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Introduction
A player wins possession deep in their own half, and immediately, shouts echo from the
sideline: “BOOT IT!ˮ… Up until the early 2000s, this was a common refrain at soccer
matches across all levels and age groups. Back then, the only responsibility of a defender
was to ensure goals were not conceded and there was little emphasis on passing skills.
Likewise, when a goalkeeper gained control of the ball or took a goal kick, the most
frequent expectation was to "send it long".

Today, however, it is increasingly rare to see players kick a long ball to escape pressure
and gain a positional advantage on the field at the cost of losing possession. A
well-known trend in modern soccer is for teams to patiently build up play from deep
within their own half or even from within their defensive box 1. This strategy can even be
favored when facing intense pressure from nearby opponents, where one might expect a
more pragmatic approach of clearing the ball to avoid losing possession in a dangerous
area.

But is giving up possession always a bad idea? In certain situations, it might be both less
dangerous and more effective to try regaining possession close to the opponentʼs goal
and score from there, rather than building up an offensive play from the back. The rise of
counter-pressing—where teams immediately apply pressure after losing
possession—further highlights the potential benefits of turning over the ball in advanced
areas.

In this work, we specifically evaluate the trade-off between trying to retain possession
versus intentionally putting the ball out of play near the opponentʼs goal for a throw-in.
While intentionally playing the ball out may seem unconventional, it is not an entirely
radical idea. Regularly you see teams employing it as a kick-off strategy.1 The underlying
belief is that an opponent throw-in in the corner of the pitch is worth more than
established possession in the center of the pitch.

1 See for example https://youtu.be/6svu2FDDbWo?t=710 and
https://www.youtube.com/watch?v=5j-Ij5_3Cs8&t=720
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We see three reasons why kicking the ball out of bounds might be a valuable option, more
so than just launching the ball forward. First, professional players should consistently be
able to clear the ball out of play near the final third from the midfield area. Second, a
throw-in provides the attacking team ample time to regroup and establish an organized
press. Third, previous research has shown that possession is more likely to be lost than
retained for throw-ins taken within 20 yards 18m of a teamʼs own goal 2.

We investigate the trade-off between retaining possession and intentionally putting the
ball out using a mix of basic statistical analysis and machine learning. First, we perform a
simple analysis that divides the pitch into coarse-grained bins based solely on location
(i.e., all other context is ignored). This analysis indicates a slight benefit to the throw-in
strategy over retaining possession. Second, we develop a framework based on machine
learning to give more nuanced estimates of the payoffs associated with different action
choices. By employing machine learning, we can reason about a much richer set of
contextual information about the game state such as the locations of players and whether
a team is able to apply pressure during the throw-in. Concretely, this enables us to
simulate the expected chance of scoring if a team would have kicked the ball out of
bounds in certain situations (i.e., that is, we can value a counterfactual action choice).
The experimental results of our more nuanced analysis also confirm our original
hypothesis that booting a long ball out of bounds is a valid strategy when compared to
trying to maintain possession.

Data and Definitions
Our datasets consist of StatsBomb 360 event stream data. This contextualized event
stream data is extracted from broadcast video and contains 1 event stream data, and 2
snapshots of player positioning at the moment of each event. The event stream data
describes semantic information about the on-the-ball actions, such as which actions are
performed, their start and end location, the outcome of the action, which players
performed them, and the time in the match they were performed at. To facilitate the
analysis, we work with the SPADL representation of this event stream data.2 The
snapshots include the positions of the players that were visible at the moment of the
action, as well as their relationship to the ball carrier (i.e., teammate or opponent).

Our analysis begins by identifying match phases where (i) a player opts to retain
possession without a clear opportunity to launch a direct attack and (ii) a team attempts
to regain possession on a throw-in. However, distinguishing when a team is deliberately
choosing a patient build-up approach is not straightforward. To address this, we use
backward passes as a simple indicator. We reason that if a professional soccer player has

2 SPADL is a data provider-independent tabular representation for event stream data. It describes
each on-the-ball action by the same set of twelve attributes. For more info, see
https://socceraction.readthedocs.io/en/latest/documentation/spadl/spadl.html.
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the option to play a useful progressive pass, they will select it. Hence, if a backward pass
was played, it typically means there was no opportunity to launch a direct attack.
We identify backward passes by computing the angle between the start and end location
of a pass and filtering passes whose angle is or Figure 1.<− 5/6 * π > 5/6 * π

Figure 1. Passes with an angle or between the start and end<− 5/6 * π > 5/6 * π
locations are classified as backward passes. Under this definition, any pass originating
from the blue dot and ending within the green zone qualifies as a backward pass.

To identify throw-ins where the defending team tries to regain possession, we leverage
StatsBombʼs provided "under_pressure" attribute. This attribute is defined for each
on-the-ball action and indicates whether the action was performed while being pressured
by an opponent. We classify a throw-in as pressured if 1 the ball is stolen immediately
after the throw-in or 2 the team keeps possession, but the first or second pass after the
throw-in is labeled "under_pressure". An exception is made when the first pass is a long
ball, in which case we ignore the second pass.

Our training dataset consists of 1,466,942 passes (of which 351,247 are backward
passes) and 63,414 throw-ins (of which 31,300 are pressured). These are extracted from
StatsBombʼs open source 360 data,3 which include all games from the 2020 and 2024
European Championships, the 2022 World Cup, plus Bayer Leverkusenʼs title-winning
2023/24 German Bundesliga, together with data from the 2020/21 season of the English
Premier League, the Spanish LaLiga and the German Bundesliga, and the 2021/22 and
2022/23 Premier League seasons. A random sample of 20% of passes and throw-ins is
used as a validation set when training pass and throw-in value models. In addition, a
dataset of 504,962 passes (of which 118,395 are backward passes) and 21,851 throw-ins

3 https://github.com/statsbomb/open-data
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extracted from the 2022/23 and 2023/24 Italian Serie A seasons has been set aside to
evaluate the models and develop the use cases.

Elementary Analysis
We first use a simple binning and counting approach to investigate whether kicking a long
ball out of play and applying pressure on the opponentʼs throw-in leads to a higher
probability of scoring compared to making a (possibly risky) backward pass. To simplify
our analysis, we assume that kicking the ball out always results in an opponent throw-in.

To compare the two options, we count the number of times a goal is scored within 10
actions 3 of each backward pass or pressured throw-in. In the latter case, we look at
goals scored by the team that conceded the throw-in (i.e., the “bootingˮ team recovers
the ball and scores from the opponentʼs throw-in). For a more fine-grained analysis, we
divide the passes and throw-ins into five bins according to their end location.

The results presented in Table 1 provide an initial comparison that frames the trade-off of
this paper. Namely, the analysis suggests that the probability of scoring from an opponent
throw-in in the last bin of the pitch 0.34% is higher than the probability of scoring as the
result of a backward pass in a teamʼs defensive bins 0.18%, 0.20%. Figure 2 shows that
a throw-in in the last bin of the pitch (and therefore the long kick that caused it) is more
likely to result in a goal compared to a conservative backward pass in the three closest
regions to a team's own goal.

Table 1. Probability of scoring in the next 10 actions following a throw-in, or pass out from
the back.

Location:
X/Touchline Coordinate as
the Distance From a Teamʼs

Own Goal

From Opponent Throw-in:
Probability of Scoring

From Pass:
Probability of Scoring

021m 0.01% 0.18%

2142m 0.09% 0.20%

4263m 0.17% 0.33%

6384m 0.16% 0.73%

84105m 0.34% 2.06%
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Figure 2. Comparison of scoring probabilities as a result of a pass (red line) or throw-in
(dashed line) from different regions of the pitch.

Model-Based Analysis
The elementary analysis suggests that, in certain situations, kicking a long ball out of
bounds is a viable alternative to backward passes in areas of the pitch that are either
dangerous or do not improve a teamʼs chances of scoring.

To verify this claim and provide more nuanced estimates of the payoffs associated with
different action choices, we employ machine learning techniques to assign a value to
each of the two possible choices: 1 a standard backward pass to a teammate, or 2 a
long clearance that results in a throw-in for the opponents. Employing machine learning
techniques allows us to reason about a much richer set of contextual information about
the game states that would result from taking either of these choices and therefore
provide more nuanced analyses of the trade-offs.

Model Choice and Settings
Depending on whether a player decides to pass the ball backward or clear it, the resulting
game state will be different. The former will result in an open-play possession against a
set defense, while the latter will result in a throw-in. Our approach estimates the value of
these resulting game states to evaluate the trade-off between both choices.

Estimating the value of a game state is a common problem in soccer analytics. Recent
literature 3, 4, 5 has introduced the idea of achieving this by estimating how likely it is
for a team to score (i.e., the offensive value) and concede (i.e., the defensive value) a

5



goal in the near future (i.e., the next few actions) from the current game state. Formally,
the value of a game state is then defined as:𝑆
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be estimated using a machine-learned model.

A key design choice that differentiates the existing approaches revolves around how to
represent a game state. On the one hand, CNN or GNN-based deep learning architectures
leverage full spatial tracking data to effectively capture a good representation of the game
state 6, 7. These are applied to prediction tasks such as pass selection, pass success
and pass value 6, 8. On the other hand, we can handcraft features exploiting domain
knowledge and use them to train feature-based models. Tree ensemble models such as
XGBoost 9 achieve state-of-the-art performance on tabular and event stream data,
which typically makes them the chosen option when one can only work with event stream
data 3, 4, 8, 10.

While it remains unclear what the best option is for the hybrid 360 data, we follow the
work of Robberechts et al. 8, where the authors tried both approaches to build a pass
value model and ultimately found that the second option can offer slightly better
performance.

Given that goals are rare, multiple works, including the work of Robberechts et al. 8, use
xG values as target labels to train possession state value models on a stronger learning
signal. We do the same and exploit StatsBombʼs xG values for estimating and𝑃
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shots in the next actions taken by the team that respectively possesses the ball and the𝑘
team that defends in game state . If multiple shots are contained in the action sequence, 𝑆

𝑖

we extract their combined xG as:

𝑥𝐺
𝑠𝑒𝑞

=  1 −  
𝑠ℎ𝑜𝑡∈𝑠𝑒𝑞

∏ 1 − 𝑥𝐺
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which evaluates to one minus the probability that no shot in the sequence ends in a goal.

For all XGBoost models, we tune the parameters through a grid search optimizing the max
tree depth in 3, 5, 7, learning rate in 1e−2, 0.1, 0.3, and number of estimators in 50,
100, 200. We use early stopping with patience set to 10 boosting rounds.
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We use a different set of features to represent the game states that correspond to
possession in open play (following a pass) and a throw-in. These feature sets and the
resulting models are discussed in the next two sections.

Open Play Game State Value Model
We represent the open play game state following a pass with the best set of features
crafted by Robberechts et al. 8 for their pass value model using 360 event stream data.
This consists of the traditional set of features used by VAEP 3 with event stream data,
which means:

● action type and result
● time of occurrence in the match
● origin and destination location
● the body part used to execute the action
● the team performing the action
● the current goal difference.

We also add features extracted from the 360 frames that capture more context related to
the considered pass:

● the number of outplayed players
● the ball interceptability.

The former is computed using a simplified version of Impectʼs Packing Rate, where a
defender is ‘packedʼ if they are located between the ball and the goal before a pass, but
further from the goal than the ball after the pass. For the latter, we extract the number of
defenders in a 3-meter and 5-meter radius around the passʼ start and end location. Note
that differently from Robberechts et al. 8, we do not train a model for completed passes
and a model for failed passes, as we incorporate the pass result as a feature in our game
state representation.

We train these models using all observed passes, and hence do not limit the training
phase to backward passes. Thus the models learn to value game states following any
kind of pass. We then specifically use them to evaluate game states following backward
passes for the purpose of this work.

Table 2 shows the performance of our models. The offensive game state value modelʼs
performance is comparable to the performance of the model from Robberechts et al. 8.
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Table 2. The performance of our offensive and defensive open play game state value
models. Both models are XGBoost ensembles trained on xG values using features from
the VAEP framework and additional features extracted from 360 data.

Model AUC LogLoss Brier Score

Open play offensive game state value model 0.790 0.043 0.008

Open play defensive game state value model 0.763 0.010 0.001

Throw-In Game State Value Model
We adopt a similar approach to value game states following throw-ins. We train our
models on a set of historical throw-ins, and we use a tailored feature set made of:

● the throw-inʼs start and end location
● the current time in the match
● the time elapsed since the previous action (i.e., a proxy for the time to put the ball

back in play)
● a Boolean indicator of whether the opponent team is applying pressure on the

receiver of the throw-in (see Data section for the definition).

Table 3 reports the performance of the throw-in game state value models.

Table 3. The performance of our offensive and defensive throw-in game state value
components. Both models are XGBoost ensembles trained on xG values.

Model AUC LogLoss Brier Score

Offensive throw-in value model 0.727 0.027 0.004

Defensive throw-in value model 0.744 0.008 0.001

Simulating Long Kick + Throw-In as an Alternative to a Pass
The final goal of the model-based approach is to exploit the learned models to answer
practical questions around the trade-off between passing the ball backward and kicking it
out of bounds in proximity of the opponentʼs goal. Given that only one of the two events
happens each time a player has the opportunity to choose, our idea is to approach this by
starting from an executed backward pass and, together with assigning a value to the
game state following the pass, simulating a long ball cleared out of bounds towards the
opponentʼs goal. We then evaluate the subsequent throw-in game state as the alternative
option. Note that while possible in theory, it is hard to make an opposite analysis where
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we start from an executed clearance + throw-in scenario and simulate a backward pass,
simply because the “boot it!ˮ pattern is rare and harder to pinpoint (often clearances are
not a choice, but a necessity).

To complete the analysis, we need a way to simulate a long clearance out of bounds and
the subsequent throw-in. Therefore, we start from a snapshot where a player is about to
perform a backward pass and we replace the pass by two simulated events: a clearance
ending out of bounds followed by a throw-in for the opponent team.

Long Kick Out of Bounds
We first generate a synthetic clearance event starting from the same location as the
backward pass. The key point here is estimating how far forward the players can kick the
ball. One option is to base this estimate on examples of deliberate long kicks out of
bounds in the dataset. However, defining what constitutes a deliberate kick out of bounds
is challenging. It is difficult to understand from 360 data whether a playerʼs intention is to
simply kick the ball away or to reach a teammate far up the pitch. Therefore, since we are
mainly interested in how far players can kick the ball away without aiming for a specific
target, we use goal kicks from goalkeepers as a proxy for long kick length. Figure 3 (left)
shows the distribution of goal kick lengths using all the 32,392 observed goal kicks in our
training set. Specifically, we extract goal kicks longer than 40 meters (assuming shorter
kicks are not at full power or aim for a specific teammate), and use their distribution as a
proxy for the length of the simulated clearances.

Figure 3. Distributions of goal kicks length (left) and time to take a throw-in (right),
extracted using all observed goal kicks and throw-ins from our training set. For goal kicks,
we filter out kicks shorter than 40 meters (not at full power) and use the rightmost part of
the distribution (which is more darkly shaded) to simulate clearance lengths.
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Throw-In
After the clearance has been simulated, we create a synthetic throw-in event at the
location where the ball went out of bounds. However, we must account for the time spent
between the ball going out of bounds and the throw-in being taken. This is particularly
relevant as it is also a feature in the throw-in game state value model. Similarly to what we
do for the clearance length, we sample the time needed to take the throw-in from its
distribution gathered from the training data (i.e., we extract the time since the previous
action from event stream data). The distribution is shown in Figure 3 (right). We do the
same for the end location of the throw-in, which is sampled from the set of historical
throw-ins close enough to the current one 10 meters tolerance). As an example, Figure 4
shows the distribution of throw-in end locations for a specific throw-in start location.

Distribution of Throw-In End Location

Figure 4. Distribution of throw-in end locations for a specific start location (in red). The
distribution includes all observed throw-ins in our training set whose start location was
closer than ten meters to the considered start location.

Since we are studying the trade-off between passing the ball and kicking it long to
recover it closer to the opponentʼs goal, in our basic setting we assume that the simulated
throw-in is always pressured. However, in the following section, we also experiment with
two more scenarios where the throw-in is pressured 50% and 75% of the time. This is to
mitigate the (at times unrealistic) assumption that the defending team is always able to
apply pressure on the opponentʼs throw-in after kicking the ball out of bounds.

Finally, note that while we assume that a player will kick a long ball out towards the
closest touchline, this simplification does not have a large effect on the analysis. Indeed,
while the starting y-location of the subsequent throw-in is included in the throw-in game
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state value model, its weight is null as the model learns that it is not a discriminative
feature. The only difference is that a clearance of the same length to the further touchline
would result in an end location that is slightly further from the opponentʼs goal.

Use Cases
We use the described models and simulation procedure to compare observed backward
passes with simulated clearances+throw-ins for each of the top ten Serie A teams in the
2023/24 season.

Analyzing a Single Match
A first, immediate application of our framework consists of rating all backward passes
performed in a match and the corresponding simulated clearances+throw-ins. This allows
highlighting a few game states where the choice of passing was not ideal and it would
have been preferable to boot the ball. We provide an example in Figure 5. In the presented
game state, the team in possession of the ball chose to pass the ball backward.
According to our models, however, the team should have avoided the risk of such a pass
and should have kicked a long ball out of bounds.

Example of SituationWhere Booting Is Better

Figure 5. Backward pass extracted from the 2023/24 Inter Milan-AC Milan match. This is
the pass in the match where the difference between the two options is maximum, i.e., the
value assigned to the simulated clearance+throw-in is higher than the value of the
executed pass.
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Analyzing a Full Season
Figure 6 shows the distributions of the values attributed to game states following all
observed backward passes and throw-ins in our test set. If we exclude passes in a teamʼs
final third, it is rare for a game state to be valued more than 0.01. This is not entirely
unexpected: in general, the values are low right after passes and throw-ins because the
vast majority of these occur far from the goal, such that the near-term chance of scoring
is low.

Values of Game States Following Observed Backward Passes and Throw-Ins

Figure 6. Ratings of backward passes and throw-ins taken in the 2023/24 Serie A season.

Next, we consider all observed backward passes in the defensive third on a team level for
the top ten teams in the 2023/24 Serie A season. For each such pass, we simulate
booting the ball out of bounds for a throw-in. Figure 7 shows the aggregated difference
between the total value of game states following 1 simulated boots and 2 observed
passes. In this first analysis, we exclusively focus on passes in a teamʼs defensive third of
the pitch. Intuitively, losing the ball there puts the team in danger as the opponents gain
possession close to the goal. At the same time, possessing the ball in the defensive third
is not a highly-valued game state per se, as the ball is still far away from the opponentʼs
goal.

Figure 7 shows that kicking the ball long and out of bounds instead of playing it in the
defensive area is indeed advantageous. The trade-off is in favor of the “bootingˮ option
for all teams: on average, the difference in possession value over the full season is around
1.08 (i.e., booting results in a bigger reward). Or in other words, this strategy increases a
teamʼs expected goal differential for the season by about 1 goal. If we look at such a
difference in terms of expected points, previous work 11 showed that one goal
corresponds to approximately one expected point in the league table, which can actually
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be a relevant difference impacting (for example) a teamʼs chances to qualify for European
competitions or avoid relegation.

Difference Between Total PV of Booting and Passing Defensive Third)

Figure 7. Difference over a season in the total possession value generated by always
booting the ball vs always passing it backward, for the top 10 teams and considering all
attempted backward passes in a teamʼs defensive third of the 2023/24 Serie A season. A
positive value indicates that booting is better.

We then perform the same analysis dividing the full pitch in six bins according to the
x-location, and report the average difference between booting and passing for the top ten
Serie A teams in each of the bins. Figure 8 shows that as expected, booting the ball is not
advantageous when the team has the ball in the offensive midfield: at that point, it is
better to retain possession and orchestrate offensive play. However, before the halfway
line booting seems to be the preferable option.

Comparing Different Pressing Intensities
In these first experiments, we assume that a team is always able to apply pressure on the
opponentʼs throw-in after kicking the ball out of bounds. This could sometimes be
challenging to execute in practice, e.g., due to the opponents putting the ball back in play
very quickly. Table 4 presents results for three different fractions of pressured throw-ins.
In short, the “100% pressingˮ column reports the approach from Figure 7 for all three
thirds of the pitch. In the other two columns, we see that as the defending team struggles
to consistently apply pressure, the “bootingˮ option loses some value. However, in the
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defensive third it remains clearly advantageous even if the team is only able to apply
pressure in one out of two throw-ins.

Difference Between Total PV of Booting and Passing

Figure 8. Difference over a season in the total possession value generated by always
booting the ball vs always passing it backward. Passes are divided in six bins according
to the x-coordinate, and we report the average value for the 10 best teams of the 2023/24
Serie A. A positive value indicates that booting is better.

Table 4. Average difference in total possession value between always booting and always
passing for the ten best teams of the 2023/24 Serie A season, for different values of the
fraction of pressured throw-ins (proxy for how aggressive the booting team manages to
be after clearing the ball).

Area 50% pressing 75% pressing 100% pressing

Defensive third + 0.73 0.91 1.08

Middle third 0.90 0.38 0.13

Offensive third 10.88 10.65 10.41
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Custom Policy
While our analysis indicates that booting the ball is a valid option when a team has the ball
in its own half, always choosing the same option is clearly a suboptimal choice.
Trade-offs like this are usually better addressed using a mixed policy that selects the
option based on the game context (possibly with some randomness for game-theoretic
reasons).

We approach this by training an XGBoost policy that predicts which of the two options is
best, given a set of historical ratings of passes and throw-ins. Specifically, we:

● Rate all observed backward passes and simulated throw-ins of the 2022/23 Serie
A season with the previously trained open play game state value model and
throw-in game state value model.

● Use these ratings to train a new XGBoost ensemble to predict which of the two
options will receive a higher rating—using the same features as for the open play
game state value model.

The ensemble policy achieves 82% accuracy on the test season 2023/24 Serie A. That
is, it selects what our models consider to be the best option more than four times out of
five.

In Table 5, we compare the performance of the learned policy with respect to our naive
simulated boot-only policy and the observed policy (i.e., the team always passes
backward), by re-aggregating game state values over the course of the 2023/24 season.
In all three zones of the pitch, the learned mixed policy improves over the baselines. In the
defensive third, it still seems that always booting the ball is also a valid option. The main
difference arises in the middle third of the pitch, where the learned policy is able to
consistently improve over the two baselines, generating a possession value difference of
around 2 over the course of a season. Instead, as expected, the “bootingˮ option loses
value in the offensive third, and the learned policy almost always chooses to pass.

Table 5. Average total possession value for different policies: always passing (what we
observe in practice), always booting (our naive simulation), and the learned ensemble
policy. Values are aggregated for the ten best teams of the 2023/24 Serie A season.

Area Observed Policy
Pass-only)

Naive Policy
Boot-only)

Learned Policy

Defensive third 0.17 0.91 1.00

Middle third 5.77 5.90 7.71

Offensive third 13.18 2.78 13.27
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RelatedWork
Throw-ins have been relatively underexplored in soccer analytics but some studies have
started to highlight their tactical importance. For instance, McKinley 2 investigated
throw-ins to determine their expected value and the likelihood of retaining possession by
looking at factors such as the starting and ending location of the throw-in, as well as the
time taken to put the ball back into play, and used these findings to offer high-level
recommendations for optimizing throw-in tactics. Dona and Swartz 12 investigated the
effect of the target location of a thrown-in and found that longer throws confer an
advantage in terms of shot creation. More recently, Monte 13 analyzed data from the
2023/24 Premier League season to assess whether certain teams are exploiting throw-ins
more effectively to create dangerous situations. Furthermore, Bransen et al. 14 found
that teams miss the opportunity to create more danger with throw-ins early in the game.
These studies suggest that throw-ins, though not a primary focus in tactical discussions,
can still present valuable opportunities for teams to gain an edge.

However, these studies have only looked at throw-ins from an offensive standpoint. No
previous work has considered the option of intentionally giving up possession and how to
gain an advantage from an opponent throw-in. This setting requires evaluating a trade-off
between a sequence of actions.

Analyzing tactical trade-offs in soccer presents significant challenges due to the sport's
dynamic, complex, and low-scoring nature. Actions are rarely repeated in the same
context and their observed outcomes are often noisy. Researchers have therefore
explored various approaches to model and analyze these trade-offs, both at the level of
broader tactical strategies (e.g., direct play vs possession play 15) and at the level of
individual decision-making (e.g., shoot vs pass 11).

A first approach involves performing a game-theoretic 16, causal 12, or correlation
analysis 15, 17, 18, 19 between the frequency of a given strategy and specific
success criteria, such as goals scored. For instance, Charles Reepʼs early work in soccer
analytics 20 found that most goals were scored following fewer than five passes,
leading to the (mistaken 21) conclusion that direct play should be favored over
possession-based styles. Although this kind of observational analysis offers some insight
into the relative effectiveness of different strategies, it lacks the granularity needed to
fully understand the impact of adopting a particular approach and fails to account for
contextual factors like the strategy of the opposition.

To get a better insight into the effects of changing a strategy, researchers have leveraged
Markov decision processes to build a model of the game 22, 23. Performance
indicators can then be computed via simulation and the model can be tweaked to
investigate the effect of tactical changes. While Markov models with a discrete state
space offer a useful framework for analyzing player behavior and decision-making, they
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struggle to tackle sparse data, meaning that it is hard to incorporate rich contextual
information, such as specific game situations or team characteristics.

Lastly, researchers have combined simulation and machine learning to evaluate player
decision-making 6, 14, 24, 25. The approach involves simulating potential future
game states one or multiple steps ahead and then assessing the possession value for
these simulated states. We adopted this approach since it allows us to reason about a rich
set of contextual information about the game state. Moreover, the throw-in is a
constrained game state that is relatively straightforward to simulate.

Uniquely, our work compares the effectiveness of different match phases (i.e., open play
vs. throw-ins), while previous work has focused on a single, specific match phase.

Conclusions
The presented work argues that the modern emphasis on build-up play might be
excessively demonizing long balls out of bounds. Our analysis is based on game state
value models and an ad-hoc simulation procedure to compare backward passes with long
balls out of bounds. The reported results show that in certain situations, a long kick out of
bounds can be a useful move to gain some positional advantage and move the play away
from dangerous areas of the pitch. Namely, this appears to be the better alternative in a
teamʼs defensive third of the pitch, and a valid option when the ball is in the middle third.

Future work should follow up on this study by addressing a few key limitations. The
proposed framework compares observed passes with simulated throw-ins. This is
justified by a clear imbalance in the data (there are many more passes than throw-ins),
which means that we cannot only work with the observed throw-ins. However, this
approach limits the contextual information at disposal of the throw-in game state value
model, whose performance could be improved, e.g., using the location of the players at
the time of the throw-in. The simulation approach could also be fine-tuned by considering
multiple scenarios when simulating a throw-in, as the current procedure simply samples
once from the training data distributions.
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