Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic a... more Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic and anaerobic methanotrophs gaining energy via methane oxidation. However, the processes involved in the assembly and dynamics of methanotrophic populations in complex natural microbial communities remain unclear. Here we investigated the development of a methanotrophic microbiome following subsurface mud eruptions at Håkon Mosby mud volcano (1250 m water depth). Freshly erupted muds hosted deep-subsurface communities that were dominated by Bathyarchaeota, Atribacteria and Chloroflexi. Methanotrophy was initially limited to a thin surface layer of Methylococcales populations consuming methane aerobically. With increasing distance to the eruptive center, anaerobic methanotrophic archaea, sulfate-reducing Desulfobacterales and thiotrophic Beggiatoaceae developed, and their respective metabolic capabilities dominated the biogeochemical functions of the community. Microbial richness, evenness...
Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-... more Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting...
Proceedings of the National Academy of Sciences of the United States of America, Jan 16, 2015
Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reserv... more Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate-methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance...
A major role in global methane fluxes has been attributed to the process of anaerobic oxidation o... more A major role in global methane fluxes has been attributed to the process of anaerobic oxidation of methane, which is performed by consortia of methanotrophic archaea and sulfate reducing bacteria. An important question remains how these very slow growing microorganisms with generation times of 3-7 months respond to natural variations in methane fluxes at cold seeps. Here, we used an experimental flow-through column system filled with cold seep sediments naturally enriched in methanotrophic communities, to test their response to short-term variations in methane and sulfate fluxes. At stable methane and sulfate concentrations of ∼2 mM and 28 mM, respectively, we measured constant rates of anaerobic oxidation of methane (AOM) and sulfide production (SR) for up to 160 days of incubation. When percolated with methane-free medium, the anaerobic methanotrophs ceased to oxidize methane and to produce sulfide. After a starvation phase of 40 days, the addition of methane restored former AOM and SR rates immediately. At methane concentrations between 0-2.3 mM we measured a linear correlation between methane availability, AOM and SR. At constant fluid flow rates of 30 m yr −1 , ca. 50% of the methane was consumed by the ANME population at all concentrations tested. Reducing the sulfate concentration from 28 to 1 mM, a decrease in AOM and SR by 35% was observed. Hence, the marine anaerobic methanotrophs (ANME) are capable to consume substantial amounts of methane rising from the subsurface seabed to the hydrosphere over a wide range of fluxes of methane and sulfate.
The Eastern Mediterranean hosts a variety of active cold seep systems, such as gas chimneys, mud ... more The Eastern Mediterranean hosts a variety of active cold seep systems, such as gas chimneys, mud volcanoes and pockmarks, in water depths of 500 to 3200 m. As part of the NAUTINIL expedition in 2003, the sediments of cold seeps on the Nile Deep Sea Fan (NDSF) were sampled for the first time for biogeochemical and microbiological analyses. Here we compare rates of the anaerobic oxidation of methane (AOM) and sulfate reduction (SR) as well as the microbial community structure of a variety of cold seep systems including mud volcanoes, pockmarks and brine seeps. Our results revealed strong differences in microbial activity among the different seep systems of the Eastern, Central and Western provinces of the NDSF, as well as the Olimpi field (Central Mediterranean Ridge). Integrated over a sediment depth of 10 cm below the seafloor, SR rates ranged from 0.1-66 mmol m − 2 d − 1 and AOM rates from 0.1-3.6 mmol m − 2 d − 1. SR was often considerably higher than methane oxidation, indicating that electron donors other than methane were utilized. In general, the lowest rates were associated with pockmarks and carbonate pavements, and highest rates with bacterial mats above the gassy sediments of mud volcano centers. 16S rRNA gene analysis and fluorescence in situ hybridization (FISH), revealed the presence of all known groups of marine methane oxidizing Archaea (i.e. ANME-1,-2,-3) and also of methane oxidizing Bacteria (i.e. Methylobacter sp. and relatives) in some seep sediments. Presumably syntrophic sulfate-reducing bacterial partners of ANMEs were also detected in association with the ANMEs. Several ANMEs formed consortia with unknown bacterial partners. The microbial community structure reflected the presence of typical seep microorganisms at all sites investigated, but differed to varying extents between the different types of seeps. Despite the high availability of methane and sulfate, methanotrophic microbial activity and biomass were lower at the seeps of the Eastern Mediterranean compared to those of other continental margins for unknown reasons.
A gyre in the brine pool that occupies the crater of Cheops mud volcano, Nile Deep Sea Fan, at 3-... more A gyre in the brine pool that occupies the crater of Cheops mud volcano, Nile Deep Sea Fan, at 3-km water depth. The gyre is about 2-m across, and shows sulfur-rich white "foam" accumulations, thought to be produced by bacterial activity. This image was taken by RoV Victor during Ifremer's MEDECo cruise in 2007.
Mud volcanism is an important natural source of the greenhouse gas methane to hydrosphere and atm... more Mud volcanism is an important natural source of the greenhouse gas methane to hydrosphere and atmosphere 1,2. Recent investigations show that the number of active submarine mud volcanoes may be much higher than anticipated (eg. 3-5), and that gas emitted from deep-sea seeps may reach the upper mixed ocean 6-8. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release is unknown 9. Another uncertainty is the efficiency of methane oxidizing microorganisms in methane removal. Here we investigated the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72°N, 14°44'E; 1250 m water depth), to provide quantitative estimates of in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities; aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a novel clade of archaea (ANME-3) associated with bacterial mats. We found that upward flow of sulphate-and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux. The HMMV (Fig. 1), a circular structure of 1 km diameter and <10 m elevation above the adjacent seafloor, has been studied since the 1990s as a typical example of an active mud volcano 9
From the Hå kon Mosby Mud Volcano (HMMV) on the southwest Barents Sea shelf, gas and fluids are e... more From the Hå kon Mosby Mud Volcano (HMMV) on the southwest Barents Sea shelf, gas and fluids are expelled by active mud volcanism. We studied the mass transfer phenomena and microbial conversions in the surface layers using in situ microsensor measurements and on retrieved cores. The HMMV consists of three concentric habitats: a central area with gray mud, a surrounding area covered by white mats of big sulfide oxidizing filamentous bacteria (Beggiatoa), and a peripheral area colonized by symbiontic tube worms (Pogonophora). A fourth habitat comprised gray microbial mats near gas seeps. The differences between these four methane-fueled habitats are best explained by different transport rates of sulfate into the sediments and porewater upflow rates. The upflow velocities were estimated by two independent methods at 3-6 m yr 21 in the central area and 0.3-1 m yr 21 in Beggiatoa mats. In the central area no sulfide was found, indicating that the rapidly rising sulfate-free fluids caused sulfate limitation that inhibited anaerobic oxidation of methane (AOM). Under Beggiatoa mats a steep sulfide peak was found at 2 to 3 cm below the seafloor (bsf), most likely due to AOM. All sulfide was oxidized anaerobically, possibly through nitrate reduction by Beggiatoa. The Beggiatoa mats were dominated by a single filamentous morphotype with a diameter of 10 mm and abundant sulfur inclusions. A high diversity of sulfide oxidizer morphotypes was observed in a grayish microbial mat near gas vents, where aerobic sulfide oxidation was important. The sediments colonized by Pogonophora were influenced by bioventilation, allowing sulfate penetration and AOM to 70 cm bsf. The HMMV is a unique and diverse ecosystem, the structure and functioning of which is mainly controlled by pore-water flow.
We have investigated if in a cold seep methane or sulfide is used for chemosynthetic primary prod... more We have investigated if in a cold seep methane or sulfide is used for chemosynthetic primary production and if significant amounts of the sulfide produced by anaerobic oxidation of methane are oxidized geochemically and hence are not available for chemosynthetic production. Geochemically controlled redox reactions and biological turnover were compared in different habitats of the Hå kon Mosby Mud Volcano. The center of the mud volcano is characterized by the highest fluid flow, and most primary production by the microbial community depends on oxidation of methane. The small amount of sulfide produced is oxidized geochemically with oxygen or is precipitated with dissolved iron. In the medium flow peripheral Beggiatoa habitat sulfide is largely oxidized biologically. The oxygen and nitrate supply is high enough that Beggiatoa can oxidize the sulfide completely, and chemical sulfide oxidation or precipitation is not important. An internally stored nitrate reservoir with average concentrations of 110 mmol L 21 enables the Beggiatoa to oxidize sulfide anaerobically. The pH profile indicates sequential sulfide oxidation with elemental sulfur as an intermediate. Gray thiotrophic mats associated with perturbed sediments showed a high heterogeneity in sulfate turnover and high sulfide fluxes, balanced by the opposing oxygen and nitrate fluxes so that biological oxidation dominates over geochemical sulfide removal processes. The three habitats indicate substantial small-scale variability in carbon fixation pathways, either through direct biological use of methane or through indirect carbon fixation of methane-derived carbon dioxide by chemolithotrophic sulfide oxidation.
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting ... more The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining pore water geochemistry, in situ quantification of fluxes and consumption of methane, as well as bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption rates and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for i... more The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2 % of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbonvented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport. Recently, numerous studies investigated spatial distribution patterns of seep communities and biogeochemical Published by Copernicus Publications on behalf of the European Geosciences Union.
The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tomm... more The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tommeliten Delta salt diapir in the central North Sea (56 • 29.90 N, 2 • 59.80 E, Norwegian Block 1/9, 75 m water depth). Here, cracks in a buried marl horizon allow methane to migrate into overlying clay-silt and sandy sediments. Hydroacoustic sediment echosounding showed several venting spots coinciding with the apex of marl domes where methane is released into the water column and potentially to the atmosphere. In the vicinity of the gas seeps, sea floor observations showed small mats of giant sulphide-oxidizing bacteria above patches of black sediments as well as carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Authigenic Carbonates (MDACs) contain 13 C-depleted, archaeal lipids indicating previous gas seepage and AOM activity. High amounts of sn2-hydroxyarchaeol relative to archaeol and low abundances of biphytanes in the crusts give evidence that ANaerobic MEthane-oxidising archaea (ANME) of the phylogenetic cluster ANME-2 were the potential mediators of Anaerobic Oxidation of Methane (AOM) at the time of carbonate formation. Small pieces of MDACs were also found subsurface at about 1.7 m sediment depth, associated with the AOM zone. This zone is characterized by elevated AOM and Sulphate Reduction (SR) rates, increased concentrations of 13 C-depleted tetraether derived biphytanes, and specific bacterial Fatty Acids (FA). Further biomarker and 16S rDNA based analyses of this horizon give evidence that AOM is mediated by archaea belong
Fluid flow related seafloor structures and gas seeps were detected in the North Sea in the 1970s ... more Fluid flow related seafloor structures and gas seeps were detected in the North Sea in the 1970s and 1980s by acoustic sub-bottom profiling and oil rig surveys. A variety of features like pockmarks, gas vents and authigenic carbonate cements were found to be associated with sites of oil and gas exploration, indicating a link between these surface structures and the underlying, deep hydrocarbon reservoirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tommeliten, Witch's Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of cold seep ecosystems in the Northern North Sea. The most active gas seep sites, i.e. Gullfaks and Tommeliten, were investigated in detail. At both sites, gas bubbles escaped continuously from small holes in the seabed to the water column, reaching the upper mixed surface layer. At Gullfaks a gas emitting, flat area of 0.1 km 2 of sandy seabed covered by filamentous sulfur-oxidizing bacteria was detected. At Tommeliten, we found a patchy distribution of small bacterial mats indicating sites of gas seepage. Below the patches the seafloor consisted of sand from which gas emissions were observed. At both sites, the anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was the major source of sulfide. Molecular analyses targeting specific lipid biomarkers and 16S rRNA gene sequences identified an active microbial community dominated by sulfur-oxidizing and sulfate-reducing bacteria (SRB) as well as methanotrophic bacteria and archaea. Stable carbon isotope values of specific, microbial fatty acids and alcohols from both sites were highly depleted in the heavy isotope 13 C, indicating that the
A major role in regulation of global methane fluxes has been attributed to the process of anaerob... more A major role in regulation of global methane fluxes has been attributed to the process of anaerobic oxidation of methane (AOM), which is performed by consortia of methanotrophic archaea and sulfate reducing bacteria. An important question remains how these energy limited, slow growing microorganisms with generation times of 3-7 months respond to rapid natural variations in methane fluxes at cold seeps. We used an experimental flow-through column system filled with cold seep sediments naturally enriched in methanotrophic communities, to test their responses to short-term variations in methane and sulfate fluxes. At stable methane and sulfate concentrations of ∼2 mM and 28 mM, respectively, we measured constant rates of AOM and sulfate reduction (SR) for up to 160 days of incubation. When percolated with methane-free medium, the anaerobic methanotrophs ceased to produce sulfide. After a starvation phase of 40 days, the addition of methane restored former AOM and SR rates immediately. At methane concentrations between 0-2.3 mM we measured a linear correlation between methane availability, AOM and SR. At constant fluid flow velocities of 30 m yr −1 , ca. 50% of the methane was consumed by the anaerobic methanotrophic (ANME) population at all concentrations tested. Reducing the sulfate concentration from 28 to 1 mM, a decrease in AOM and SR by 50% was observed, and 45% of the methane was consumed. Hence, the marine anaerobic methanotrophs (ANME) are capable of oxidizing substantial amounts of methane over a wide and variable range of fluxes of the reaction educts.
Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic a... more Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic and anaerobic methanotrophs gaining energy via methane oxidation. However, the processes involved in the assembly and dynamics of methanotrophic populations in complex natural microbial communities remain unclear. Here we investigated the development of a methanotrophic microbiome following subsurface mud eruptions at Håkon Mosby mud volcano (1250 m water depth). Freshly erupted muds hosted deep-subsurface communities that were dominated by Bathyarchaeota, Atribacteria and Chloroflexi. Methanotrophy was initially limited to a thin surface layer of Methylococcales populations consuming methane aerobically. With increasing distance to the eruptive center, anaerobic methanotrophic archaea, sulfate-reducing Desulfobacterales and thiotrophic Beggiatoaceae developed, and their respective metabolic capabilities dominated the biogeochemical functions of the community. Microbial richness, evenness...
Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-... more Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting...
Proceedings of the National Academy of Sciences of the United States of America, Jan 16, 2015
Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reserv... more Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate-methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance...
A major role in global methane fluxes has been attributed to the process of anaerobic oxidation o... more A major role in global methane fluxes has been attributed to the process of anaerobic oxidation of methane, which is performed by consortia of methanotrophic archaea and sulfate reducing bacteria. An important question remains how these very slow growing microorganisms with generation times of 3-7 months respond to natural variations in methane fluxes at cold seeps. Here, we used an experimental flow-through column system filled with cold seep sediments naturally enriched in methanotrophic communities, to test their response to short-term variations in methane and sulfate fluxes. At stable methane and sulfate concentrations of ∼2 mM and 28 mM, respectively, we measured constant rates of anaerobic oxidation of methane (AOM) and sulfide production (SR) for up to 160 days of incubation. When percolated with methane-free medium, the anaerobic methanotrophs ceased to oxidize methane and to produce sulfide. After a starvation phase of 40 days, the addition of methane restored former AOM and SR rates immediately. At methane concentrations between 0-2.3 mM we measured a linear correlation between methane availability, AOM and SR. At constant fluid flow rates of 30 m yr −1 , ca. 50% of the methane was consumed by the ANME population at all concentrations tested. Reducing the sulfate concentration from 28 to 1 mM, a decrease in AOM and SR by 35% was observed. Hence, the marine anaerobic methanotrophs (ANME) are capable to consume substantial amounts of methane rising from the subsurface seabed to the hydrosphere over a wide range of fluxes of methane and sulfate.
The Eastern Mediterranean hosts a variety of active cold seep systems, such as gas chimneys, mud ... more The Eastern Mediterranean hosts a variety of active cold seep systems, such as gas chimneys, mud volcanoes and pockmarks, in water depths of 500 to 3200 m. As part of the NAUTINIL expedition in 2003, the sediments of cold seeps on the Nile Deep Sea Fan (NDSF) were sampled for the first time for biogeochemical and microbiological analyses. Here we compare rates of the anaerobic oxidation of methane (AOM) and sulfate reduction (SR) as well as the microbial community structure of a variety of cold seep systems including mud volcanoes, pockmarks and brine seeps. Our results revealed strong differences in microbial activity among the different seep systems of the Eastern, Central and Western provinces of the NDSF, as well as the Olimpi field (Central Mediterranean Ridge). Integrated over a sediment depth of 10 cm below the seafloor, SR rates ranged from 0.1-66 mmol m − 2 d − 1 and AOM rates from 0.1-3.6 mmol m − 2 d − 1. SR was often considerably higher than methane oxidation, indicating that electron donors other than methane were utilized. In general, the lowest rates were associated with pockmarks and carbonate pavements, and highest rates with bacterial mats above the gassy sediments of mud volcano centers. 16S rRNA gene analysis and fluorescence in situ hybridization (FISH), revealed the presence of all known groups of marine methane oxidizing Archaea (i.e. ANME-1,-2,-3) and also of methane oxidizing Bacteria (i.e. Methylobacter sp. and relatives) in some seep sediments. Presumably syntrophic sulfate-reducing bacterial partners of ANMEs were also detected in association with the ANMEs. Several ANMEs formed consortia with unknown bacterial partners. The microbial community structure reflected the presence of typical seep microorganisms at all sites investigated, but differed to varying extents between the different types of seeps. Despite the high availability of methane and sulfate, methanotrophic microbial activity and biomass were lower at the seeps of the Eastern Mediterranean compared to those of other continental margins for unknown reasons.
A gyre in the brine pool that occupies the crater of Cheops mud volcano, Nile Deep Sea Fan, at 3-... more A gyre in the brine pool that occupies the crater of Cheops mud volcano, Nile Deep Sea Fan, at 3-km water depth. The gyre is about 2-m across, and shows sulfur-rich white "foam" accumulations, thought to be produced by bacterial activity. This image was taken by RoV Victor during Ifremer's MEDECo cruise in 2007.
Mud volcanism is an important natural source of the greenhouse gas methane to hydrosphere and atm... more Mud volcanism is an important natural source of the greenhouse gas methane to hydrosphere and atmosphere 1,2. Recent investigations show that the number of active submarine mud volcanoes may be much higher than anticipated (eg. 3-5), and that gas emitted from deep-sea seeps may reach the upper mixed ocean 6-8. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release is unknown 9. Another uncertainty is the efficiency of methane oxidizing microorganisms in methane removal. Here we investigated the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72°N, 14°44'E; 1250 m water depth), to provide quantitative estimates of in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities; aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a novel clade of archaea (ANME-3) associated with bacterial mats. We found that upward flow of sulphate-and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux. The HMMV (Fig. 1), a circular structure of 1 km diameter and <10 m elevation above the adjacent seafloor, has been studied since the 1990s as a typical example of an active mud volcano 9
From the Hå kon Mosby Mud Volcano (HMMV) on the southwest Barents Sea shelf, gas and fluids are e... more From the Hå kon Mosby Mud Volcano (HMMV) on the southwest Barents Sea shelf, gas and fluids are expelled by active mud volcanism. We studied the mass transfer phenomena and microbial conversions in the surface layers using in situ microsensor measurements and on retrieved cores. The HMMV consists of three concentric habitats: a central area with gray mud, a surrounding area covered by white mats of big sulfide oxidizing filamentous bacteria (Beggiatoa), and a peripheral area colonized by symbiontic tube worms (Pogonophora). A fourth habitat comprised gray microbial mats near gas seeps. The differences between these four methane-fueled habitats are best explained by different transport rates of sulfate into the sediments and porewater upflow rates. The upflow velocities were estimated by two independent methods at 3-6 m yr 21 in the central area and 0.3-1 m yr 21 in Beggiatoa mats. In the central area no sulfide was found, indicating that the rapidly rising sulfate-free fluids caused sulfate limitation that inhibited anaerobic oxidation of methane (AOM). Under Beggiatoa mats a steep sulfide peak was found at 2 to 3 cm below the seafloor (bsf), most likely due to AOM. All sulfide was oxidized anaerobically, possibly through nitrate reduction by Beggiatoa. The Beggiatoa mats were dominated by a single filamentous morphotype with a diameter of 10 mm and abundant sulfur inclusions. A high diversity of sulfide oxidizer morphotypes was observed in a grayish microbial mat near gas vents, where aerobic sulfide oxidation was important. The sediments colonized by Pogonophora were influenced by bioventilation, allowing sulfate penetration and AOM to 70 cm bsf. The HMMV is a unique and diverse ecosystem, the structure and functioning of which is mainly controlled by pore-water flow.
We have investigated if in a cold seep methane or sulfide is used for chemosynthetic primary prod... more We have investigated if in a cold seep methane or sulfide is used for chemosynthetic primary production and if significant amounts of the sulfide produced by anaerobic oxidation of methane are oxidized geochemically and hence are not available for chemosynthetic production. Geochemically controlled redox reactions and biological turnover were compared in different habitats of the Hå kon Mosby Mud Volcano. The center of the mud volcano is characterized by the highest fluid flow, and most primary production by the microbial community depends on oxidation of methane. The small amount of sulfide produced is oxidized geochemically with oxygen or is precipitated with dissolved iron. In the medium flow peripheral Beggiatoa habitat sulfide is largely oxidized biologically. The oxygen and nitrate supply is high enough that Beggiatoa can oxidize the sulfide completely, and chemical sulfide oxidation or precipitation is not important. An internally stored nitrate reservoir with average concentrations of 110 mmol L 21 enables the Beggiatoa to oxidize sulfide anaerobically. The pH profile indicates sequential sulfide oxidation with elemental sulfur as an intermediate. Gray thiotrophic mats associated with perturbed sediments showed a high heterogeneity in sulfate turnover and high sulfide fluxes, balanced by the opposing oxygen and nitrate fluxes so that biological oxidation dominates over geochemical sulfide removal processes. The three habitats indicate substantial small-scale variability in carbon fixation pathways, either through direct biological use of methane or through indirect carbon fixation of methane-derived carbon dioxide by chemolithotrophic sulfide oxidation.
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting ... more The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining pore water geochemistry, in situ quantification of fluxes and consumption of methane, as well as bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption rates and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for i... more The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2 % of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbonvented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport. Recently, numerous studies investigated spatial distribution patterns of seep communities and biogeochemical Published by Copernicus Publications on behalf of the European Geosciences Union.
The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tomm... more The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tommeliten Delta salt diapir in the central North Sea (56 • 29.90 N, 2 • 59.80 E, Norwegian Block 1/9, 75 m water depth). Here, cracks in a buried marl horizon allow methane to migrate into overlying clay-silt and sandy sediments. Hydroacoustic sediment echosounding showed several venting spots coinciding with the apex of marl domes where methane is released into the water column and potentially to the atmosphere. In the vicinity of the gas seeps, sea floor observations showed small mats of giant sulphide-oxidizing bacteria above patches of black sediments as well as carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Authigenic Carbonates (MDACs) contain 13 C-depleted, archaeal lipids indicating previous gas seepage and AOM activity. High amounts of sn2-hydroxyarchaeol relative to archaeol and low abundances of biphytanes in the crusts give evidence that ANaerobic MEthane-oxidising archaea (ANME) of the phylogenetic cluster ANME-2 were the potential mediators of Anaerobic Oxidation of Methane (AOM) at the time of carbonate formation. Small pieces of MDACs were also found subsurface at about 1.7 m sediment depth, associated with the AOM zone. This zone is characterized by elevated AOM and Sulphate Reduction (SR) rates, increased concentrations of 13 C-depleted tetraether derived biphytanes, and specific bacterial Fatty Acids (FA). Further biomarker and 16S rDNA based analyses of this horizon give evidence that AOM is mediated by archaea belong
Fluid flow related seafloor structures and gas seeps were detected in the North Sea in the 1970s ... more Fluid flow related seafloor structures and gas seeps were detected in the North Sea in the 1970s and 1980s by acoustic sub-bottom profiling and oil rig surveys. A variety of features like pockmarks, gas vents and authigenic carbonate cements were found to be associated with sites of oil and gas exploration, indicating a link between these surface structures and the underlying, deep hydrocarbon reservoirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tommeliten, Witch's Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of cold seep ecosystems in the Northern North Sea. The most active gas seep sites, i.e. Gullfaks and Tommeliten, were investigated in detail. At both sites, gas bubbles escaped continuously from small holes in the seabed to the water column, reaching the upper mixed surface layer. At Gullfaks a gas emitting, flat area of 0.1 km 2 of sandy seabed covered by filamentous sulfur-oxidizing bacteria was detected. At Tommeliten, we found a patchy distribution of small bacterial mats indicating sites of gas seepage. Below the patches the seafloor consisted of sand from which gas emissions were observed. At both sites, the anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was the major source of sulfide. Molecular analyses targeting specific lipid biomarkers and 16S rRNA gene sequences identified an active microbial community dominated by sulfur-oxidizing and sulfate-reducing bacteria (SRB) as well as methanotrophic bacteria and archaea. Stable carbon isotope values of specific, microbial fatty acids and alcohols from both sites were highly depleted in the heavy isotope 13 C, indicating that the
A major role in regulation of global methane fluxes has been attributed to the process of anaerob... more A major role in regulation of global methane fluxes has been attributed to the process of anaerobic oxidation of methane (AOM), which is performed by consortia of methanotrophic archaea and sulfate reducing bacteria. An important question remains how these energy limited, slow growing microorganisms with generation times of 3-7 months respond to rapid natural variations in methane fluxes at cold seeps. We used an experimental flow-through column system filled with cold seep sediments naturally enriched in methanotrophic communities, to test their responses to short-term variations in methane and sulfate fluxes. At stable methane and sulfate concentrations of ∼2 mM and 28 mM, respectively, we measured constant rates of AOM and sulfate reduction (SR) for up to 160 days of incubation. When percolated with methane-free medium, the anaerobic methanotrophs ceased to produce sulfide. After a starvation phase of 40 days, the addition of methane restored former AOM and SR rates immediately. At methane concentrations between 0-2.3 mM we measured a linear correlation between methane availability, AOM and SR. At constant fluid flow velocities of 30 m yr −1 , ca. 50% of the methane was consumed by the anaerobic methanotrophic (ANME) population at all concentrations tested. Reducing the sulfate concentration from 28 to 1 mM, a decrease in AOM and SR by 50% was observed, and 45% of the methane was consumed. Hence, the marine anaerobic methanotrophs (ANME) are capable of oxidizing substantial amounts of methane over a wide and variable range of fluxes of the reaction educts.
Uploads
Papers by Antje Boetius