0

This is the follow-up question from here.

I try to use YOLOv4 model to do the inference with OpenVINO API 2.0.

dcm_file = "1037973"
ds = dcmread(dcm_file, force=True)
ds.PixelRepresentation = 0
ds_arr = ds.pixel_array
        
core = ov.Core()
model = core.read_model(model="frozen_darknet_yolov4_model.xml")
model.reshape([ds_arr.shape[0], ds_arr.shape[1], ds_arr.shape[2], 3])
compiled_model = core.compile_model(model, "CPU")
infer_request = compiled_model.create_infer_request()
input_tensor = ov.Tensor(array=ds_arr, shared_memory=True)
#infer_request.set_input_tensor(input_tensor)
infer_request.start_async()
infer_request.wait()
output_tensor1 = infer_request.get_output_tensor(0)
output_tensor2 = infer_request.get_output_tensor(1)
output_tensor3 = infer_request.get_output_tensor(2)

Afterwards, I want to convert the output_tensor to image.

I have referenced Single Image Super Resolution and Super Resolution with PaddleGAN on OpenVINO docs but in vain.

And I also try to use Image.fromarray to convert it.

The error always happens below.

AttributeError: 'openvino.pyopenvino.Tensor' object has no attribute xxxxx

How can I deal with openvino.pyopenvino.Tensor propertly?

My environment is Windows 11 with openvino_2022.1.0.643 version.

1 Answer 1

0

Use the data attribute of the Tensor object to access the output tensor data.

output_tensor1 = infer_request.get_output_tensor(0)
output_tensor2 = infer_request.get_output_tensor(1)
output_tensor3 = infer_request.get_output_tensor(2)
output_buffer1 = output_tensor1.data
output_buffer2 = output_tensor2.data
output_buffer3 = output_tensor3.data
print(output_buffer1)
print(output_buffer2)
print(output_buffer3)

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Not the answer you're looking for? Browse other questions tagged or ask your own question.