
 

'AI-at-scale' method accelerates atomistic
simulations for scientists
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Quantum calculations of molecular systems often require extraordinary
amounts of computing power; these calculations are typically performed
on the world's largest supercomputers to better understand real-world
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products such as batteries and semiconductors.

Now, UC Berkeley and Lawrence Berkeley National Laboratory
(Berkeley Lab) researchers have developed a new machine learning
method that significantly speeds up atomistic simulations by improving
model scalability. This approach reduces the computing memory
required for simulations by more than fivefold compared to existing
models and delivers results over ten times faster.

Their research has been accepted at Neural Information Processing
Systems (NeurIPS) 2024, a conference and publication venue in
artificial intelligence and machine learning. They will present their work
at the conference on December 13, and a version of their paper is 
available on the arXiv preprint server.

"We wanted to build a different kind of machine learning architecture
using methods typically applied to large language models," said Eric Qu,
a UC Berkeley graduate student and co-author of the research paper.
"With our approach, researchers can more efficiently map how atoms
move around and interact with each other."

Understanding what happens to nature's smallest building blocks can
open a deeper understanding of materials science, chemistry, and drug
development, among other basic science subjects.

"This model can help scientists determine chemical reaction mechanisms
much more efficiently," said Samuel Blau, a Berkeley Lab
computational chemist. "If you can understand the complex chemistry in
real-world systems, you can figure out how to control them in new
ways."

Hungry scales
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Over the past decade, scientists and engineers have built large language
models like ChatGPT using massive datasets and a strategy called
scaling. Scaling involves making these models bigger and smarter by
systematically increasing the number of parameters in the neural
networks. How you increase these parameters matters: different
parameters contribute to model performance in distinct ways, and
optimizing this process can lead to significant improvements.

Researchers can also design new operations or components within the
neural network architecture—such as novel attention mechanisms—that
are more expressive, enabling further increases in parameters while
maintaining or improving efficiency.

But it's not just about size; scaling also means finding ways to make
these models more efficient, using smarter algorithms to save time and
computing power during both training and use. Instead of focusing solely
on raw processing power, researchers often measure efficiency by how
long it actually takes to train or run these models, prioritizing real-world
performance.

However, the principles of scaling have not been extensively applied to
another type of machine learning model particularly useful for scientists:
Neural Network Interatomic Potentials (NNIPs). NNIPs serve as
efficient alternatives to computationally expensive quantum mechanical
simulations that allow researchers to predict molecular and material
properties much faster.

"NNIPs are rapidly becoming the most powerful approach for molecular
or materials simulation," said Aditi Krishnapriyan, paper co-author, UC
Berkeley assistant professor, and faculty scientist in Berkeley Lab's
Applied Mathematics and Computational Research Division.
"Previously, designing clever algorithms at scale was primarily being
developed in other fields of machine learning, such as large language
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models, and less so for studying materials, chemistry, or physics."

The Berkeley team thus developed an NNIP architecture that could be
scaled effectively. The architecture, known as Efficiently Scaled
Attention Interatomic Potential (EScAIP), represents a significant step
forward for scaling machine learning models for scientific applications,
Krishnapriyan said.

Raining data

While large language models such as ChatGPT are trained on text, for
which trillions of examples exist on the internet, NNIPs rely on data
generated by a technique common in computational research called
density functional theory (DFT).

DFT is a physics-based numerical approach that uses quantum
mechanics to predict how atoms interact in molecules and materials.
Although DFT simulations are very powerful, they are also
computationally expensive, and generating a large amount of DFT
training data can be very time-consuming. Machine learning has the
potential to accelerate these simulations by acting as a surrogate model
for DFT. Only recently have DFT datasets with 100 million data points
been released, with previous datasets maxing out at around 1–2 million,
setting the stage for scaling to be crucial for NNIPs.

However, current NNIP models that incorporate physical constraints
often require substantial computer hardware, memory, and processing
time, and it can also add complications in optimizing the neural network
parameters easily. In contrast, EScAIP does not include a lot of built-in
physical constraints; instead, it focuses on making the machine learning
model as expressive as possible, including by designing a new attention
mechanism customized for the atomistic setting.
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This approach enables EScAIP to capture complex patterns in the data
and learn key physical insights directly from the data itself, bypassing
the need for explicit constraints. For example, after training, EScAIP
can, on new, unseen atomic systems, accurately map any atomic
orientation to predicted forces, capturing a symmetry known as
rotational equivariance.

"The new EScAIP model can train on 100 million data points in a matter
of days, whereas a physically-constrained NNIP would require weeks or
months," Blau said. As a result, the number of research groups that can
feasibly train these models expands dramatically.

"We really believe in helping people pursue their science goals using
tools previously less accessible," Qu added. "EScAIP gives scientists
with different amounts of resources that chance."

EScAIP is a significant improvement over previously state-of-the-art
NNIPs, with trained models achieving the top performance on common
NNIP benchmark datasets spanning diverse chemical systems, including
catalysts (such as the Open Catalyst Project), materials (such as the 
Materials Project), and molecules (such as SPICE).

On datasets like Open Catalyst, it is also the first model to top the
leaderboard that was developed and trained purely by academic and
national lab researchers, rather than by teams at major technology
companies. However, Qu and Krishnapriyan believe that the model
should be viewed as a first step in a new direction.

"We are saying to the science community, 'Hey, look over here, let's
explore this idea more,'" Krishnapriyan said. "EScAIP is an initial proof-
of-concept for how to think about scaling machine learning models in
the context of atomistic systems, and now represents a 'lower bound' for
what's possible. We think it's the direction that we should be thinking
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about going in the field as we enter a future with more data and
computational resources."

According to Krishnapriyan, EScAIP traces its origins to a Berkeley Lab
Laboratory Directed Research and Development (LDRD) project,
Development of New Physics-Informed Machine Learning Methods,
which helped shape its foundational ideas. She emphasizes that
leveraging the extensive GPU resources at the Department of Energy's
(DOE) National Energy Research Scientific Computing Center
(NERSC) was crucial for developing and training models on large-scale
datasets. By utilizing multiple GPUs simultaneously, the team achieved
top performance on the Open Catalyst dataset—a remarkable
accomplishment, particularly as the only non-tech company team to do
so with significantly fewer resources.

  More information: Eric Qu et al, The Importance of Being Scalable:
Improving the Speed and Accuracy of Neural Network Interatomic
Potentials Across Chemical Domains, arXiv (2024). DOI:
10.48550/arxiv.2410.24169
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