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novel perspective on the city’s inclusivity; fostering
community empowerment and participatory planning.
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1. Introduction
Sidewalks are a critical component of urban infrastructure, providing a protected space for
pedestrian movement and access to urban facilities. While some features such as minimal width
or pavement material may go unnoticed (1), they can have significant impact on people with
disabilities (2), affecting their emancipation (3), quality of life (4), and physical activity (5). With
the increasing recognition of the importance of accessible urban infrastructure (6; 7; 8; 9), there is
a growing interest in evaluating and enhancing sidewalk accessibility to meet the diverse needs
of all city residents, including people with permanent or temporary impairments, such as people
with disabilities, the elderly, and those with young children. In the United States, the Americans
with Disabilities Act (ADA) establishes a comprehensive framework to guide the development
and evaluation of accessible urban infrastructure (10). The ADA Accessibility Guidelines detail
key features for the design and construction of safe sidewalks for physically impaired individuals.
Still, most cities lack sidewalk accessibility inventories based on standardized evaluation metrics
(2; 11). Traditionally, assessing sidewalk accessibility mainly relied on manual inspections
(12), which are time-consuming, labor-intensive, and prone to human error (13; 14). Manual
inspections also struggle to scale across larger urban areas, making it difficult to obtain a
comprehensive view of accessibility issues.

Recent advancements in technology (such as LiDAR scanners and UAVs) are paving the
way for more efficient and accurate data collection methods, enabling large-scale analysis with
reduced human intervention. However, substantial drawbacks exist, such as high costs for data
acquisition, which includes significant post-processing labor. These limitations contribute to the
current lack of open and broadly available sidewalk datasets, being one of the main challenges for
accessibility mapping in the cities (2; 7; 13). Participative methods that leverage crowdsourcing
accessibility data have been investigated, engaging citizens in mapping their sidewalks showing
promising results (15). Nevertheless, these methods require users to manually report sidewalk
features through time-consuming tasks that impact the data re-sampling frequency. Furthermore,
these manual approaches can also impact data reliability and quality (16).

This paper proposes Sidewalk AI scanner, a hybrid-crowdsourced method combining a
participatory approach with Visual AI to face sidewalk accessibility data collection challenges.
The paper presents the rationale, architecture, and validation of this method, which is based on
a web app that: i) enables anyone to record and upload sidewalk-view videos registered through
any smartphone; ii) employs Visual AI trained models to automatically identify features that
can impact sidewalk accessibility such as width, pavement conditions or obstacles; iii) generate
reports and maps that showcase the sidewalk accessibility level for each mapped city.

The paper contributes to the current sidewalk data collection state-of-the-art by:

• Proposing a framework that facilitates a participative collection of sidewalk data by
enabling anyone to collect it automatically through a smartphone.

• Comparing different data collection technologies’ time and cost efficiency to identify a
low-cost and scalable solution for crowsourcing sidewalk accessibility mapping.

• Validating a Visual AI based model to detect sidewalk width from a smartphone-
generated video.

The paper is organized as follows. Section 2 presents a literature review on current urban
accessibility challenges and sidewalk data collection methods. Section 3 introduces the Sidewalk
AI Scanner, and Section 4 validates the process by detailing models and prototypical tool adopted
and their accuracy in inheriting an essential feature for sidewalk accessibility. Section 5 discusses
the accuracy, limitations, and potential impact on urban accessibility and citizen’s involvement.
Finally, Section 6 summarizes the main contributions and outlines the next steps.
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2. Literature review
The availability and accessibility of pedestrian pathways are critical to moving people away
from motorized transportation. This is fundamental for people with permanent, temporary,
or situational impairments, such as people with disabilities, the elderly, pregnant women,
or guardians with strollers. Without accessible sidewalks, these people cannot access urban
facilities, transport, and green areas—effectively; they are removed from full access to the city (2).
Promoting inclusive cities has gained attention from governments, researchers, and practitioners
(7; 9; 13; 17; 18). This is in line with the United Nations Sustainable Development Goals (SDGs)
(19) "Sustainable Cities and Communities" (Goal 11), which emphasizes how inclusive urban
planning can ensure that public spaces, buildings, and services are designed to accommodate
diverse needs, fostering social inclusion and participation. In a similar vein, countries have
enacted legislation and governmental regulations providing guidelines on the development of
urban environments that respect the needs of people with disabilities, ensuring accessibility and
inclusivity, as well as access to resources (10; 20; 21; 22) Furthermore, each city faces unique local
challenges reflective of culture, policy, and resources that must be considered. For example, a
recent study attempted to define a method to quantify the accessibility level of sidewalks in Brazil,
considering different elements, such as the pavement condition, obstacles, slopes, or the actual
walkable dimension (23). Another study in Mexico reports the preliminary use of a crowdsourced
tool for collecting data on sidewalks (24). The authors also argue for new low-cost and scalable
sidewalk tracking tools that support evidence-based advocacy and policymaking.

Nevertheless, tools designed to put the data collection results into the hands of people with
disabilities are still lacking. This includes assistive location-based technologies that incorporate
accessibility features into navigating, searching, and exploring the physical world. Accessibility
scores, disability-sensitive navigation maps, and digital tools built on accurate data for visualizing
and navigating urban environments can impact the ability of people with disabilities to evaluate
and make informed and autonomous decisions about their movements (25). This is often
impossible as the need for reliable and updated data represents the biggest feasibility challenge.

(a) Sidewalk data collection and mapping

(i) Mobile Remote Sensing and tree-dimensional Scene Reconstruction

Most recent methods are based on three-dimensional remote sensing technology like LiDAR to
collect high-geometry georeferenced data. Ai, C., & Tsai, Y. (26) report on an experimental test
conducted on the Georgia Institute of Technology campus in Atlanta. They showed accurate
measurement results for the key features of the sidewalk and curb ramps from video log images
and LiDAR point cloud. The proposed method automatically extracts key features regulated by
the ADA. Similarly, Q., Hou, & C., Ai (27) proposes a network-level sidewalk inventory method
using LiDAR data, deep neural network, and a stripe-based sidewalk extraction algorithm. The
result of a case study shows that the proposed method can generate accurate and efficient means
for network-level sidewalk inventory.

While the initial results reported by these two case studies and the recent diffusion of cheaper
and portable LiDAR sensors are promising, the adoption of this technology is still inaccessible to
most non-expert users, due to high costs and knowledge barriers.

(ii) Manual mapping and crowdsourced data generation

Numerous projects investigate qualitative approaches based on the involvement of stakeholders
in the data collection and analysis process. Starting from 2013, Frackelton et al. (28), anticipating
that the sidewalk assessment system would gain widespread national application, proposed
a volunteer-based data collection system using an app that runs on a tablet attached to the
base of a wheelchair. The video and vibration data are then processed to identify the sidewalk
sections needing repair or reconstruction. Most recently, Biagi et al. (29) proposes a platform
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that enables residents to to report barriers directly to the governmental bodies and aspires
to determine the best approach for mapping accessible routes and identifying obstacles in
OpenStreetMap. Similarly, Mobasheri et al. (30) proposes a revised approach utilizing data mining
methods to develop sidewalk geometries in OpenStreetMap using multiple GPS traces collected
by wheelchair users.

Other projects focus instead on creating ad-hoc tool to enable the manual mapping of
sidewalks features and barriers. Project Sidewalk (15) is a web-based tool that allows users to
label accessibility problems by virtually walking through city streets in Google Street View. In a
more recent publication (16), authors report that an 18-month deployment study resulted in 797
online users contributing 205,385 labels and auditing 2,941 miles of Washington DC streets, with
remote users that managed to label 92% of accessibility problems. Based on the same concept,
Maps for Easy Paths (MEP) (31) is an Android app that lets the user manually report obstacles
and track the route while traveling, with the idea of mapping only accessible paths. In spite of the
potential of the crowdsourced approach for data labeling, this could also represent a drawback,
as resulted dataset can present reliability and quality issues due to human error (15; 16).

(iii) Semantic segmentation with satellite and street view image

Semantic segmentation categorizes each pixel of an image into a specific semantic label (32). This
computer vision approach is among the most promising as it could rely on a large number of
street image datasets, representing a cheaper and more accessible alternative to solutions based
on technology like LiDAR.

Some works have investigated the application of computer vision models to satellite or aerial
images to automatically map the features of sidewalks. Senlet & Elgammal (33) propose one
of the first frameworks to construct sidewalk and crosswalk maps from satellite images. The
model also addresses the challenge connected to sidewalks in satellite images occluded by trees.
Recently, Hosseini et al. (16) proposed TILE2NET, an open-source scene classification model for
pedestrian infrastructure from sub-meter resolution aerial tiles to generate pedestrian networks.
While satellite mapping is effective for pathway network generation, the resulting data are not
fine-grained enough for qualitative mapping. This aspect is critical in the urban accessibility
context as static obstacles or other types of barriers reduce the actual width of a sidewalk (34).

Several studies investigated qualitative mapping possibilities by applying semantic
segmentation on street view images (SVI). In addition to serving as a convenient source for
extracting the features or traits of roads (35), SVI could be employed to map the individual featurs
that make up a sidewalk. Furthermore, SVI is also freely available, making it possible to map
sidewalks in large urban environments. Different services offer global images, such Google Street
View (GSV), OpenStreetMap, Mapillary, and KartaView (36).

The multifaceted nature of walkability results in the exploration through semantic
segmentation of various physical aspects, such as the distribution and network of sidewalks
(37; 38), quality of sidewalks (34), and accessibility of walkways for the disabled individuals (39).
For instance, (40) combined data of sidewalk presence and condition from a GSV application
into a designed sidewalk walkability variable by the authors to show four possible levels: no,
poor, fair, and good sidewalk conditions. Zhou et al. (41) utilized deep learning technologies to
segment features from Baidu Map Street View. Although they achieve good results, few of these
segment obstacles, such as holes, stairs, and damaged areas or extract dimensional features such
as width.

(iv) Hybrid-crowsourced approach

Despite a considerable body of research proposing effective solutions to address the scarcity of
sidewalk data, two main challenges continue to hinder the automation of sidewalk inventories
at a large scale: (i) applying Visual AI models to datasets from satellite or SVI suffer from
insufficient temporal resolution. This limitation arises because the frequency at which these image
datasets are updated varies significantly, ranging from weekly to monthly intervals, depending
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on the urban area. This variability impacts the reliability and accuracy of the generated sidewalk
inventories. Also, SVIs imaginery is mainly road-centric, so sidewalks could appear covered by
parked cars, walls, or buildings. (ii) collecting sidewalks data on a city level requires fast and
low-cost solutions to be sustainable on a long-term. For example, LiDAR-based approaches are
promising but require investment and dedicated personnel to cover the full city sidewalks at
least weekly. Not adequate periodic coverage could generate the same temporal resolution issues
as SVI-based approach. Considering these two open challenges, none of the previous solutions
seems sustainable in a long-term setting, where sidewalk data should be accurate and constantly
updated, as any feature change could impact accessibility for a diverse category of people.

An hybrid-crowdsourced approach could address these challenges. This approach combines
technological solutions, like computer vision, with crowdsourcing techniques. Only a few projects
have investigated this approach, reporting positive results in the localization of zebra crosswalks
in large image datasets (38) or in detecting curb ramps in GSV scenes, combining computer
vision and custom user interfaces (42; 43). More recently, Weld et al. (44) propose a model for
auto-validating and auto-labeling sidewalks in streetscape imagery previously manually labeled
by Project Sidewalk participants (15). Authors of these hybrid-crowdsourced approaches report
labeling performance comparable, or even more promising, than human performance, with a
notable reduction in time cost. While these results address the challenges related to mapping
sidewalks at a city level in a fast and scalable manner, they still need to solve the temporal
resolution, as they are based on SVI datasets.

The method proposed in this paper aims to address both of the challenges, combining (1)
an easy, fast, and broadly available tool for crow-sourcing sidewalk data collection (2) a visual AI
method that automatically extracts all sidewalk features that could impact a sidewalk accessibility
level. Together, these two aspects could ensure the granularity and precision of data collection and
significantly impact the approach’s scalability. This scalability allows the method to be extended
to any city where citizens and stakeholders are willing to engage in a participatory data collection.

3. Sidewalk AI Scanner: Methodology
Sidewalk AI Scanner is a web app that proposes a participatory approach to sidewalk data
collection empowered by a data-gathering technology that leverages the capabilities available
in every smartphone. By offering a participatory approach in the form of a scalable data
collection mechanism instead of a manual labeling task and by leveraging the high availability
of smartphones in conjunction with visual AI algorithms able to automatize accessibility feature
recognition, the Sidewalk AI Scanner builds upon previous studies of accessibility standards to
craft a novel, hybrid-crowdsourced solution to address the critical gap in sidewalk mapping.

(a) Framework
The framework encompasses a web app that operates both as a data collection tool and data
visualization tool (see figure 1). The data collection tool provides the user with all necessary
functionalities and guidelines to correctly capture and upload a sidewalk video (as detailed in
Section (d)). Subsequently, the visual AI model is applied to frames extracted from the user-
uploaded video to automatically label width, pavement type, obstacles, and other sidewalk
elements that impact accessibility (refer to Table 1), and generate georeferenced data from
segmentation results, which are then made available through a dedicates interactive maps.

This framework required two steps. The first was to determine a list of main sidewalk features
that should be identified to evaluate the accessibility level. The second step was to compare
different data collection technologies, determining which allows for the least time-consuming and
most cost-effective data collection process from citizens’ point of view. These steps are presented
and discussed in detail in the following sections.
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Table 1. Elements that impact the accessibility of a sidewalk outlined from literature (22; 23; 25; 46)

Element name Description
Width The measure of space available for pedestrian traffic.
Length The stretch of the sidewalk in terms of distance.
Slope The incline level of the sidewalk.
Pavement type The material and texture of the sidewalk surface.
Surface problem Any issues with the surface that might hinder movement.
Obstructed path Any blockage or barrier that reduce sidewalk width.
Curb Ramps Sloped transitions between the sidewalk and the street.
Light poles Presence of adequate illumination source.
Crosswalks Presence and pedestrian crossing areas on the road.
Visual Contrast Color and texture contrast for better visibility.
Visual information Signs or visual clues that support orientation.
Non-visual information Tactile or auditory cues for the visually impaired.
Overcrowding The amount of pedestrian traffic.
Temporary obstacles Non-permanent elements that reduce sidewalk width.

(b) Sidewalk accessibility features
Diverse features can impact the accessibility of sidewalks. Individuals with disabilities encounter
multiple barriers that complicate or prevent mobility within urban settings. An accessible
sidewalk should ensure accessibility that meets the needs of all citizens beyond merely physical
impairments (1; 23; 45). Through a comprehensive analysis of literature and previous case studies,
we catalogued a set of features that are crucial to ensure citizens’ access and safety irrespective
of their physical, sensory, or cognitive limitations, whether temporary or permanent. Table 1 lists
the chosen accessibility elements.

(c) Data collection technologies
We started by considering all the data formats already investigated in previous studies. The
formats considered were 3D-point clouds, depth maps, and photographic images/videos. The
comparison of technologies takes into account the Sidewalk AI scanner’s primary user, i.e., any
citizen interested in collecting sidewalk data without prior knowledge and experience in urban
data collection.

As shown in Table 2, the most accessible data format for non-expert users is represented
by photographic images/videos. This data format acquisition also requires the slightest prior
knowledge. This is significant as methods based on crowdsourced approaches have reported that
user training is a critical aspect (16). Although cheap compact and action cameras also allow
video recording, the availability of such a device is lower than that of smartphones from an
opportunistic data collection point of view. This represents a critical evaluation aspect, as carrying
a camera during city movements is less common than carrying a smartphone. Moreover, most of

Figure 1. Sidewalk AI scanner framework
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the cheapest cameras do not equip basic sensors like GPS or accelerometers, which are instead
basic features of any smartphone. About the 3D-point cloud, while this data format appears to be
the most promising and accurate in literature, it is also the most expensive and least accessible
when considering citizens as users. In fact, in addition to the high cost of LiDAR sensors, which
can reach hundreds of thousands of dollars, this is compounded by an extremely high knowledge
cost, as these systems do not present a user-friendly interface and require specific knowledge and
dedicated software to be utilized.

Table 2. Data format acquisition requirements. Access Cost refers to the financial investment needed for equipment and

software; Required Knowledge refers to the technical expertise or training required to operate the technology to collect

the data; Computational Power indicates the hardware requirements needed to process the data.

Data Format Access Cost Required Knowledge Computational Power
Point Cloud High High High
Depth Map Camera Low Medium Medium
Photographic Images/Videos Low Low Low

Table 3. Comparison of iPhone LIDAR and Smartphone Camera for data collection. Diffusion indicates the technology’s

market penetration; Ease of Use assesses the user-friendliness and accessibility; Collection time measures the efficiency

in gathering spatial data over a 40-meter sidewalk; Edge computational Power evaluates the technology’s demand on

device resources.

iPhone LiDAR Smartphone Camera
Diffusion Low High
Ease of Use Medium High
Collection time (40m) 3 min <1 min
Edge Computational Power Medium Low

In recent years, Apple has commercialized smartphones equipped with micro LiDAR sensors.
This sensor, available in all Pro and Max versions of the iPhone starting from the 12 models, can
generate the same data format as professional LiDAR sensors. Once it was determined that the
smartphone is the most suitable technology to involve citizens in participatory sidewalk data
collection, a second evaluation was performed to determine which between the LiDAR sensor
and smartphone camera represents the most accessible and fast method (As seen in Table 3). The
comparison results emphasize that an approach based on data collection with smartphone video
cameras represents the most accessible, low-cost, and user-friendly method. In addition to ease of
use, video recording while walking on a sidewalk is significantly faster than LiDAR. Furthermore,
the iPhone does not provide a proprietary application that allows the use of the LiDAR sensor,
which instead requires the download of third-party applications. These applications, which
usually only provide access to a limited set of LiDAR-based functionalities, require a payment
subscription to unlock all functionalities. At the same time, the widespread global proliferation of
smartphones allows our approach to be highly inclusive and scalable to any citizens worldwide
with access to a smartphone with a camera, not being limited to Apple devices.

(d) Web App
The Sidewalk AI Scanner is a web app organized into two main sections. The data collection
tool enables users to access data collection functionalities through smartphones. The Sidewalk
accessibility dashboard provides access to a catalog of cities that have already been mapped using
this approach, in the form of interactive maps.

Data collection tool The data collection tool section provides an interface for users to collect
video through their smartphones in a standardized manner. Following the recording phase, the
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tool permits the uploading of the registered video. Comprehensive guidelines and best practices
for video recording are provided to ensure the quality and consistency of the data collected. Visual
aids, including illustrative images and detailed video tutorials, assist users in adhering to these
specifications. These include directives on optimal camera framing, orientation, and positioning.

Sidewalk accessibility dashboard The sidewalk accessibility dashboard provides a catalog of
currently mapped cities, displaying a global and a city-specific accessibility level. The accessibility
level is derived from the average level of accessibility of the mapped sidewalks. From this
Section, users can access the individual city map, where, for each mapped sidewalk segment,
an accessibility level is given along with a list of identified or missing accessibility features.
Additionally, an indication of the currently mapped surface area of the selected city is provided.
A legend displays the average daily number of sidewalks mapped by all contributors and an
value indicating the current data’s recency. The color coding of the sidewalk segments represents
the level of accessibility determined by the latest scan. While a green color denotes an accessible
sidewalk, a red color indicates a sidewalk that is inaccessible to one or more disabilities. The
opacity of the sidewalk representation indicates the recency of the scan. The less recent the scan,
the lower the opacity of the color displayed. This feature aids users in identifying which sidewalks
within the city have been updated most recently and which require a new scan to verify the
displayed accessibility data.

4. Validation
The validation focuses on demonstrating the feasibility of the proposed data collection tool
in a real-world setting. The width of a sidewalk is one of the most crucial factors impacting
sidewalk accessibility (34). While detecting sidewalk features from a sidewalk image, such as
obstacles, pavement type, or curbs, is feasible by deploying a dedicated semantic segmentation
model, sidewalk width estimation from an image is a more complex problem. For this reason,
the validation process has focused on assessing the feasibility of estimating width from sidewalk
images, regardless of the type of smartphone used to capture it.

This Section reports the systematic process adopted to address and validate a visual AI-
based sidewalk width calculation method. The validation process was designed to address the
performance of the two main models that must be combined to make the method work: a semantic
segmentation model and a width estimation model. Both models were tested in a preliminary case
study conducted in Cambridge, MA, USA.

(a) Semantic Segmentation Model
The first step to calculating the width of a sidewalk is to identify its boundaries within the image.
Several pre-trained segmentation models already encompass the sidewalk class (47; 48; 49; 50).
From preliminary tests conducted with these models on sidewalk images, it has emerged that the
accuracy is significantly lower compared to SVI results. This discrepancy may be attributed to the
road-centric perspective of the training dataset.

Out of all the tested models, PSPUNet (50) shows prosiming performance when run on
sidewalk images. PSPUNet is the combination of Pyramid Scene Parsing Network (PSPNet) (51)
and UNet (52). The detailed architecture was introduced in (50). The PSPUNet model tests 22
types of objects that obstruct walking on sidewalks. The details are shown in Table A.1. The
performance of PSPNet in segmenting sidewalk boundaries in sidewalk images led to the selezion
of this model for the case study.

(b) Width Estimation Model
One approach to determining the distance of an object in an image collected by a monocular
camera is to use a reference object within the scene that is static and whose dimensions are already
known (53). A more complex task is to measure the distance of an object in sidewalk images. In
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such cases, using a static reference object with known dimensions is inadequate, as lens distortion
and perspective impact the result accuracy. The camera’s position in space or calibration are both
information that could be used to increase the estimation accuracy (54).

However, a challenge arises when the dimensions and distance of an object have to be
estimated in an image from a camera that has not been calibrated and which position in the space
is undefined. A secondary challenge arises from the variations in lens parameters across different
smartphone models. These variations result in differences in camera distortions and focal lengths,
leading to significant uncertainties and errors if relying solely on the original photos for size
estimation in three-dimensional space.

To face these challenges, we investigate a user-end-based approach: since the user must
use the smartphone to collect the sidewalk video, the smartphone can be used to embed
within the recorded video markers that a computer vision algorithm can use to estimate the
distance between any two points on the sidewalk. This approach minimizes user disruption by
directly optimizing data on the user’s end employing smartphone-available sensors and visually
embedding information within the submitted material.

The following Section outlines the design and technology behind the data collection tool
prototype developed to collect sidewalk video to test the feasibility and accuracy of the proposed
width estimation model.

(i) Data Collection Tool Prototype

We developed an iOS app prototype to simulate the data collection tool. The app functionalities
include performing camera calibration and optimization on the user’s device automatically and
embedding computed spatial markers into the registered video in the form of a red grid.

The prototype app has been developed using Flutter, a cross-platform framework developed
by Google. The app’s core functionality is powered by Apple’s ARKit framework, which provides
advanced augmented reality capabilities and three-dimensional scene understanding. Upon
launching the app, the device’s gyroscope and camera depth sensing capabilities, if available,
are utilized to construct a three-dimensional representation of the area visible through the
camera lens. The app then employs algorithms to selectively extract the ground plane from
the reconstructed 3D scene. Once the ground plane is identified, a fixed-size red grid pattern
with a consistent absolute length of 25 cm is dynamically generated and overlaid onto the
extracted plane. This grid pattern adapts to the image perspective and extends according to the
user’s movements. When the user initiates video recording, the app captures the camera feed,
embedding the red grid pattern within the video frames. The resulting video, complete with the
integrated grid, is automatically saved upon completion of the recording. In addition to the grid-
embedded video, the app also saves a separate, clear version of the recorded video. This clear
version ensures that sufficient original image information is preserved for processing regions
within the video frames, even if the grid pattern partially obscures certain areas.

(ii) Width Detection Pipeline

A frame is extracted from both the embedded-grid and the clear video at regular intervals. Color
thresholding is applied to detect the grid by isolating it from the rest of the frame. The grid
squares are identified by looking for square-shaped contours, as shown in Figure 2. Subsequently,
four corner points are extracted for each detected grid square, and duplicate points are merged
using DBSCAN (55). Adjacent grid squares are identified by looking for which corner points were
merged and which were part of the same grid square. The locations of adjacent corner points are
finally employed to generate line equations for each grid line.

The identified grid lines are used to provide a top-down view of the image using a perspective
transform, also known as a homography (56). A chosen rectangle in the grid with a known metric
width and height is mapped to a rectangle in the top-down view. The homography is performed
by finding the matrix M that maps points in homogeneous coordinates (x, y, 1) on the original
image to the correct coordinates (x′, y′, 1) in the top-down view, where x′ =Mx and y′ =My.
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Figure 2. Width detection pipeline: (1) Embedded-grid frame; (2) Grid identification through square-shaped contours; (3)

Corner points extractions; (4) Homography perspective transformation; (5) Resulted Top-down view; (6) Width estimation

result.

The top-down view is aligned with the grid, so the Euclidean distance between any two points in
the image can be used to estimate their real-world distance.

It is possible to extrapolate using the inverse of the homography matrix M 1 as this matrix
represents the transformation from a flat plane to the original image. For example, a landing
position on the original image of the points (-20 m, -20 m) and (20 m, 20 m) can be identified and
used to generate a new, larger top-down view to measure more distances.

By using the perspective transform along with the sidewalk segmentation results, the width
of the sidewalk at each part of the image can be determined. Measuring sidewalk width can
be performed by drawing horizontal lines across the sidewalk, with the lines evenly spaced
vertically, and using the distance between these lines to get the sidewalk width.

(c) Results
The accuracy of the width estimation model in detecting sidewalk width in the preliminary case
study in Cambridge shows promising results. The ground-truth comparison shows an accuracy
of ±5%, which increases to ±10% when less than 3 meters away from the camera point of view
(POV) (see Figure 3). The accuracy starts to lower significantly as the distance from the camera’s
POV exceeds 5 meters. This accuracy reduction is influenced by grid resolution and perspective,
outlining a high-accuracy range that falls between 0.50 and 5 meters from the camera POV.

After validating the initial accuracy of the model, we expanded our testing by running
three more case studies, further evaluating the model’s accuracy in estimating sidewalks width
in different urban settings. This further evaluation focused on assessing width estimation
performance inside the high-accuracy range. A total of 30 images were collected and tested, with
10 from each city: Hong Kong, China, London, UK and Milan, Italy.

As visible in Table 4, the model exhibits an overall high accuracy in estimating sidewalk width,
with an average error margin of 0.30 meters compared to the ground truth reference. Notably, a
primary limitation arose from the model’s deployment capabilities across diverse urban settings;
it successfully analyzed 63% of the images, while the remaining could not be scanned. This
discrepancy was uniformly caused by the performance of the tPSPUnet model, whose accuracy
vastly decreased in images where the sidewalk and the road share similar materials or colors, a
scenario commonly observed in Italy.

5. Discussion
Results demonstrate that the proposed method enables the collection of one of the fundamental
features for urban accessibility, namely sidewalk width, through frames extracted from
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smartphone videos. As the app prototype exploits sensors available in most smartphones and
does not require the use of complex technologies like LiDAR, it is possible to assert that this
method enable a particpatory, low-cost solution for urban accessibility mapping through a
hybrid-crowdsourced approach that involves citizens.

Limitations exist and will be addressed in future studies to ensure that the proposed method
delivers precise and reliable performances. The segmentation model, selected from those already
available in this study, showed highly variable results. Although sufficient for this study’s scope,
its outcome significantly impacts the scalability of the approach. The web app deployment
will require a dedicated segmentation model to ensure high precision in segmenting sidewalk
boundaries combined with the capacity to identify all accessibility features listed in Table 1.

The accuracy of the width estimation model also requires further development. Results
demonstrate that while a high-accuracy area is identifiable between 0.5 and 5 meters from the
camera POV, the precision decreases outside of this range. While this result is acceptable for
this first study, an inaccuracy greater than ±10% can significantly affect the reliability of the
collected data and, consequently, the trustworthiness of the derived accessibility value. Although
the reduction in precision can be improved by fine-tuning the model, the loss of precision outside
a certain distance range is a factor that might persist due to the resolution of the grid or the quality
of the smartphone camera. This can be addressed by defining a distance limit beyond which the
elements present in the frame should not be considered. Because the model is based on video
recordings, sampling of frames at predetermined intervals is possible. This ensures sidewalk
coverage at least every 5 meters, preventing distance reliability loss to impact results. Future
work will focus on improving the width estimation model by a process of stitching the results of
each 5-meter frame analysis together, reconstructing a digital twin of the scanned sidewalk.

The app prototype, combined with the segmentation and width estimation model, has
confirmed that the smartphone-based approach could be an easy, rapid, and relatively economical
sidewalk data collection method compared to alternatives proposed by previous studies. This
participative-based solution raises new possibilities and challenges. The accuracy results from

Figure 3. On the top: PSPUNet segmentation results. On the bottom: width estimation model accuracy results, ground

truth dimension (yellow) and width estimation results from the model (blue).

Table 4. Width estimation model result from performed case studies. Estimation success refers to the number of cases

where the model doesn’t fail to calculate sidewalk width. The average error refers to the discrepancy between the model’s

width estimations and the actual sidewalk widths (ground truth data), expressed in meters.

Hong Kong London Milan Average
Estimation Success (%) 70 80 36.36 63.33
Average Error (m) 0.14 0.58 0.05 0.30
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the London case study serve as an example. Specifically, London exhibited a higher average error
than the other two cities. Notably, London was also the only case study in which images and
ground truth data were collected by an independent volunteer. This highlight how guidelines for
user participation will be necessary, and it will be essential to further investigate which factors
influence the accuracy of the result and how to provide the users with guidance on how to record
the video (e.g. using the phone in landscape mode, walking at a fixed speed).

Overall, the results confirm smartphone’s videos are sufficient to provide information to study
sidewalk accessibility, allowing the data collection approach to be accessible regardless of the
device’s manufacturer, model, and performance. This opens new veins in urban accessibility
mapping, where citizens are not asked to perform time-consuming and complex tasks but instead
are empowered to contribute to data collection simply by recording videos of the sidewalks they
walk. To our knowledge, this innovative approach, proven to be feasible through this study, has
never been explored before. Considering the ease with which final users can access it, this method
could have a huge impact once made available through a web app like Sidewalk AI Scanners.

Finally, the user-centered approach proposed in this paper would require to further investigate
what triggers and supports participation within communities. Strategies to increase participation,
such as gamification, community outreach programs, and data collection workshops are all
methods worth consideration. At the same time, engaging with fragile communities, like people
with disabilities, could represent a way to involve users who are also driven by a direct personal
return other than just interest or the desire to contribute.

6. Conclusion & future works
This paper presents Sidewalk AI Scanner, a novel hybrid-crowdsourced approach for sidewalk
data collection. The method is founded on a web app that enables citizens to upload sidewalk
videos registered with a smartphone and then generate interactive accessibility maps starting
from the automatic analysis of the user-generated videos. This participatory method represents
a scalable solution for municipalities to fill the lack of sidewalk datasets, essential to generating
accessible maps and assisting people with disabilities in urban navigation. Through case study
conducted in various cities, the method’s capability to address the sidewalk width estimation
challenge in an image without the need for prior camera calibration has been evaluated. The
results, showing high accuracy compared to ground truth, confirm the web app’s potential to
provide a low-cost tool to enable citizen participation in urban data collection experiments.

By providing a scalable solution, the Sidewalk AI Scanner approach aligns with broader efforts
to intervene on barriers faced by people with disabilities in urban environments. The participatory
model exemplifies the power of participative action in urban data collection and highlights the
transformative potential of visual AI technology in fostering more accessible and equitable urban
landscapes, advancing the conversation around urban inclusivity.

Future work will concentrate on giving access to the web app to communities and on training
a semantic segmentation model that can identify all the crucial accessibility features necessary
for estimating a accessibility level in a sidewalk images. The goal is to deliver a tool to enable
worldwide participation in accessibility mapping efforts. Such a tool could significantly empower
individuals to actively contribute to enhancing the accessibility of urban landscapes in their
communities, supporting the push towards a more inclusive society.

If further result will be promising, the hybrid-crowsourced approach could be extended to
other domains that share similar goals and challenges as the sidewalk accessibility one. For
example, aspects such as the accessibility of public buildings, stations, subways, or green areas
could all be domains to which a similar approach be applied, providing data for the design of
targeted and effective urban accessibility interventions, contributing towards the goal of making
future cities more accessible and inclusive for everyone.
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A. Additional Tables

Table A.1. PSPUnet labels of obstacle identification

Class Detailed item Label
Background Background "background"

Bike lane
Normal bike lane
Asphalt sidewalk
Urethane sidewalk

"bike_lane_normal"
"sidewalk_asphalt"
"sidewalk_urethane"

Caution zone

Grating
Manhole
Repairing zone
Stairs
Tree zone

"caution_zone_grating"
"caution_zone_manhole"
"caution_zone_repair_zone"
“caution_zone_stairs"
"caution_zone_tree_zone"

Crosswalk
Crosswalk of alley
Crosswalk of roadway

"alley_crosswalk"
"roadway_crosswalk"

Braille guide blocks
Normal block
Damaged block

"braille_guide_blocks_normal"
"braille_guide_blocks_damaged"

Roadway

Normal roadway
Normal alley
Speed dump of alley
Damaged alley

"roadway_normal"
"alley_normal"
"alley_speed_bump"
"alley_damaged"

Sidewalk

Blocks
Cement
Soil or stone
Damaged
Other

"sidewalk_blocks"
"sidewalk_cement"
"sidewalk_soil_stone"
"sidewalk_damaged"
"sidewalk_other"
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