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Abstract

The k-clique problem is a cornerstone of NP-completeness and parameterized
complexity. When k is a fixed constant, the asymptotically fastest known algo-
rithm for finding a k-clique in an n-node graph runs in O(n.792k) time (given
by Nešetřil and Poljak). However, this algorithm is infamously inapplicable, as
it relies on Coppersmith and Winograd’s fast matrix multiplication.

We present good combinatorial algorithms for solving k-clique problems.
These algorithms do not require large constants in their runtime, they can be
readily implemented in any reasonable random access model, and are very space-
efficient compared to their algebraic counterparts. Our results are the following:

• We give an algorithm for k-clique that runs in O(nk/(ε log n)k−1) time
and O(nε) space, for all ε > 0, on graphs with n nodes. This is the first
algorithm to take o(nk) time and O(nc) space for c independent of k.

• Let k be even. Define a k-semiclique to be a k-node graph G that can
be divided into two disjoint subgraphs U = {u1, . . . , uk/2} and V =
{v1, . . . , vk/2} such that U and V are cliques, and for all i ≤ j, the graph

G contains the edge {ui, vj}. We give an Õ(k2knk/2+1) time algorithm for
determining if a graph has a k-semiclique. This yields an approximation
algorithm for k-clique, in the following sense: if a given graph contains a
k-clique, then our algorithm returns a subgraph with at least 3/4 of the
edges in a k-clique.
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1. Introduction

The k-clique problem is one of the fundamental problems in computer sci-
ence. In parametrized complexity k-clique plays a central role: one of the major
problems in this area is to resolve whether W [1] = FPT , and k-clique is W [1]-
complete [9]. Furthermore, results by Chen et al. [6] imply that if there is an
no(k) algorithm for k-clique 1, then many of the classical NP-complete problems
are solvable in subexponential time.

The naive algorithm for k-clique runs in O(nk) time by examining all k-
tuples of vertices. In 1978, Itai and Rodeh [12] showed that a 3-clique (triangle)
in an n-node graph can be found in the same time as n × n Boolean matrix
multiplication. Nowadays this means that there is an O(n2.376) algorithm [8]
for 3-clique; we denote this exponent by ω. Nešetřil and Poljak [18] showed
how to generalize Itai and Rodeh’s [12] reduction to obtain an O(nωk) time
algorithm for 3k-clique2. Since that result very little progress has been made.
In 2004 Eisenbrand and Grandoni [10] used rectangular matrix multiplication
to obtain improved running times for some values of k, e.g. for k ≥ 5 such that
k = 2 mod 3.

Although these algebraic matrix product approaches yield good theoreti-
cal time bounds, the known fast matrix multiplication algorithms that run in
O(n3−ε) time for ε > 0 ([21, 8]) are very inefficient in practice. Another issue
is that all of the above mentioned algorithms for k-clique use nΩ(k) space. In
1984 ([16], p.46), László Babai asked whether there exists an o(nk) algorithm
for k-clique using O(nc) space for some constant c independent of k. This ques-
tion has until now remained unanswered. In fact, the problem of designing
better time and space efficient k-clique algorithms has been recently reraised by
Woeginger [22].

Combinatorial, nonalgebraic algorithms based on preprocessing and table
look-up offer less impressive asymptotic improvements but are much more prac-
tical than algorithms based on algebraic fast matrix multiplication. Using a
“Four Russians” type approach for combinatorial matrix multiplication [3, 20,
4, 5] one can obtain an O(nk/(k log2 n)) time algorithm for k-clique which hides
no enormous constant factors in its runtime. Nevertheless, even this algorithm
is space-inefficient – it requires Ω(n2k/3) space.

In this paper we answer Babai’s question in the affirmative. We give a
combinatorial algorithm for k-clique which runs in O(nk/(ε log n)k−1) time for
every fixed k ≥ 3 and uses O(nε) space, for any constant ε > 0 independent of k.
This algorithm is not only space-efficient but also: (a) it beats the runtimes of
the current best combinatorial algorithms for finding k-clique for k > 3, and (b)
it implies an algorithm for maximum node-weighted k-clique within the same
runtime.

1Here, k is assumed to be any unbounded function of n.
2Interestingly, there are O(2δn) algorithms ([11, 19]) for finding a maximum clique for

small δ even though the maximum clique can be really large, e.g. Ω(n).
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In the second part of the paper we investigate the problem of finding so
called k-semicliques in a graph. We define a k-semiclique to be a graph on k
nodes, for even k, composed of two disjoint k

2 -cliques U = {u1, . . . , uk/2} and
V = {v1, . . . , vk/2} so that in addition to the clique edges there is an edge (ui, vj)
for all j ≥ i. Semicliques are generalizations of the so called diamond graphs,
4-cliques missing one edge. Possible applications of semicliques can be found in
databases or privacy where one wishes to find two cliques (perhaps representing
crime organizations) which are very connected to one another.

We give an algorithm for finding a (not necessarily induced) k-semiclique
in a given graph in O(n1+k/2) time. The case k = 4 (diamonds) has been
studied before. It is known (e.g. [13, 10]) that one can find an induced diamond
in O(n3) time. Our result can be seen as an extension of this running time
for all even k for not necessarily induced subgraphs. Our result also yields an
O(n1+k/2) time approximation algorithm for k-clique, in the following sense: if
the graph contains a k-clique, then our algorithm returns a subgraph with at
least 2

(

k/2
2

)

+
(

k/2+1
2

)

= 3k2/8 − k/4 edges, i.e. at least 3/4 of the edges in a
k-clique.

Preliminaries. All graphs we consider are undirected, simple, and con-
nected, unless otherwise noted. We let m denote the number of edges and n the
number of vertices. We denote the degree of a node x in a graph by deg(x). For
a graph G = (V,E) and u, v ∈ V , E(u, v) is defined to be 1 when (u, v) ∈ E and
0 otherwise. All logarithms are base 2. For a positive integer n, we use [n] to
mean {1, . . . , n}. For a time function f(n), Õ(f(n)) denotes O(f(n)polylog n).

2. Algorithm for k-Clique

We begin with a small-space combinatorial algorithm which given a node-
weighted graph finds a k-clique of maximum weight sum. The basic idea used
in the algorithm is to reduce the problem to finding maximum node-weighted
(k − 1)-cliques in many small O(log n) size subgraphs, and then attempt to
complete these cliques by adding an extra node. Our algorithm proceeds in
iterations so that each iteration reuses the space used by the previous ones.

Theorem 2.1 Let ε > 0 and k ≥ 3. Let g(k) = (2(k − 1))k−1. Let G = (V,E)
be a graph with arbitrary real weights on its nodes. There is an algorithm for

maximum node-weighted k-clique that runs in O
(

g(k) · nk

(ε log n)k−1

)

time and

uses O(knε) space.

Proof. Let G = (V,E), ε > 0 and k be given. Let ε′ = ε/(2(k − 1)).
We begin with an algorithm which finds a k-clique in an unweighted graph and
then explain how to modify this algorithm so it finds a maximum node-weighted
clique in a node-weighted graph.

Partition the nodes into n/(ε′ log n) parts of ε′ log n nodes each. The par-
tition is chosen by grouping consecutive nodes according to the order of the
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columns in the adjacency matrix. This ensures that any k chunks of a row cor-
responding to k of the (ε′ log n)-size parts can be concatenated in O(k) time,
assuming constant time look-ups and an O(log n)-word RAM.3

We will process all (k − 1)-tuples of parts as follows. Fix a (k − 1)-tuple of
parts. Obtain the union U of these parts, and create a look-up table TU with
(ε′(k−1) log n)-bit keys. For all 2ε′(k−1) log n subsets of U determine whether the
corresponding induced subgraph of G contains a (k− 1) clique. Store the result
for each subset (a (k−1)-clique, if found) in TU , with the binary (ε′(k−1) log n)-
length vector representing the subset as the key. When a new union is processed,
the look-up table information is overwritten.

Now, for every node v ∈ V , concatenate the portions of the neighborhood
vector for v corresponding to U in O(k) time to obtain a (ε′(k − 1) log n)-bit
key. Look up in TU using this key whether the induced neighborhood of v in
U contains a (k − 1)-clique. If this is so, return the union of the clique and v.
Creating all tables TU takes

O((n/(ε′ log n))k−1 ·nε′(k−1) · (ε′(k− 1) log n)k−1) = O(n(1+ε′)(k−1) · (k− 1)k−1)

time, and O(k log n2ε′(k−1) log n) space over all. The entire procedure (assuming
O(1) time look-ups in TU ) takes O(n·(n/(ε′ log n))k−1)) time, i.e. O(n(1+ε′)(k−1)·
(k − 1)k−1 + nk/(ε′ log n)k−1) time overall. Since we set ε′ = ε/(2(k − 1)), the
runtime becomes O((2(k − 1))k−1 · nk/(ε log n)k−1). The space usage becomes
asymptotically

k log n2ε′(k−1) log n = knε/2 log n = O(knε).

To modify the algorithm so that a maximum weight clique can be found,
for every (ε′(k − 1) log n)-node subgraph of a union of (k − 1)-tuples of node
partitions, compute the maximum weight (k − 1) clique and store that clique
in the look-up table for the union. Since the algorithm goes over all possible
choices for a k-th node, the maximum weight clique can be returned. 2

We can use the algorithm of Theorem 2.1 to obtain an algorithm with a
running time depending on the number of edges in the graph. We use an idea
used in many other results (e.g. [2]) – either the clique has all high degree
vertices, or it has a low degree vertex. In both cases we can reduce the problem
to finding a clique in a strictly smaller subgraph.

Theorem 2.2 Let k ≥ 5 and 1 > ε > 0. There is a function γ(k) only de-
pending on k and an algorithm for k-clique that runs in O(kmε/2) space and

O

(

γ(k) · m
k
2

(ε log m)
(k−2− 1

k−1
)

)

time on graphs with m ≥ 2 edges.

Proof. Let D be a parameter. Let g(k) = (2(k − 1))k−1 as in Theorem 2.1.
Consider the set S of all nodes of degree at least 2D. There are at most m/D

3The same can be accomplished on a pointer machine using some tricks.
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such nodes. Use the algorithm of Theorem 2.1 to find a k-clique contained in S
if one exists in O(g(k)(m/D)k/(ε log(m/D))k−1) time. If no k-clique is found in
S, any k-clique in the graph must contain a node of degree < 2D. Go through
all edges (u, v) incident to low degree nodes, and look for a (k− 2)-clique in the
intersection of the neighborhoods of u and v, again using Theorem 2.1. This
takes time O(mg(k − 2)(2D)k−2/(ε log 2D)k−3).

To minimize the final running time of the clique algorithm, as k is fixed, we
can set

m(2D)k−2/(ε log 2D)k−3 = Θ((m/D)k/(ε log(m/D))k−1),

and hence D =
√

m/(ε log m)
1

k−1 suffices. The runtime of the first part of the
procedure becomes

O(g(k)2k−1mk/2/(ε log m)(k−2− 1
k−1 )).

For k ≥ 5, m ≥ 2 and ε < 1 the runtime of the second part becomes

O







g(k − 2)2k−2mk/2

εk−2− 1
k−1 (log1− 1

k−1 m)(log
√

m

(ε log m)
1

k−1
)k−3






≤ O

(

(g(k − 2)23k−8) · mk/2

(ε log m)k−2− 1
k−1

)

.

If we set γ(k) = g(k − 2)23k−8 + g(k)2k−1, we obtain the claimed runtime

O(γ(k)mk/2/(ε log m)(k−2− 1
k−1 )). The space usage is O(k(m/D)ε) in the first

part of the procedure, and O((k − 2)Dε) in the second part. The space usage
in the first part dominates and is O(kmε/2). 2

3. Finding k-semicliques

In this section, we present a combinatorial algorithm for detecting a k-
semiclique in an arbitrary graph that runs in Õ(nk/2+1) time for any fixed k.
Our algorithm is inspired by Yates’ algorithm ([15], pp.501–502) for computing
the Fourier coefficients of an n-variable function in O(n2n) time. The basic idea
of our algorithm is to enumerate all k/2-cliques, and try to find a disjoint pair
of such cliques that have the appropriate edges between them. To check the
edges, we can use a dynamic programming recurrence that slowly “replaces” a
vertex from one k/2 clique with a vertex from the other k/2 clique, checking
that the edge relations hold at each step. However, we also need to ensure that
our algorithm is actually checking two disjoint k/2-cliques; since we are replac-
ing some vertices with others, we could lose track of what nodes participate in
the two k/2 cliques. To do this, we use a randomization trick.

Let G = (V,E) be a graph, and let n = |V |. We begin by performing a
step that is reminiscent of Alon, Yuster, and Zwick’s color-coding [1] and its
younger relative, “divide-and-color” [14, 7]. Choose a permutation π : V → [n],
uniformly at random. Let U,W be two k

2 -cliques in G such that U ∪ W is
a k-semiclique. A permutation of V is good if for every u ∈ U and w ∈ W ,
π(u) < π(w).
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Claim 1 A random permutation is good with 1/
(

k
k/2

)

probability.

Proof. The number of good permutations is
(

n
k

)

· (k/2)! · (k/2)! · (n− k)!, as a
good permutation can be selected by choosing a set S of k integers that U and
V will be mapped to, choosing a permutation on the k

2 smallest integers in S

and a permutation on the k
2 largest integers in S, then choosing an arbitrary

permutation on the rest. Hence, the probability is (k/2)!(k/2)!/k! = 1/
(

k
k/2

)

. 2

From here on, we presume that we have found a good permutation π. By
repeating the procedure O(2k) times, this presumption is true with high prob-
ability. The permutation choice can be easily derandomized by using (n, k)-
universal sets to pick the most significant bit of each node label. Naor et al. [17]
show that in linear time one can construct a (n, k)-universal collection of size
2kkO(log k) log n, and hence we would incur only a logarithmic overhead in our
running time.

Refer to each vertex v in the graph by its index π(v) ∈ [n]. Build a table K
of nk/2 bits, indexed by tuples of the form (i1, . . . , ik/2) with ij ∈ [n], ij < ij+1,
so that K(i1, . . . , ik/2) = 1 if and only if the vertices i1, . . . , ik/2 form a k/2-

clique. Clearly this table can be built in O(k2nk/2) time. Now define functions
Cj , for j = 0, . . . , k/2, as follows:

Cj(i1, . . . , i k
2
) =

∨

i′j∈[n],i′j>i1,...,i k
2

(

j
∏

ℓ=1

E(i′j , iℓ)

)

Cj−1(i1, . . . , ij−1, i
′
j , ij+1, . . . , i k

2
).

C0(i1, . . . , i k
2
) = K(i1, . . . , i k

2
).

For all i1, . . . , i k
2
∈ [n], and all j = 0, . . . , k

2 , the values Cj(i1, . . . , i k
2
) can

be computed in O(k
(

n
k/2

)

n) time, by a simple dynamic programming strategy.

In particular, note that if all values for the function Cj−1 have been computed,
then a particular value Cj(i1, . . . , ik/2) can be obtained in O(n) time. Finally,
check if there is a tuple (i1, . . . , ik/2) satisfying both Ck/2(i1, . . . , ik/2) = 1 and
K(i1, . . . , ik/2) = 1. If so, output yes, there is a k-semiclique. If no tuples satisfy
the property, output no. If we detect a semiclique for some S = {i1, . . . , ik/2},
a semiclique can be found by just going through all k/2-cliques and checking
whether they form a semiclique with S in overall extra O(k2nk/2) time.

It is easy to verify the following lemma by induction.

Lemma 3.1 For i1, . . . , ik/2 ∈ [n], let Sj(i1, . . . , ik/2) denote the set of all j-
tuples i′j , . . . , i

′
1 ∈ [n], such that i′j > i1, . . . , ik/2, and i′ℓ < i′ℓ−1 for all ℓ =

2, . . . , j. Then

Cj(i1, . . . , ik/2) =
∨

(i′j ,...,i′1)∈Sj(i1,...,ik/2)

K(i′1, . . . , i
′
j , ij+1, . . . , ik/2)

j
∏

p=1

(

p
∏

ℓ=1

E(i′p, iℓ)

)

.
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Lemma 3.1 implies that Cj(i1, . . . , ik/2) = 1 if and only if there exists a j-set
Sj = {i′1, . . . , i′j} such that

• all elements of Sj appear in π after all elements of {i1, . . . , ik/2}; Sj is
hence disjoint from {i1, . . . , ik/2},

• for each ℓ < j, i′ℓ has edges to all ip with p ≤ ℓ, and

• Sj ∪ {ij+1, . . . , ik/2} forms a clique.

In particular, this implies that Ck/2(i1, . . . , ik/2) is nonzero iff there is a k/2-
tuple (ik/2+1, . . . , ik) such that, if {i1, . . . , ik/2} is a k/2-clique, then the k-set
{i1, . . . , ik} is a k-semiclique. The correctness of our algorithm is immediate.

Theorem 3.1 For any fixed integer k and a given graph G = (V,E), one can

find a k-semiclique subgraph in G, if one exists, in O(n
k
2 +1) time with high

probability, or deterministically in O(n
k
2 +1 log n) time.
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