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Abstract

We develop a Markov-switching GARCH model (MS-GARCH) wherein the conditional

mean and variance switch in time from one GARCH process to another. The switching

is governed by a hidden Markov chain. We provide sufficient conditions for geometric

ergodicity and existence of moments of the process. Because of path dependence, max-

imum likelihood estimation is not feasible. By enlarging the parameter space to include

the state variables, Bayesian estimation using a Gibbs sampling algorithm is feasible. We

illustrate the model on SP500 daily returns.
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1 Introduction

The volatility of financial markets has been the object of numerous developments and ap-

plications over the past two decades, both theoretically and empirically. In this respect, the

most widely used class of models is certainly that of GARCH models (see e.g. Bollerslev,

Engle, and Nelson (1994) for an overview). These models usually indicate a high persistence

of the conditional variance (i.e. a nearly integrated GARCH process). Diebold (1986) and

Lamoureux and Lastrapes (1990), among others, argue that the nearly integrated behavior of

the conditional variance may originate from structural changes in the variance process which

are not accounted for by standard GARCH models. Furthermore, Mikosch and Starica (2004)

show that estimating a GARCH model on a sample displaying structural changes in the un-

conditional variance does indeed create an integrated GARCH effect. These findings clearly

indicate a potential source of misspecification, to the extent that the form of the conditional

variance is relatively inflexible and held fixed throughout the entire sample period. Hence the

estimates of a GARCH model may suffer from a substantial upward bias in the persistence

parameter. Therefore, models in which the parameters are allowed to change over time may

be more appropriate for modelling volatility.

Indeed, several models based on the idea of regime changes have been proposed. Schwert

(1989) consider a model in which returns can have a high or low variance, and switches

between these states are determined by a two state Markov process. Hamilton and Susmel

(1994) and Cai (1994) introduce an ARCH model with Markov-switching parameters in order

to take into account sudden changes in the level of the conditional variance. They use an

ARCH specification instead of a GARCH to avoid the problem of path dependence of the

conditional variance which renders the computation of the likelihood function infeasible. This

occurs because the conditional variance at time t depends on the entire sequence of regimes

up to time t due to the recursive nature of the GARCH process. Since the regimes are

unobservable, one needs to integrate over all possible regime paths when computing the sample

likelihood, but the number of possible paths grows exponentially with t, which renders ML

estimation intractable. Gray (1996) presents a tractable Markov-switching GARCH model

and a modification of his model is suggested by Klaassen (2002); see also Bollen, Gray, and

Whaley (2000), Dueker (1997), Haas, Mittnik, and Paolella (2004), and Marcucci (2005)

for related papers. Stationarity conditions for some of these tractable models are given by
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Abramson and Cohen (2007).

The objective of this paper is to develop both the probabilistic properties and the estima-

tion of a Markov swtiching GARCH (MS-GARCH) model that has a finite number of regimes

in each of which the conditional mean is constant and the conditional variance takes the form

of a GARCH(1,1) process. We provide sufficient conditions for the geometric ergodicity and

the existence of moments of the proposed model. We find that for strict stationarity, it is

not necessary that the stability condition of Nelson (1990) be satisfied in all the GARCH

regimes but it must be satisfied on average with respect to the unconditional probabilities of

the regimes. Further, for covariance stationarity, the GARCH parameters in some regimes

can be integrated or even explosive.

Concerning the estimation method, we propose a Bayesian Markov chain Monte Carlo

(MCMC) algorithm that circumvents the problem of path dependence by including the state

variables in the parameter space and simulating them by Gibbs sampling. We illustrate by

a simulation experiment that the algorithm is able to recover the parameters of the data

generating process, and we apply the algorithm to a real data set. For the more simple

MS-ARCH case, Francq, Roussignol, and Zakoian (2001) establish the consistency of the ML

estimator. Bayesian estimation of a Markov switching ARCH model where only the constant

in the ARCH equation can switch, as in Cai (1994), has been studied and illustrated by

Kaufman and Fruhwirth-Schnatter (2002) and Kaufman and Scheicher (2006). Das and Yoo

(2004) propose an MCMC algorithm for the same model (switch in the constant only) but

with a GARCH term and therefore tackle the path dependence problem, but they do not

provide an application to a real data series. Finally, the most comparable work to our paper

(for estimation) is that of Henneke, Rachev, and Fabozzi (2006) who estimate by a MCMC

algorithm a Markov-switching ARMA-GARCH model. They apply their algorithm to the

data used by Hamilton and Susmel (1994). Non-Bayesian estimation of MS-GARCH models

is studied by Francq and Zakoian (2005) who propose to estimate the model by the generalized

method of moments.

This sequel of the paper is organized as follows: in Section 2, we define our version of the

MS-GARCH model and state sufficient conditions for geometric ergodicity and existence of

moments. In Section 3, we explain how the model can be estimated in the Bayesian framework

and provide a numerical example. In Section 4, we apply our approach to financial data. and
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in Section 5 we conclude and discuss possible extensions. Proofs of the theorems stated in

the paper are gathered in an appendix.

2 Markov-Switching GARCH Model

The GARCH(1,1) model can be defined by

yt = µt + σtut (1)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (2)

where σt and µt are measurable functions of yt−τ for τ ≤ t − 1, εt = yt − µt, and the error

term ut is i.i.d. with zero mean and unit variance. In order to ensure easily the positivity of

the conditional variance we impose the restrictions ω > 0, α ≥ 0 and β ≥ 0. For simplicity,

we assume that µt is constant. The sum α + β measures the persistence of a shock to the

conditional variance in equation (2). When a GARCH model is estimated using daily or

higher frequency data, the estimate of this sum tends to be close to one, indicating that the

volatility process is highly persistent and the second moment of the return process may not

exist. However it was argued that the high persistence may artificially result from regime

shifts in the GARCH parameters over time, see Diebold (1986), Lamoureux and Lastrapes

(1990), and Mikosch and Starica (2004), among others.

This motivates our idea to estimate a model that permits regime switching in the param-

eters. We call it a Markov-switching GARCH (MS-GARCH) model. It is a generalization

of the GARCH model and permits a different persistence in the conditional variance of each

regime. Thus, the conditional variance in each regime accommodates volatility clustering,

nesting the GARCH model as special case. Let {st} be an ergodic Markov chain on a finite

set S = {1, . . . , n}, with transition probabilities {ηij = P(st = i|st−1 = j)} and invariant

probability measure {πi}. The MS-GARCH model is given by

yt = µst + σtut (3)

σ2
t = ωst + αstε

2
t−1 + βstσ

2
t−1 (4)

where ωst > 0, αst ≥ 0, βst ≥ 0 for st ∈ {1, 2, . . . n}, and εt = yt − µst . These assump-

tions on the GARCH coefficients entail that σ2
t is almost surely strictly positive. Conditions

for the weak stationarity and existence of moments of any order for the Markov-switching
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GARCH(p,q) model with zero means µst , in which the discrete Markov chain of the latent

states is initiated from its stationary probabilities, have been derived by Francq and Zakoian

(2005), see also Francq, Roussignol, and Zakoian (2001). In related papers, Yang (2000),

Yao and Attali (2000), Yao (2001), and Francq and Zakoian (2002) derived conditions for

the asymptotic stationarity of some AR and ARMA models with Markov-switching regimes.

The MS-GARCH process is not a Markov chain in general. However, the extended process

Zt = (yt, ht, st)′ is a Markov chain (see the Appendix). In what follows, we state mild

regularity conditions for which this chain is geometrically ergodic and has finite moments.

These results are based on Markov chain theory, see e.g. Meyn and Tweedie (1993) and Chan

(1993). We impose the following assumptions:

A1 The error term ut is i.i.d. with a continuous density on the whole real line which is

centered on zero. Furthermore, E(|u2
t |δ) < ∞ for some δ > 0.

A2 αi > 0, βi > 0 and ηii ∈ (0, 1) for i ∈ {1, . . . , n}.

A3
n∑

i=1
πiE[log(αiu

2
t + βi)] < 0.

The first assumption is satisfied for a wide range of distributions for the error term, e.g.

the normal and the Student distributions. For δ = 1, we set the variance to unity and if

δ < 1, the parameters of the conditional scaling factor of the data are estimated. The second

assumption is slightly stronger than the non-negativity conditions of Bollerslev (1986) for the

GARCH(1,1) model. Under this assumption all the regimes are accessible and the discrete

Markov chain is ergodic. These assumptions are needed in order to establish the irreducibility

and aperiodicity of the process. Assumption A3 implies that at least one of the regimes is

stable. We assume, without loss of generality throughout that in the first regime (st = 1) the

process is strictly stationary, thus E log(α1u
2
t + β1) < 0. To obtain the results in Theorem 1,

we observe that it is not necessary that the strict stationarity requirement of Nelson (1990) be

satisfied for all the GARCH regimes but on average with respect to the invariant probability

distribution of the latent states.

Theorem 1 Under assumptions A1-A3, yt is geometrically ergodic and if it is initiated from

its stationary distribution, then the process is strictly stationary and β-mixing (absolutely

regular) with exponential decay. Moreover, E(|yt|2p) < ∞ for some p ∈ (0, δ] where the

expectations are taken under the stationary distribution.
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The geometric ergodicity ensures not only that a unique stationary probability measure for

the process exists, but also that the chain, irrespective of its initialization, converges to it at

a geometric rate with respect to the total variation norm. Markov chains with this property

satisfy conventional limit theorems such as the law of large numbers and the central limit

theorem for any given starting value given the existence of suitable moments, see Meyn and

Tweedie (1993, ch.17) for details. The definition of regular mixing can be found in Doukhan

(1994, Section 1.1) who also shows that the exponential decaying rate of the mixing numbers

implies that the autocovariance function converges to zero at least at the same rate. In order

to establish the existence of higher order moments, we define the n× n matrix

Ω =




E(α1u
2
t + β1)kη11 · · · E(αnu2

t + βn)kηn1

...
. . .

...

E(α1u
2
t + β1)kη1n · · · E(αnu2

t + βn)kηnn




.

A similar matrix was first introduced by Yao and Attali (2000) for nonlinear autoregressive

models with Markov switching. Let ρ(·) denote the spectral radius of a matrix, i.e. its largest

eigenvalue in modulus. Then, we impose the following conditions:

A4 E(|u2
t |k) < ∞ for some integer k ≥ 1.

A5 ρ(Ω) < 1.

Theorem 2 Under assumptions A1-A2 and A4-A5, the process is geometrically ergodic and

E(|y2
t |k) < ∞ for some integer k ≥ 1, where the expectations are taken under the stationary

distribution.

The spectral radius condition used in Theorem 2 is simple to check in the leading case

where k = 1. Let di = αi + βi: if di < 1, assumption A5 is satisfied for this case, since

ηij ∈ (0, 1), see Lutkepohl (1996, p. 141, 4(b)), and the resulting MS-GARCH process is

covariance-stationary. However, it is not necessary that all the GARCH processes of each

regime be covariance-stationary. To illustrate this, we plot in Figure 1 the boundary curve

ρ(Ω) = 1 for n = 2 where η11 = η22 = 0.85. The covariance-stationarity region is the interior

intersection of the boundary curve and the two axes. We observe that one of the GARCH
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regimes does not need to be weakly stationary and can even be mildly explosive, provided

that the other regime is sufficiently stable.
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Figure 1: Stationarity region for two-state MS-GARCH with transition probabilities η11 =

η22 = 0.85 and di = αi + βi

As a special case, we consider a situation where we start the discrete Markov chain from its

invariant distribution. This case is equivalent to a regime switching GARCH model where the

probabilities are constant over time, see Bauwens, Preminger, and Rombouts (2006). Under

assumptions A1-A2, it can be shown that a sufficient condition for geometric ergodictiy and

existence of moments is given by
∑n

j=1 πjE(αju
2
t + βj)k < 1. We observe that the condition

derived by Bollerslev (1986) for covariance-stationarity under a single GARCH model need

not hold in each regime but for the weighted average of the GARCH parameters. Note, that

high values of the parameters of the non-stable GARCH processes must be compensated by

low probabilities for their regimes.

3 Estimation

Given the current computing capabilities, the estimation of switching GARCH models by

the maximum likelihood method is impossible, since the conditional variance depends on the

whole past history of the state variables. We tackle the estimation problem by Bayesian
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inference, which allows us to treat the latent state variables as parameters of the model and

to construct the likelihood function assuming we know the states. This technique is called

data augmentation, see Tanner and Wong (1987) for the basic principle and more details. In

Section 3.1, we present the Bayesian algorithm for the case of two regimes, and in Section 3.2,

we illustrate that it recovers correctly the parameters of a simulated data generating process.

3.1 Bayesian Inference

We explain the Bayesian algorithm for a MS-GARCH model with two regimes and normality

of the error term ut. The normality assumption is a natural starting point. A more flexible

distribution, such as the Student distribution, could be considered, although one may be

skeptical that this is needed since Gray (1996) reports large and imprecise estimates of the

degrees of freedom parameters.

For the case of two regimes, the model is given by equations (3)-(4), st = 1 or 2 indicating

the active regime. We denote by Yt the vector (y1 y2 . . . yt) and likewise St = (s1 s2 . . . st).

The model parameters consist of η = (η11, η21, η12, η22)′, µ = (µ1, µ2)′, and θ = (θ′1, θ
′
2)
′, where

θk = (ωk, αk, βk)′ for k = 1, 2. The joint density of yt and st given the past information and

the parameters can be factorized as

f(yt, st|µ, θ, η, Yt−1, St−1) = f(yt|st, µ, θ, Yt−1, St−1)f(st|η, Yt−1, St−1). (5)

The conditional density of yt is the Gaussian density

f(yt|st, µ, θ, Yt−1, St−1) =
1√
2πσ2

t

exp
(
−(yt − µst)2

2σ2
t

)
(6)

where σ2
t , defined by equation (4), is a function of θ. The marginal density (or probability

mass function) of st is specified by

f(st|η, Yt−1, St−1) = f(st|η, st−1) = ηstst−1 (7)

with η11 + η21 = 1, η12 + η22 = 1, 0 < η11 < 1 and 0 < η22 < 1. This specification says that

st depends only on the last state and not on the previous ones and on the past observations

of yt, so that the state process is a first order Markov chain with no absorbing state.

The joint density of y = (y1, y2, . . . , yT ) and S = (s1, s2, . . . , sT ) given the parameters is

then obtained by taking the product of the densities in (6) and (7) over all observations:

f(y, S|µ, θ, η) ∝
T∏

t=1

σ−1
t exp

(
−(yt − µst)2

2σ2
t

)
ηstst−1 . (8)
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Since integrating this function with respect to S by summing over all paths of the state

variables is numerically too demanding, we implement a Gibbs sampling algorithm that allows

us to sample from the full conditional posterior densities of blocks of parameters given by θ,

µ, η, and the elements of S. We explain what are our prior densities for θ, µ, and η when we

define the different blocks of the Gibbs sampler.

3.1.1 Sampling st

To sample st we must condition on st−1 and st+1 (because of the Markov chain for the

states) and on the future state variables (st+1, st+2, . . . sT ) (because of path dependence of

the conditional variances). The full conditional mass function of state t is

ϕ(st|S6=t, µ, θ, η, y) ∝ η2−st
1,st−1

ηst−1
2,st−1

η
2−st+1

1,st
η

st+1−1
2,st

T∏

j=t

σ−1
j exp

(
−(yj − µsj )

2

2σ2
j

)
(9)

where we can replace η2,st−1 by 1− η1,st−1 and η2,st by 1− η1,st . Since st takes two values, it

is easy to simulate this discrete distribution.

3.1.2 Sampling η

Given a prior density π(η),

ϕ(η|S, µ, θ, y) ∝ π(η)
T∏

t=1

ηstst−1 (10)

which does not depend on µ, θ and y. For simplicity, we can work with η11 and η22 as free

parameters and assign to each of them a beta prior density on (0, 1). The posterior densities

are then also independent beta densities. For example,

ϕ(η11|S) ∝ ηa11+n11−1
11 (1− η11)a21+n21−1 (11)

where a11 and a21 are the parameters of the beta prior, n11 is the number of times that

st = st−1 = 1 and n21 is the number of times that st = 2 and st−1 = 1. A uniform prior on

(0, 1) corresponds to a11 = a21 = 1.

3.1.3 Sampling θ

Given a prior density π(θ),

ϕ(θ|S, µ, η, y) ∝ π(θ)
T∏

t=1

σ−1
t exp

(
−(yt − µst)2

2σ2
t

)
, (12)
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which does not depend on η. We sample θ by the griddy-Gibbs sampler. The algorithm works

as follows at iteration r+1, given draws at iteration r denoted by the superscript (r) attached

to the parameters:

1. Using (12), compute κ(ω1|S(r), β
(r)
1 , α

(r)
1 , θ

(r)
2 , µ(r), y), the kernel of the conditional pos-

terior density of ω1 given the values of S, β1, α1, θ2, and µ sampled at iteration r, over

a grid (ω1
1, ω

2
1 · · · , ωG

1 ), to obtain the vector Gκ = (κ1, κ2, · · · , κG).

2. By a deterministic integration rule using M points, compute Gf = (0, f2, . . . , fG) where

fi =
∫ ωi

1

ω1
1

κ(ω1|S(r), β
(r)
1 , α

(r)
1 , θ

(r)
2 , µ(r), y) dω1, i=2,...,G. (13)

3. Generate u ∼ U(0, fG) and invert f(ω1|S(r), β
(r)
1 , α

(r)
1 , θ

(r)
2 , µ(r), y) by numerical inter-

polation to get a draw ω
(r+1)
1 ∼ ϕ(ω1|S(r), β

(r)
1 , α

(r)
1 , θ

(r)
2 , µ(r), y).

4. Repeat steps 1-3 for ϕ(β1|S(r), ω
(r+1)
1 , α

(r)
1 , θ

(r)
2 , µ(r), y),

ϕ(α1|S(r), ω
(r+1)
1 , β

(r+1)
1 , θ

(r)
2 , µ(r), y), ϕ(ω2|S(r), β

(r)
2 , α

(r)
2 , θ

(r+1)
1 , µ(r), y), etc.

Note that intervals of values for the elements of θ1 and θ2 must be defined. The choice of

these bounds (such as ω1
1 and ωG

1 ) needs to be fine tuned in order to cover the range of the

parameter over which the posterior is relevant. Over these intervals, the prior can be chosen

as we wish, for example as uniform densities.

3.1.4 Sampling µ

Given a prior density π(µ),

ϕ(µ|S, θ, η, y) ∝ π(µ)
T∏

t=1

σ−1
t exp

(
−(yt − µst)2

2σ2
t

)
(14)

which does not depend on η. It is not possible to factorize this function into the product of

a function that depends on µ1 but not on µ2, and another one that depends on µ2 but not

on µ1. Moreover, since σt depends on µ1 or µ2 (depending on t), the analytical form of the

likelihood as a function of µ1 or µ2 is not a known density (e.g. a normal). Hence we must

sample µ1 and µ2 jointly and numerically. We use the griddy-Gibbs sampler and we factorize

the prior as a product of two uniform densities.
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3.2 Simulation Example

We have simulated a data generating process (DGP) corresponding to the model defined by

equations (3)-(4) for two states, and ut ∼ N(0, 1). The parameter values are reported in Table

2. The second GARCH equation implies a higher and more persistent conditional variance

than the first one. The other parameter values are inspired by previous empirical results, like

in Hamilton and Susmel (1994), and our results presented in the next section. In particular,

the transition probabilities of staying in each regime are close to unity. All the assumptions

for stationarity and existence of moments of high order are satisfied by this DGP. In Table

1, we report some summary statistics for 50,000 observations from this DGP, and in Figure

2, we show the 1,500 initial observations of the series, and based on the 50,000 observations,

the estimated density of the data and the autocorrelations of the squared data. The mean

of the data is close to zero. The density is slightly skewed to the left, and its excess kurtosis

is estimated to be 3.57 (the excess kurtosis is 1.62 for the first component GARCH and 0.12

for the second). The ACF of the squared data is strikingly more persistent than the ACF

of each GARCH component, which are both virtually at 0 after 10 lags. Said differently, a

GARCH(1,1) process would have to be close to integrated to produce the excess kurtosis and

the ACF shown in Figure 2.

Table 1: Descriptive statistics for 50000 simulated data

Mean -0.001 Maximum 10.47
Standard deviation 1.623 Minimum -12.76
Skewness -0.156 Kurtosis 6.57

Statistics for 50,000 observations of the DGP defined in Table 2.

In Table 2, we report the posterior means and standard deviations for the model corre-

sponding to the DGP, using the first 1,500 observations of the simulated data described above

and shown in panel (a) of Figure 2. The results are in the last two columns of the table. In

Figure 3, we report the corresponding posterior densities. The prior density of each parameter

is uniform between the bounds reported in Table 2 with the DGP values. Thus, these bounds

were used for the integrations in the griddy-Gibbs sampler (except for η11 and η22 since they

are sampled from beta densities). The number of iterations of the Gibbs sampler was set to
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Figure 2: Graphs for simulated data for DGP defined in Table 2
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Table 2: Posterior means and standard deviations (simulated DGP)

DGP values Prior bounds Means St. dev.

ω1 0.30 (0.15 0.45) 0.345 (0.051)
β1 0.20 (0.05 0.40) 0.192 (0.087)
α1 0.35 (0.10 0.50) 0.264 (0.051)
ω2 2.00 (0.50 4.00) 2.136 (0.688)
β2 0.60 (0.35 0.85) 0.584 (0.106)
α2 0.10 (0.02 0.35) 0.142 (0.049)
µ1 0.06 (0.02 0.15) 0.079 (0.016)
µ2 -0.09 (-0.35 0.18) -0.076 (0.103)
η11 0.98 (0.00 1.00) 0.987 (0.004)
η22 0.96 (0.00 1.00) 0.958 (0.012)

Posterior means and standard deviations for MS-GARCH
model. Sample of 1500 observations from DGP defined by equa-
tions (3)-(4) with N(0, 1) distribution.
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Figure 3: Posterior densities for the MS-GARCH model (simulation)
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50,000, and the initial 20,000 draws were discarded, since after these the sampler seems to

have converged (based on cumsum diagrams not shown to save space). Thus the posterior

moments are based on 30,000 dependent draws of the posterior distribution. The posterior

means are with few exceptions within less than one posterior standard deviation away from

the DGP values, and the shapes of the posterior densities are not revealing bi-modalities that

would indicate a label switching problem. From the Gibbs output, we also computed the

posterior means of the state variables. These are obtained by averaging the Gibbs draws of

the states. These means are smoothed (posterior) probabilities of the states. A mean state

close to 1 corresponds to a high probability to be in the second regime. If we attribute an

observation to regime 2 if its corresponding mean state is above one-half (and to regime 1

otherwise), we find that 96 per cent of the data are correctly classified.

4 Application

We use the S&P500 daily percentage returns from 19/07/2001 to 20/04/2007 (1500 obser-

vations) for estimation. Figure 4 displays the sample path, the kernel density, and the cor-

relogram of the squared returns. We observe a strong persistence in the squared returns, a

slightly positive skewness, and a usual excess kurtosis for this type of data and sample size,

see also Table 3.

Table 3: Descriptive statistics for S&P500 daily returns

Mean 0.015 Minimum -5.046
Standard deviation 1.00 Maximum 5.57
Skewness 0.11 Kurtosis 6.37

Sample period: 19/07/2001 to 20/04/2007 (1500 observations)

In Table 4, we report the posterior means and standard deviations from the estimation of

different models using the estimation sample. The estimated models include the two-regime

MS-ARCH model defined by setting β1 = β2 = 0 in equations (3)-(4), and a restricted version

(β1 = α1 = 0) of the corresponding MS-GARCH model. The marginal posterior densities

for these models are shown in Figures 5 and 6. The intervals over which the densities are

drawn are the prior intervals (except for the transition probabilities). The intervals for the
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Figure 4: Graphs for S&P500 daily returns from 19/07/2001 to 20/04/2007
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Table 4: Posterior means and standard deviations (S&P500 daily returns)

MS-ARCH MS-GARCH
mean st. dev. mean st. dev.

ω1 0.419 (0.028) 0.308 (0.025)
β1 - -
α1 0.014 (0.012) -
ω2 1.988 (0.175) 0.0467 (0.024)
β2 - 0.919 (0.024)
α2 0.115 (0.042) 0.054 (0.015)
µ1 0.046 (0.016) 0.071 (0.019)
µ2 -0.040 (0.044) -0.012 (0.029)
η11 0.994 (0.003) 0.978 (0.011)
η22 0.986 (0.006) 0.985 (0.006)

Sample period: 19/07/2001 to 20/04/2007 (1500
observations). A - symbol means that the param-
eter was set to 0.

GARCH parameters were chosen to avoid negative values, and by trial and error so as to

avoid truncation. The Gibbs sample size was fixed to 50,000 observations with a warm-up

sample of 20,000, like for the simulation example.

When estimating the MS-ARCH model, we find that in the first regime, which is charac-

terized by a low volatility level (ω1/(1 − α1) = 0.42 using the posterior means as estimates,

as opposed to 2.24 in the second regime), the ARCH coefficient α1 is close to 0 (posterior

mean 0.014, standard deviation 0.012, see also the marginal density in Figure 5). This is

a weak evidence in favor of a dynamical effect in the low volatility regime. The same con-

clusion emerges after estimating the MS-GARCH model, with the added complication that

the β1 coefficient is poorly identified (since α1 is almost null). Thus we opted to report the

MS-GARCH results with α1 and β1 set equal to 0, and GARCH dynamics only in the high

volatility regime. These results show clearly that the lagged conditional variance should be

included in the second regime. Thus, the MS-ARCH model is not capturing enough the

persistence of the conditional variance in the second regime. The second regime in the MS-

GARCH model is rather strongly persistent but stable, with the posterior mean of β2 + α2

equal to 0.973 (0.919 + 0.054). If we estimate a single regime GARCH model, we find that

15



the persistence is 0.990 (0.942+0.048), which makes it closer to integrated GARCH than the

second regime of the MS model. The estimation results for the MS-GARCH model also imply

that compared to the first regime (where ω1 = 0.31), the second regime is a high volatility

regime since ω2/(1− α2 − β2) = 1.73.
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Figure 5: Posterior densities for the MS-ARCH model (S&P500 daily returns)

Another way to compare the two models is through the means of the state variables.

These are obtained by averaging the Gibbs draws of the states. These means are smoothed

(posterior) probabilities of the states. A mean state close to 1 corresponds to a high probabil-

ity to be in the second regime. Figures 7 and 8 display the paths of these means. Both figures

show, in conjunction with the sample path of the data (in Figure 4), that high probabilities

are associated with high volatility periods (observations 1 to 500 and some peaks later). In

this respect, the MS-ARCH model seems too insensitive in comparison with the GARCH

version. From the posterior means of the MS-GARCH model, we can also deduce that the

unconditional probabilities of the regimes are respectively 0.59 (= (1− η11)/(2− η11 − η22))
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Figure 6: Posterior densities for the MS-GARCH model (S&P500 daily returns)

for the first one and 0.41 for the second one. These proportions correspond roughly to the

information provided by the mean states.

5 Conclusion

We establish some theoretical properties for a Markov-switching univariate GARCH model

with constant transition probabilities. We provide simple sufficient conditions for the er-

godic stationarity of the process and the existence of its moments. We develop a reliable

Bayesian estimation algortihm for this model, since ML estimation in not feasible due to path

dependence.

Further research could be oriented in several directions. A first one consists in refining the

specification by using existing extensions of the simple Gaussian GARCH model. A second

direction of research is to specify the transition probabilities as a function of past information
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Figure 7: Mean states MS-ARCH
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Figure 8: Mean states MS-GARCH

as in Gray (1996). These extensions would render the algorithm more CPU-time consuming

(due to the additional parameters) but would not complicate it fundamentally. Establishing

the ergodic stationarity and existence of moments of such more richly specified processes

would require to extend and adapt the proofs presented in the current paper. Finally further

research could be focussed on estimating the model with other data series, and on comparisons

with other GARCH models, in a similar way as done by Marcucci (2005).
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Appendix

To prove Theorems 1 and 2, we write the model in its Markovian state space representation.

We use the notation σ2
t = ht−1 to make it clear that σt is a function of the information dated

at time t− 1 or earlier, not information dated at t. Let λ and v denote the Lebesgue and the

counting measures, respectively.

Proof of Theorem 1: There exists a measurable function g : S × < → S such that

st = g(st−1, ξt), where the error term ξt is i.i.d. independent of ut and h0. Let ηt = (ut, ξt)′

and Zt is defined on D ⊂ <× <+ ×< where <+ = (0, +∞). From (3) and (4), we have

Zt =




yt

ht

st




=




µg(st−1,ξt) +
√

ht−1ut

ωg(st−1,ξt) + αg(st−1,ξt)ε
2
t + βg(st−1,ξt)ht−1

g(st−1, ξt)




(15)

=




µg(st−1,ξt) +
√

ht−1ut

ωg(st−1,ξt) + (αg(st−1,ξt)u
2
t + βg(st−1,ξt))ht−1

g(st−1, ξt)




= F (Zt−1, ηt)

where F : D×<2 → D. Since ηt is independent of Zt−1 its follows from (15) that (yt, ht, st)′

forms a homogeneous Markov chain.

The process is defined on (D,=, ϕ). The state space of the process is given by D =

{(y, h, s) ∈ < × <+ × < : (y, h) ∈ ⋃n
i=1 Di, s ∈ S}, where Di is the domain of the chain

in each regime and is given by Di = {(y, h) ∈ < × <+ : h ≥ ωi + αi(y − µi)2 + βih̄} and

h̄ = minβi<1{ωi/(1− βi)} (see Zhang, Russell, and Tsay (2001)). The strict stationarity of

the first regime (E log(α1u
2
t + β1) < 0), implies that β1 < 1 (see, Nelson (1990)), hence h̄

is well defined. The state space is equipped with =, the Borel σ−algebra on < × <+ × <
restricted to D. The measure ϕ is the product measure λ2⊗v on (D,=). We use Pm(z0, A) =

P(Zt ∈ A|Zt−m = z0) to signify the probability that (yt, ht, st) moves from (y0, h0, s0) to the

set A ∈ = in m steps.

In order to establish the geometric ergodicity of the Markov chain, we first show that the

process is ϕ−irreducible. For irreducibility, it is sufficient to show that Pk(z0, A) > 0 for
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some k ≥ 1, for all z0 ∈ D and any Borel measurable sets A ∈ = with positive ϕ measure (see

Chan (1993)). We can show that from any (y0, h0, s0) ∈ D, all (y, h, s) ∈ A can be reached

in a finite number of steps. We assume that s0 = i, s = ` and h̄ is achieved in regime q.

Let h̃ = [h − ω` − α`(y − µ`)2]/β` and ς = h̃ − h̄; since h̃ > h̄ we have ς > 0. Thus, there

exists a positive integer m = min(t ≥ 1 : h̄+0.5ς +0.5β−t
q ς > ω1 +β1h0}, such that the point

(y, h, s) can be reached through the following m + 1 intermediate steps: w = {(yt, ht, st)}m+1
t=1

where s1 = 1, st = q, ht = h̄ + 0.5ς + 0.5β
i−(m+1)
q ς, y1 = µ1 + [(h1 − ω1 − β1h0)/α1]0.5,

yt = µq + [0.5ς(1− βq)/αq]0.5 for t ≤ m + 1 and in the m + 2-th step (ym+1, h̃, q) → (y, h, `).

The m+2-th step transition probability is absolutely continuous with respect to the ϕ measure.

Thus, Pm+2(z0, A) =
∫
A pm+2(z0, z)dϕ(z), and by assumptions A1 and A2,

pm+2(z0, z) ≥
m+1∏

i=0

f((yi+1 − µsi+1)/h0.5
i )P(si+1|si) > 0,

which implies that Pm+2(z0, A) > 0 and hence the chain is ϕ−irreducible. If z0 ∈ C, a

compact set, inf(z0,z)∈C×C pm+2(z0, z) > δ > 0 and for any A ∈ = and z0 ∈ C,

Pm+2(z0, A) ≥ Pm+2(z0, A ∩ C) ≥
∫

A∩C
pm+2(z0, z)dϕ(z) ≥ δϕ(A ∩ C).

Therefore, P(z0, A) is minorized by ϕ(· ∩ C) which implies that all non-null, compact sets in

D are small by definition, see Meyn and Tweedie (1993, p. 111), and can serve as test sets.

Using the same arguments as above, we can show that any small set can be reached in m + 3

steps, therefore the chain is aperiodic, see Chan (1993).

From (4) and the cr inequality we get

h
1/t
t ≤ [ωst + (αstu

2
t + βst)ht−1]1/t (16)

≤ (ωst)
1/t + (αstu

2
t + βst)

1/t(ωst−1)
1/t + [(αstu

2
t + βst)(αst−1u

2
t−1 + βst−1)]

1/th
1/t
t−2

...

≤
t∏

j=1

(αsju
2
j + βsj )

1/th+
t−1∑

j=0

(ωst−j−1)
1/t

j∏

i=0

(αst−iu
2
t + βst−i)

1/t + (ωst)
1/t

Since {st} is an ergodic Markov chain, for any initial state, we have that

1
t

t∑

j=1

log(αsju
2
j + βsj ) →

n∑

i=1

πiE[log(αiu
2
t + βi)] < 0, a.s. (17)
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see Chan (1993). This result, with assumption A1 and the dominated convergence theorem

imply that there exists a t̄ sufficiently large such that δ ≥ 1/t̄ = p and for all j ∈ S,

E




t∏

j=1

(αsju
2
j + βsj )

p|s0 = j


 = γ < 1. (18)

As a drift function we use V (z) = 1 + (η̄/∆)y2p + hp, where η̄ = η − γ, ∆ = E(u2p
t ),

p = 1/t̄ and η is some positive number which satisfies γ < η < 1 and the test set is given by

C = {(y, h, s) ∈ D : h + y2 ≤ c, s ∈ S}, where c > 0 is to be determined below.

From (16)-(18), we find

E(hp
t |z0 = z) ≤ 1 + E




t∏

j=1

(αsju
2
j + βsj )

p|s0 = j


hp + M ≤ M + γhp

where M = 1 + E

(
t−1∑
j=0

(ωst−j−1)
p

j∏
i=0

(αst−iu
2
t + βst−i)

p + (ωst)p|s0 = j

)
and M < ∞ by as-

sumption A1. Therefore,

E(V (zt)|z0 = z) ≤ 1 + M + γhp + η̄E(hp
t |z0 = z)E|u2p

t |)/∆ ≤ hp

(
M

hp
+ η

)

Since the Lyapounov function above is bounded on compact sets and h < V (z), we can choose

c and η′ ∈ (η, 1) such that E(V (zt)|z0 = z) ≤ η′ · V (z) + a · 1C(z) for some a < ∞ and for all

z ∈ D, hence the drift criterion is satisfied. We can then combine Meyn and Tweedie (1993,

Theorem 15.0.1) and Tjostheim (1990) to obtain that {Zt} is geometrically ergodic and so

is {yt}. The finiteness of E(|Zt|p) with respect to the stationary measure follows from Meitz

and Saikkonen (2006, Lemma 6). If the process is initiated from its stationary distribution,

it further follows that the process is β-mixing with geometrically decaying mixing numbers,

see Doukhan (1994, p.89).

Proof of Theorem 2: Let Ij be an 1 × n matrix that contain 1 on the j-th position

and zeros elsewhere and l = (1, . . . , 1) be an n × 1 vector. The matrix Ω is positive, hence

the spectral radius is real and positive and assumption A5 implies that there exists a positive

integer r such that each element of Ωr is smaller than1/n, that is (Ωr)ij < 1/n, see Lutkepohl

(1996, p. 76, 3(a)), hence

E




r∏

j=1

(αsju
2
j + βsj )h |Z0 = (y, h, j)


 = (IjΩ)Ωr−1lh = γ < 1.
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By solving (4) recursively and setting h0 = h, we get

ht = [ωst + (αstu
2
t + βst)ht−1] =

r∏

j=1

(αsju
2
j + βsj )h+

r−1∑

j=0

ωst−j−1

j∏

i=0

(αst−iu
2
t + βst−i) + ωst .

(19)

Let ∆ = E(u2k
t ) and η̄ = η − γk where η is some positive number which satisfies γk < η < 1.

We select a drift function of the form V (y, h, s) = 1 + (η̄/∆)y2k + hk and a test set C =

{(y, h, s) ∈ D : h + y2 ≤ c, s ∈ S}. By the binomial theorem, (19), assumption A4 and some

tedious calculations, we find

E(V (yt, ht)|Z0 = (y, h, j)) = 1 + E(ht|z) + η̄E(y2k
t |z)/∆ =

1 + E




r∏

j=1

(αsju
2
j + βsj )

j




k

hk + η̄hk + o(hk) ≤ hk(γk + η̄ + o(1)) ≤ hk(η + o(1))

By applying the same arguments as in Theorem 1, the desired result follows.
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models,” CORE DP 2000/11, Université catholique de Louvain, Louvain La Neuve.

Bollen, S., N. Gray, and R. Whaley (2000): “Regime-Switching in Foreign Exchange

Rates: Evidence From Currency Option Prices,” Journal of Econometrics, 94, 239–276.

Bollerslev, T., R. Engle, and D. Nelson (1994): “ARCH Models,” in Handbook of

Econometrics, ed. by R. Engle, and D. McFadden, chap. 4, pp. 2959–3038. North Holland

Press, Amsterdam.

Cai, J. (1994): “Markov Model of Unconditional Variance in ARCH,” Journal of Business

and Economics Statistics, 12, 309–316.

Chan, K. (1993): A Review of Some Limit Theorems of Markov Chains and Their Applica-

tions. In H.Tong, Editor, Dimension Estimation and Models, World Scientific Publishing,

Singapore and River Edge, NJ, USA.

22



Das, D., and B. H. Yoo (2004): “A Bayesian MCMC algorithm for Markov switching

GARCH models,” Manuscript, City UNiversity of New York and Rutgers University.

Diebold, F. (1986): “Comment on Modeling the Persistence of Conditional Variances,”

Econometric Reviews, 5, 51–56.

Doukhan, P. (1993): Mixing: Properties and Examples. Springer-Verlag, New-York.

Dueker, M. (1997): “Markov Switching in GARCH Processes in Mean Reverting Stock

Market Volatility,” Journal of Business and Economics Statistics, 15, 26–34.

Francq, C., M. Roussignol, and J.-M. Zakoian (2001): “Conditional heteroskedasticity

driven by hidden Markov chains,” Journal of Time Series Analysis, 22, 197–220.

Francq, C., and J.-M. Zakoian (2002): “Comments on the paper by Minxian Yang:

”Some properties of vector autoregressive processes with Markov-switching coefficients”,”

Econometric Theory, 18, 815–818.

(2005): “The L2-structures of standard and switching-regime GARCH models,”

Stochastic Processes and their Applications, 1158, 1557–1582.

Gray, S. (1996): “Modeling the conditional distribution of interest rates as a regime-

switching process,” Journal of Financial Economics, 42, 27–62.

Haas, M., S. Mittnik, and M. Paolella (2004): “A New Approach to Markov-Switching

GARCH Models,” Journal of Financial Econometrics, 2, 493–530.

Hamilton, J., and R. Susmel (1994): “Autoregressive Conditional Heteroskedasticity and

Changes in Regime,” Journal of Econometrics, 64, 307–333.

Henneke, J. S., S. T. Rachev, and F. J. Fabozzi (2006): “MCMC based estimation of

Markov Switching ARMA-GARCH models,” Working Paper, University of Karlsruhe.

Kaufman, S., and S. Fruhwirth-Schnatter (2002): “Bayesian analysis of switching

ARCH models,” Journal of Time Series Analysis, 23, 425–458.

Kaufman, S., and M. Scheicher (2006): “A switching ARCH model for the German DAX

index,” Studies in Nonlinear Dynamics and Econometrics, 10/4, Article 3.

23



Klaassen, F. (2002): “Improving GARCH Volatility Forecasts with Regime-Switching

GARCH,” Empirical Economics, 27, 363–394.

Lamoureux, C., and W. Lastrapes (1990): “Heteroskedasticity in Stock Return Data:

Volume versus GARCH Effects,” Journal of Finance, 45, 221–229.

Lutkepohl, H. (1996): Handbook of Matrices. Wiley, New-York.

Marcucci, J. (2005): “Forecasting stock market volatility with regime-switching GARCH

models,” Studies in Nonlinear Dynamics and Econometrics, 9, 1–53.

Meitz, M., and P. Saikkonen (2006): “Stability of nonlinear AR-GARCH models,”

SSE/SFI Working paper series in Economics and Finance No. 632.

Meyn, S., and R. Tweedie (1993): “Markov Chains and Stochastic Stability,” London,

Springer Verlag.

Mikosch, T., and C. Starica (2004): “Nonstationarities in Financial Time Series, the

Long-Range Dependence, and the IGARCH Effects,” Review of Economics and Statistics,

86, 378–390.

Nelson, D. B. (1990): “Stationarity and Persistence in the GARCH(1,1) Model,” Econo-

metric Theory, 6, 318–334.

Schwert, G. (1989): “Why Does Stock Market Volatility Change Over Time?,” Journal of

Finance, 44, 1115–1153.

Tanner, M., and W. Wong (1987): “The Calculation of the Posterior Distributions by

Data Augmentation,” Journal of the American Statistical Association, 82, 528–540.

Tjostheim, D. (1990): “Non-linear time series and Markov chains,” Advances in Applied

Probability, 22, 587–611.

Yang, M. (2000): “Some properties of vector autoregressive processes with Markov-switching

coefficients,” Econometric Theory, 16, 23–43.

Yao, J. (2001): “On square-integrability of an AR process with Markov switching,” Statistics

and Probability Letters, 52, 265–270.

24



Yao, J., and J.-G. Attali (2000): “On stability of nonlinear AR process with Markov

switching,” Advances in Applied Probability, 32, 394–407.

Zhang, M. Y., J. Russell, and R. Tsay (2001): “A nonlinear autoregressive conditional

duration model with applications to financial transaction data,” Journal of Econometrics,

104, 179–207.

25



Département des Sciences Économiques
de l'Université catholique de Louvain

Institut de Recherches Économiques et Sociales

Place Montesquieu, 3
1348 Louvain-la-Neuve, Belgique

 ISSN 1379-244X         D/2007/3082/033


