In one paper I read, the authors write $$ \mathbb{E}\left[\|\tilde{\Sigma}^{-\frac{1}{2}}\left(\hat{\Theta}-\Omega\right)\|_F^2\right]=\mathbb{E}\left[\|{\Sigma}^{-\frac{1}{2}}\left(\hat{\Theta}-\Omega\right)\|_F^2\right] $$ where $\tilde{\Sigma}$ is an unbiased estimator of $\Sigma$ and $\|\cdot\|_F$ denotes the frobenuis norm.
Why does this equation hold, and if so, does it mean that $\mathbb{E}\left[\|\hat{\Sigma}\|_F\right]=\|{\Sigma}\|_F$ is also correct?