, at least partially, restored as a function of physiotherapy.
Previous studies have shown that individuals with overweight and obesity may experience attention... more Previous studies have shown that individuals with overweight and obesity may experience attentional biases and reduced inhibition toward food stimuli. However, evidence is scarce as to whether the attentional bias is present even before stimuli are consciously recognized. Moreover, it is not known whether or not differences in the underlying brain morphometry and connectivity may co-occur with attentional bias and impulsivity towards food in individuals with different BMIs. To address these questions, we asked fifty-three participants (age M = 23.2, SD = 2.9, 13 males) to perform a breaking Continuous Flash Suppression (bCFS) task to measure the speed of subliminal processing, and a Go/No-Go task to measure inhibition, using food and nonfood stimuli. We collected whole-brain structural magnetic resonance images and functional resting-state activity. A higher BMI predicted slower subliminal processing of images independently of the type of stimulus (food or nonfood, p = 0.001, p 2 = 0.17). This higher threshold of awareness is linked to lower grey matter (GM) density of key areas involved in awareness, high-level sensory integration, and reward, such as the orbitofrontal cortex [ t = 4.55, p = 0.003], the right temporal areas [ t = 4.18, p = 0.002], the operculum and insula [ t = 4.14, p = 0.005] only in individuals with a higher BMI. In addition, individuals with a higher BMI exhibit a specific reduced inhibition to food in the Go/No-Go task [ p = 0.02, p 2 = 0.02], which is associated with lower GM density in reward brain regions [orbital gyrus, t = 4.97, p = 0.005, and parietal operculum, t = 5.14, p < 0.001] and lower resting-state connectivity of the orbital gyrus to visual areas [fusiform gyrus, t =-4.64, p < 0.001 and bilateral occipital cortex, t =-4.51, p < 0.001 and t =-4.34, p < 0.001]. Therefore, a higher BMI is predictive of non food-specific slower visual subliminal processing, which is linked to morphological alterations of key areas involved in awareness, high-level sensory integration, and reward. At a late, conscious stage of visual processing a higher BMI is associated with a specific bias towards food and with lower GM density in reward brain regions. Finally, independently of BMI, volumetric variations and connectivity patterns in different brain regions are associated with variability in bCFS and Go/No-Go performances.
Dyslexia is a neurobiological learning disability in the reading domain that has symptoms in earl... more Dyslexia is a neurobiological learning disability in the reading domain that has symptoms in early childhood and persists throughout life. Individuals with dyslexia experience difficulties in academia and cognitive and emotional challenges that can affect wellbeing. Early intervention is critical to minimize the long-term difficulties of these individuals. However, the behavioral and neural correlates which predict dyslexia are challenging to depict before reading is acquired. One of the precursors for language and reading acquisition is executive functions (EF). The present review aims to highlight the current atypicality found in individuals with dyslexia in the domain of EF using behavioral measures, brain mapping, functional connectivity, and diffusion tensor imaging along development. Individuals with dyslexia show EF abnormalities in both behavioral and neurobiological domains, starting in early childhood that persist into adulthood. EF impairment precedes reading disability, therefore adding an EF assessment to the neuropsychological testing is recommended for early intervention. EF training should also be considered for the most comprehensive outcomes.
Fundamental human feelings such as body ownership ("this" body is "my" body) and vicariousness (f... more Fundamental human feelings such as body ownership ("this" body is "my" body) and vicariousness (first-person-like experience of events occurring to others) are based on multisensory integration. Behavioral links between body ownership and vicariousness have been shown, but the neural underpinnings remain largely unexplored. To fill this gap, we investigated the neural effects of altered body ownership on vicarious somatosensation. While recording functional brain imaging data, first, we altered participants' body ownership by robotically delivering tactile stimulations ("tactile" stroking) in synchrony or not with videos of a virtual hand being brushed ("visual" stroking). Then, we manipulated vicarious somatosensation by showing videos of the virtual hand being touched by a syringe's plunger (touch) or needle (pain). Only after the alteration of body ownership (synchronous visuo-tactile stroking) and specifically during late epochs of vicarious somatosensation, vicarious pain was associated with lower activation in premotor and anterior cingulate cortices with respect to vicarious touch. At the methodological level, the present study highlights the importance of the neural response's temporal evolution. At the theoretical level, it shows that the higher-level (cognitive) impact of a lower-level (sensory) body-related processing (visuo-tactile) is not limited to body ownership but also extends to other psychological body-related domains, such as vicarious somatosensation.
Different aspects of attention can be assessed through psychological tests, in order to identify ... more Different aspects of attention can be assessed through psychological tests, in order to identify stable individual or group differences as well as alterations after interventions. Aiming for a wide applicability of psychological assessments, Psychology Experiment Building Language (PEBL) is an open-source software system for designing and running computerized tasks that tax various attentional functions. Here, we evaluated the reliability and validity of several widely used computerized attention tasks as provided with the PEBL package, namely the Continuous Performance Task (CPT), the Switcher task, the Psychomotor Vigilance Task (PVT), the Mental Rotation task, and the Attentional Network Test. For all tasks, we evaluated test–retest reliability using the intraclass correlation coefficient (ICC), as well as internal consistency through within-test correlations and split-half ICC. Across tasks, response time scores showed adequate reliability, whereas scores of performance accuracy...
International Journal of Environmental Research and Public Health
Paraplegia following spinal cord injury (SCI) affects the mental representation and peripersonal ... more Paraplegia following spinal cord injury (SCI) affects the mental representation and peripersonal space of the paralysed body parts (i.e., lower limbs). Physical rehabilitation programs can improve these aspects, but the benefits are mostly partial and short-lasting. These limits could be due to the absence of trainings focused on SCI-induced cognitive deficits combined with traditional physical rehabilitation. To test this hypothesis, we assessed in 15 SCI-individuals the effects of adding cognitive recovery protocols (motor imagery–MI) to standard physical rehabilitation programs (Motor + MI training) on mental body representations and space representations, with respect to physical rehabilitation alone (control training). Each training comprised at least eight sessions administered over two weeks. The status of participants’ mental body representation and peripersonal space was assessed at three time points: before the training (T0), after the training (T1), and in a follow-up ass...
Face recognition requires comparing the current visual input with stored mental representations o... more Face recognition requires comparing the current visual input with stored mental representations of faces. Based on its role in visual recognition of faces and mental representation of the body, we hypothesized that the right temporo-parietal junction (rTPJ) could be implicated also in processing mental representation of faces. To test this hypothesis, we asked 30 neurotypical participants to perform mental rotation (laterality judgment of rotated pictures) of self-and other-face images, before and after the inhibition of rTPJ through repetitive transcranial magnetic stimulation. After inhibition of rTPJ the mental rotation of self-face was slower than other-face. In the control condition the mental rotation of self/other faces was not significantly different. This supports that the role of rTPJ extends to mental representation of faces, specifically for the self. Since the experimental task did not require to explicitly recognize identity, we propose that unconscious identity attribution affects also the mental representation of faces. The present study offers insights on the involvement rTPJ in mental representation of faces and proposes that the neural substrate dedicated to mental representation of faces goes beyond the traditional visual and memory areas.
Following the COVID-19 pandemic, many countries worldwide have put lockdowns in place to prevent ... more Following the COVID-19 pandemic, many countries worldwide have put lockdowns in place to prevent the virus from spreading. Evidence shows that lockdown measures can affect mental health; it is, therefore, important to identify the psychological characteristics making individuals more vulnerable. The present study aimed, first, to identify, through a cluster analysis, the psychological attributes that characterize individuals with similar psychological responses to the COVID-19 home confinement; second, to investigate whether different psychological characteristics, such as personality traits, alexithymia, and resilience, specifically influence anxiety, stress, and depression, depending on the scope of the confinement. We analyzed data from 393 participants who completed an online survey on their experiences during two different phases of the Italian lockdown, characterized by more or less strict measures of confinement. Two clusters were identified which included participants report...
Vision is the main entrance for environmental input to the human brain. Even if vision is our mos... more Vision is the main entrance for environmental input to the human brain. Even if vision is our most used sensory modality, its importance is not limited to environmental exploration. Rather it has strong links to motor competences, further extending to cognitive and social aspects of human life. These multifaceted relationships are particularly important in developmental age and become dramatically evident in presence of complex deficits originating from visual aberrancies. The present review summarizes the available neuropsychological evidence on the development of visual competences, with a particular focus on the associated visuo-motor integration skills in health and disease. With the aim of supporting future research and interventional settings, the goal of the present review is to constitute a solid base to help the translation of neuropsychological hypotheses into straightforward empirical investigations and rehabilitation/training protocols. This approach will further increas...
The so-called cortical silent period (CSP) refers to the temporary interruption of electromyograp... more The so-called cortical silent period (CSP) refers to the temporary interruption of electromyographic signal from a muscle following a motor-evoked potential (MEP) triggered by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). The neurophysiological origins of the CSP are debated. Previous evidence suggests that both spinal and cortical mechanisms may account for the duration of the CSP. However, contextual factors such as cortical fatigue, experimental procedures, attentional load, as well as neuropathology can also influence the CSP duration. The present paper summarizes the most relevant evidence on the mechanisms underlying the duration of the CSP, with a particular focus on the central role of the basal ganglia in the “direct” (excitatory), “indirect” (inhibitory), and “hyperdirect” cortico-subcortical pathways to manage cortical motor inhibition. We propose new methods of interpretation of the CSP related, at least partially, to the inhibitory hyperdir...
Due to the spread of COVID 2019, the Italian government imposed a lockdown on the national territ... more Due to the spread of COVID 2019, the Italian government imposed a lockdown on the national territory. Initially, citizens were required to stay at home and not to mix with others outside of their household (Phase 1); eventually, some of these restrictions were lifted (Phase 2). To investigate the impact of lockdown on emotional and binge eating, an online survey was conducted to compare measures of self-reported physical (BMI), psychological (Alexithymia), affective (anxiety, stress, and depression) and social (income, workload) state during Phase 1 and Phase 2. Data from 365 Italian residents showed that increased emotional eating was predicted by higher depression, anxiety, quality of personal relationships, and quality of life, while the increase of bingeing was predicted by higher stress. Moreover, we showed that higher alexithymia scores were associated by increased emotional eating and higher BMI scores were associated with both increased emotional eating and binge eating. Fin...
Personal and vicarious experience of pain activate partially overlapping brain networks. This bra... more Personal and vicarious experience of pain activate partially overlapping brain networks. This brain activity is further modulated by low-and high-order factors, e.g., the perceived intensity of the model's pain and the model's similarity with the onlooker, respectively. We investigated which specific aspect of similarity modulates such empathic reactivity, focusing on the potential differentiation between visual similarity and psychological closeness between the onlooker and different types of models. To this aim, we recorded fMRI data in neurotypical participants who observed painful and tactile stimuli delivered to an adult human hand, a baby human hand, a puppy dog paw, and an anthropomorphic robotic hand. The interaction between type of vicarious experience (pain, touch) and nature of model (adult, baby, dog, robot) showed that the right supramarginal gyrus (rSMG) was selectively active for visual similarity (more active during vicarious pain for the adult and baby models), while the anterior cingulate cortex (ACC) was more sensitive to psychological closeness (specifically linked to vicarious pain for the baby model). These findings indicate that visual similarity and psychological closeness between onlooker and model differentially affect the activity of brain regions specifically implied in encoding interindividual sharing of sensorimotor and affective aspects of vicarious pain, respectively.
The brain regions supporting sustained attention (sustained attention network; SAN) and mind-wand... more The brain regions supporting sustained attention (sustained attention network; SAN) and mind-wandering (default-mode network; DMN) have been extensively studied. Nevertheless, this knowledge has not yet been translated into advanced brain-based attention training protocols. Here, we used network-based real-time functional magnetic resonance imaging (fMRI) to provide healthy individuals with information about current activity levels in SAN and DMN. Specifically, 15 participants trained to control the difference between SAN and DMN hemodynamic activity and completed behavioral attention tests before and after neurofeedback training. Through training, participants improved controlling the differential SAN-DMN feedback signal, which was accomplished mainly through deactivating DMN. After training, participants were able to apply learned self-regulation of the differential feedback signal even when feedback was no longer available (i.e., during transfer runs). The neurofeedback group improved in sustained attention after training, although this improvement was temporally limited and rarely exceeded mere practice effects that were controlled by a test-retest behavioral control group. The learned self-regulation and the behavioral outcomes suggest that neurofeedback training of differential SAN and DMN activity has the potential to become a non-invasive and non-pharmacological tool to enhance attention and mitigate specific attention deficits.
Uploads
Papers by Silvio Ionta