I have the following data in my Date
Column,
When I used to convert this column into Standard Date Time format of pandas using:
AQI_TS["Date"] = pd.to_datetime(AQI_TS["Date"])
It is giving the following error:
TypeError Traceback (most recent call last)
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\datetimes.py in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object)
2084 try:
-> 2085 values, tz_parsed = conversion.datetime_to_datetime64(data)
2086 # If tzaware, these values represent unix timestamps, so we
pandas\_libs\tslibs\conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_datetime64()
TypeError: Unrecognized value type: <class 'str'>
During handling of the above exception, another exception occurred:
ParserError Traceback (most recent call last)
<ipython-input-28-2a070dee7e91> in <module>
----> 1 AQI_TS["Date"] = pd.to_datetime(AQI_TS["Date"])
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)
799 result = result.tz_localize(tz)
800 elif isinstance(arg, ABCSeries):
--> 801 cache_array = _maybe_cache(arg, format, cache, convert_listlike)
802 if not cache_array.empty:
803 result = arg.map(cache_array)
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\tools\datetimes.py in _maybe_cache(arg, format, cache, convert_listlike)
176 unique_dates = unique(arg)
177 if len(unique_dates) < len(arg):
--> 178 cache_dates = convert_listlike(unique_dates, format)
179 cache_array = Series(cache_dates, index=unique_dates)
180 return cache_array
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact)
463 assert format is None or infer_datetime_format
464 utc = tz == "utc"
--> 465 result, tz_parsed = objects_to_datetime64ns(
466 arg,
467 dayfirst=dayfirst,
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\datetimes.py in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object)
2088 return values.view("i8"), tz_parsed
2089 except (ValueError, TypeError):
-> 2090 raise e
2091
2092 if tz_parsed is not None:
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\datetimes.py in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object)
2073
2074 try:
-> 2075 result, tz_parsed = tslib.array_to_datetime(
2076 data,
2077 errors=errors,
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime()
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime()
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime_object()
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime_object()
pandas\_libs\tslibs\parsing.pyx in pandas._libs.tslibs.parsing.parse_datetime_string()
C:\ProgramData\Anaconda3\lib\site-packages\dateutil\parser\_parser.py in parse(timestr, parserinfo, **kwargs)
1372 return parser(parserinfo).parse(timestr, **kwargs)
1373 else:
-> 1374 return DEFAULTPARSER.parse(timestr, **kwargs)
1375
1376
C:\ProgramData\Anaconda3\lib\site-packages\dateutil\parser\_parser.py in parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
647
648 if res is None:
--> 649 raise ParserError("Unknown string format: %s", timestr)
650
651 if len(res) == 0:
ParserError: Unknown string format: 2020_09_01
I have also used the coerce=True
but all the values under this column Date
gets turned into NAT
, While my desired output is to have date in this format 2020/09/01
or 01/09/2020
, Looking for a solution, how can i get rid-off from above error.
AQI_TS["Date"] = pd.to_datetime(AQI_TS["Date"], format='%Y_%m_%d')