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Challenges and opportunities in truck 
electrification revealed by big  
operational data

Pei Zhao    1,2,10, Shaojun Zhang    1,3,4,10  , Paolo Santi    2,5, Dingsong Cui    6, 
Fang Wang1, Peng Liu6,7, Zhaosheng Zhang6, Jin Liu8, Zhenpo Wang    6,7  , 
Carlo Ratti2,9 & Ye Wu    1,3,4 

The electrification of trucks is a major challenge in achieving zero-emission 
transportation. Here we gathered year-long records from 61,598 electric 
trucks in China. Current electric trucks were found to be significantly 
underutilized compared with their diesel counterparts. Twenty-three per cent 
of electric delivery trucks and 30% of semi-trailers could achieve one-on-one 
replacement with diesel counterparts, while on average 3.8 electric delivery 
trucks and 3.6 electric semi-trailers are required to match the transportation 
demand that is served by one diesel truck separately. For diesel trucks that are 
capable of one-on-one replacement, electric trucks have 15–54% and 1–49% 
reductions in cost and life-cycle CO2 emissions, respectively. Enhancements 
in usage patterns, vehicle technologies and charging infrastructure can 
improve electrification feasibility, yielding cost and decarbonization 
benefits. Increased battery energy densities with optimized usage can make 
one-on-one electrification feasible for more than 85% of diesel semi-trailers. 
In addition, with cleaner electricity, most Chinese electric trucks in 2030 will 
have lower expected life-cycle CO2 emissions than diesel trucks.

The comprehensive mitigation of carbon dioxide (CO2) emissions 
from the transport sector is essential for achieving carbon neutral-
ity. It was estimated that heavy-duty vehicles (HDVs) accounted for 
approximately 30% of all transport CO2 emissions globally in 20201. 
As fleet electrification is recognized as an important solution to 
decarbonize the transportation sector, many countries and regions 
have set ambitious targets to drive electrification in HDV fleets2–6. In 
California (US), the Advanced Clean Fleets regulation requires that 
truck manufacturers increase the market share of zero-emission 

vehicles to 100% by 20363. Led by California, the US government has 
set 30% and 100% sales targets for zero-emission medium-duty (MD) 
and heavy-duty (HD) vehicles by 2030 and 2040, respectively4. The 
new HDV CO2 emission standard proposed by the European Com-
mission sets CO2 emission reduction targets of 45% by 2030 and 90% 
by 2040 compared with the 2019 levels for HDV fleets5, which is also 
expected to drive the deployment of electric trucks (ETs). In China, 
no official national market target for ETs has been announced, but 
the China Society of Automotive Engineers6 has proposed a future 
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monitoring records from more than 60,000 ETs, which accounted for 
more than one-third of the global stock in 2021 (Fig. 1a). Comparing 
the usage patterns from DT and ET datasets, we identified current 
challenges for ET deployment that are related to their usage patterns. 
We leveraged the big data to derive two usage metrics as feasibility 
indicators: the ‘priority group ratio’, which denotes the ratio of vehicles 
that are feasible for one-on-one replacement, and the ‘replacement 
rate’, which denotes the average number of ETs needed to replace one 
DT after matching fleet-level transport demand. Integrating the usage 
patterns with life-cycle modelling, we evaluated the actual individual- 
and fleet-level costs and decarbonization effects of truck electrifica-
tion by category. To identify various opportunities for comprehensive 
truck electrification, future projections on technology improvements 
(including battery improvement, charging infrastructure and sustain-
able electricity) under optimized usage reveal great potential but 
differentiated improvement orientations are needed for different ET 
fleets to achieve CO2 emissions–cost synergy.

Difference in usage patterns of electric and diesel 
trucks
In this research we gathered real-world activity recordings from 61,598 
ETs in China during 2021, which included detailed trip-level information 
with energy consumption and charging records. The ETs in the dataset 

roadmap for developing new energy vehicles, which includes the 
promotion of ETs.

Despite the great ambition to promote ETs, their current sales are 
at a nascent stage across the world compared with the soaring number 
of electric cars or buses. In 2021, sales of ETs accounted for 1.5% of all 
new trucks registered in China7, which was substantially lower than the 
shares of electric cars (16%) and buses (8.9%)7. In 2020, only 0.4% of new 
MD and HD truck registrations in the European Union and 0.03% of HD 
truck registrations in the United States were zero-emission vehicles8. As 
no real-world performance derived from large-scale deployed ETs has 
been evaluated or reported, the market remains conservative towards 
ET deployment because of mileage concerns9–11, battery and payload 
limitations12,13 and the limited availability of adequate charging infra-
structure14–16. Regarding decarbonization effects, the life-cycle CO2 
emissions of ETs remain uncertain due to the lack of real-world energy 
consumption data across different truck categories17–20. Previous studies 
have relied heavily on theoretical calculations and scenario analysis to 
estimate the vehicle-level cost and emissions of ETs compared with their 
diesel counterparts21–25, often ignoring the fact that one ET may have a 
different transport capability than its respective diesel truck (DT) model.

As the current host of the world’s largest ET fleets, China provides 
a timely opportunity for analysing the actual usage profiles of the 
early-batch ETs26–29. In this study, we gathered the year-long real-world 
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Fig. 1 | Vehicle stock and usage patterns of ET fleets. a, Global ET stock in 202127 
(left), number of ETs in this study (middle) and categorization of the ET samples 
(right). b,c, Daily mileage (b) and annual distribution of active trips (c) for DT and 
ET fleets. The UBR of ETs is estimated based on battery capacity and real-world 
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(see Methods for details). In b, the priority groups in the ET/DT fleets (that is, ETs/
DTs feasible for one-on-one replacement) are highlighted with dark shadows 
under the green/red curves, and the percentage values indicate the current 
priority group ratios.
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account for more than one-third of the global stock in 2021 (Fig. 1a). 
At the same time, we also collected the on-board monitoring (OBM) 
records of 55,411 DTs in China for comparative benchmarking. We cat-
egorized both ETs and DTs by vocation and gross vehicle weight (GVW). 
In total, nine fleets were evaluated in this research, as shown in Fig. 1a.

From the large-scale real-world dataset, we observed that ETs had 
significantly lower usage intensity compared with DTs. In Fig. 1b, we 
compared the daily mileage distributions between individual DTs and 
ETs, along with the usable battery range (UBR), which represents the 
maximum mileage of the ET after full charging. Compared with their 
DT counterparts, all ET categories showed significantly lower daily 
mileages. Apart from electric HD refuse trucks (91%), MD sanitation 
trucks (80%) and HD semi-trailers (75%), the ratios of fleet-average daily 
mileage for ETs relative to DTs were below 70%, ranging from 42% (MD 
box trucks) to 69% (HD dump trucks). For the light-duty (LD) segments 
(GVW < 4.5 t), electric delivery trucks had the largest population among 
all ETs. LD diesel delivery trucks could run approximately 200 km per 
day on average. The average daily mileage of electric delivery trucks 
was merely 109 km. For the HD segment (GVW > 12 t), semi-trailers and 
dump trucks shared the largest stock number of ETs. The real-world 
data indicated that electric semi-trailers and dump trucks ran, respec-
tively, 372 km and 158 km on average, equivalent to 69% and 75% of the 
levels of the respective DT fleets.

The reasons for the underusage of ETs included the limited bat-
tery capacity, range anxiety and different task assignments compared 
with DTs. We found that ETs were underused compared with their 
maximum potential, as could be inferred from their short daily mile-
age and insufficient battery use. Except for HD semi-trailers, the aver-
age daily mileages of all ETs were far lower than the UBRs (Fig. 1b and 
Supplementary Table 1), which indicated sufficient opportunities for 
increasing their use intensity (that is, the daily mileage or active trips) 
without extra charging. For some ET fleets, such as electric refuse and 
sanitation trucks, the UBRs can readily satisfy the daily travel demand 
of DTs. For LD delivery trucks and MD box trucks, the UBRs of ETs were 
lower than the daily mileage of their diesel counterparts, suggesting 
that these ETs will require additional charging within the driving day 
to reach the daily mileage of DTs. Notably, the average daily mileage of 
HD electric semi-trailers exceeded their average UBR, indicating that 
frequent charging (on average 2.4 times per day) had already become 
the solution to addressing the range issue. Supplementary Figure 1 
shows the state of charge (SOC) distribution at the start of charging. 
At present, most of these distributions (except for the HD semi-trailer) 
peak at around 40–60%, suggesting that the range anxiety of ET drivers 
led to the actual active battery range being limited to approximately 
half of the battery capacity.

Another factor contributing to the low usage intensity of ETs 
was their limited driving frequency (Fig. 1c), and the gap between ET 
and DT fleets increased with GVW. For example, electric LD delivery 
trucks had 17% fewer annual active trips compared with their diesel 
counterparts, while electric HD semi-trailers had 71% fewer active trip 
numbers relative to diesel semi-trailers. Despite being regulated by the 
same set of maximum speed limits on roads, there existed differences 
in the operational speed of ETs and DTs, as shown in Supplementary 
Fig. 2, which will potentially influence the freight efficiency of ETs. 
For low-speed DT fleets, such as sanitation and refuse trucks, the gap 
in speed was smaller, and electric LD refuse trucks even can achieve 
higher speeds. However, for high-speed DT fleets for which delivery 
efficiency is more important, such as LD delivery trucks, MD box trucks 
and HD semi-trailers, the average operational speed of ETs was much 
lower than their diesel counterparts.

Despite the underusage of ETs at the fleet level, we observed that 
some ETs can achieve the daily mileage of a certain proportion of 
low-mileage DTs in each truck category. These DTs, which are already 
replaceable with a single current ET without further usage optimiza-
tion or technological improvement, are prime candidates for early 

electrification (referred to as the ‘priority group’ in this research). 
Currently, as shown in Fig. 1b, the proportion of vehicles in the prior-
ity group varied from 16 to 48%. The percentages of DTs that can be 
replaced on a one-on-one basis with ETs are 23% and 30% for LD deliv-
ery trucks and HD semi-trailers, respectively. The priority group ratio 
serves as one possible indicator for quantifying the electrification 
feasibility within each truck category. We now examine how usage 
optimization and technological improvement could increase the ratios 
of priority group vehicles in the following section.

Emission and cost comparisons between 
individual electric and diesel trucks
Cost and CO2 emissions are the primary indicators for assessing the 
impacts of electrification. Here we evaluated the total cost of owner-
ship (TCO) and life-cycle CO2 emissions of individual ETs and DTs by 
fleet on the basis of real-world vehicle usage, energy consumption 
(Supplementary Fig. 3 for ETs; Supplementary Fig. 4 for DTs) and CO2 
emission intensities in China. As shown in Fig. 2a, although ETs can 
achieve considerable well-to-wheels (WTW) CO2 emission reductions 
for most fleets in most of the grid regions (Supplementary Fig. 5a), car-
bon emissions associated with battery supply chains and lower vehicle 
mileage lead to a mixed profile in life-cycle decarbonization effects for 
ETs compared with DTs. Electric sanitation trucks have higher life-cycle 
CO2 emissions compared with their respective DTs because of higher 
vehicle-cycle CO2 emissions from lower mileage, whereas the other elec-
tric fleets achieve 8–37% decarbonization benefits. The vehicle-cycle 
attributes more in life-cycle CO2 emissions for ETs (17–40%) than for 
DTs (2–18%). With cleaner electricity in China after 203030, lower car-
bon intensities of electricity and material production are expected to 
effectively decarbonize ETs. All ETs apart from MD sanitation trucks will 
have life-cycle decarbonization effects over DTs. With 100% renewable 
electricity during the operational stage and supply chains of vehicle 
materials, ET fleets will have 70–91% life-cycle CO2 emission savings 
compared with DTs (Supplementary Fig. 6).

ETs generally have higher purchase costs (including subsidies) and 
lower mileages but benefit from lower fuel (electricity) costs. The gap 
in the purchase costs can be almost fully compensated by the savings in 
fuel costs. From a fleet-average comparison, currently, ETs in five out of 
nine categories already have lower TCO than their diesel counterparts 
(Fig. 2b), in which the three HD fleets and LD delivery trucks can achieve 
12–37% cost savings. For LD sanitation and the MD fleets, the savings 
on fuel costs are constrained by their low mileages, which result in the 
higher TCO for ETs compared with DTs. We find synergy in CO2 emis-
sion reductions and cost savings for electrifying LD delivery trucks, 
LD refuse trucks and the three HD fleets when comparing individual 
life-cycle CO2 emissions and TCO, although ETs have lower mileages.

Furthermore, compared with the respective DTs that are feasible 
for one-on-one replacement, ETs in the priority group have lower TCO 
(by 15–54%) and CO2 emissions (by 1–49%) across all truck categories, as 
shown in Supplementary Fig. 7. Because ETs within the priority group 
have higher usage intensity compared with the fleet average, they have 
lower material-cycle CO2 emissions and receive more benefits from 
low electricity prices. In particular, if comparing the ETs in the priority 
group with all of the DTs in the same category, except for sanitation 
trucks, all truck categories could receive positive decarbonization and 
cost benefits from electrification. This suggests that feasibility issues, 
which are mainly reflected by underusage, pose a greater barrier to 
truck electrification than either cost or environmental considerations. 
In the following section, we will quantify the impact of optimizing usage 
on the priority ratio and electrification effects.

Enhancing fleet electrification effect by 
optimizing usage
The priority group analysis and the observed usage pattern differ-
ence between ETs and DTs suggest that the one-to-one replacement 
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between ETs and DTs is only feasible for a limited subset of vehicles. 
Hence, a more comprehensive understanding of the effects of fleet-level 
electrification is essential to anticipate the wide adoption of ETs in the 
future. In this research we examined both the vehicle-level usage met-
ric of the priority group, and the fleet-level metric—the replacement 
rate—derived from large-scale real-world datasets. These usage metrics 
were integrated with life-cycle modelling to quantify the electrification 
effects for both early adopters and the fleet at large under different 
optimization scenarios.

Under the assumption that the total work demand for a truck 
fleet is independent of the vehicle powertrains, we developed a 
trip-chain-based method to evaluate the number of ETs (the replace-
ment rate) needed on average to replace one DT and evaluated the cor-
responding TCO and life-cycle CO2 emissions after usage normalization 
(see Methods for more details). The results of the fleet-level usage nor-
malization (Fig. 3) show that, if ET drivers keep current usage patterns, 
on average, 3.8 electric delivery trucks and 3.6 electric semi-trailers 
are needed to replace one current diesel counterpart. As shown in 
Supplementary Fig. 8, most replacement rate distributions have long 
tails from high-mileage DTs. Considering additional vehicle-cycle CO2 
emissions and costs, almost all ET fleets with current usage profiles will 
lose either the cost or life-cycle CO2 advantage compared with DT fleets 
after usage normalization (Fig. 3 and Supplementary Fig. 9).

Improving vehicle usage can effectively raise the priority group 
ratio, cut down the replacement rate and shrink the deficits in CO2 and 
TCO. Except for MD sanitation trucks, HD semi-trailers and HD refuse 
trucks, by increasing the average battery use to 85% SOC (defined as 
the ‘optimized usage’), all other ET fleets can have one-on-one prior-
ity group ratios that are higher than 49% (Supplementary Table 2) and 
achieve a life-cycle CO2 emission balance with diesel counterparts 
(Fig. 3 and Supplementary Fig. 9). These ET fleets are also feasible for 
achieving a TCO balance with their usage intensity increased to no 
more than that of DT fleets. For example, for LD delivery trucks, with 
battery usage at 85% SOC, an additional 34% of LD delivery trucks can 
match one-on-one replacement with their diesel counterparts (Sup-
plementary Table 2), and the replacement rate will decrease from 3.8 
to 2.0 if charging accessibility can be guaranteed (Fig. 3a). Building 

on 85% battery use, increasing the annual active trips by 52% can fur-
ther reduce the replacement rate of ETs and achieve a TCO balance. 
However, for electric HD semi-trailers, the current battery usage rate 
is high (82%) with limited room for usage improvement for existing 
electric semi-trailer vehicle models. Even increasing the usage inten-
sity to that of diesel semi-trailers, it is still not possible for the electric 
semi-trailers to achieve a cost or life-cycle CO2 balance if the work 
demand is matched. Thus, further technology improvements (for 
example, higher battery energy densities) should be considered for 
electric HD semi-trailers to achieve cost and decarbonization benefits 
beyond usage optimization.

Improving truck fleet electrification benefits in 
the future
Optimizing usage reveals the maximum potential of current ET models 
and proves the need for technological improvements, battery and 
charging improvements in particular, to enhance the feasibility of ETs 
for high-energy-demand fleets (for example, HD semi-trailers). In this 
context, we evaluated the influence of technological improvements 
and more sustainable electricity mixes on electrification feasibility 
and effects in the future. On the basis of optimized usage (an average 
battery use of 85% SOC), the fleet-level replacement rate and the cor-
responding life-cycle CO2 emissions and TCO are assessed to identify 
the future electrification opportunities under different scenarios.

Battery improvements, such as an increase in the battery capac-
ity or energy density, will enable ETs with higher mileages beyond 
optimized usage, thus increasing the fleet priority group ratios and 
reducing the replacement rates. An increase in the battery energy den-
sity to 220 Wh kg−1 (with an unchanged battery mass) will result in the 
priority ratios exceeding 70% for all truck categories (Supplementary 
Table 2a). Notably, for HD semi-trailers, the priority ratio will increase 
from 36 to 87%, confirming that a limited battery capacity is the prin-
cipal constraint of electric HD semi-trailers. An increase in the battery 
energy density is also beneficial for the TCO and life-cycle CO2 of LD 
delivery trucks and HD semi-trailers (Fig. 4) by effectively decreasing 
the replacement rate. Only with an increase in the battery density can 
the electric LD delivery truck fleet receive both cost and CO2 advantages 
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over DTs. By contrast, an increase in the battery energy density has mar-
ginal effects on fleets with a shorter transport demand (for example, 
refuse trucks) because current battery capacities can almost cover the 
demand with optimized usage. Increasing the battery capacity with 
the current battery technology (with an unchanged energy density 
and unit cost) will reduce the truck payload but effectively increase 
the mileage. A 50% increase in battery size will lead to a 7% payload 
reduction for electric semi-trailers, yielding an 11% CO2 and a 25% cost 
reduction compared with the current optimized scenario. However, 

this shows negative effects on both the life-cycle CO2 and TCO for the 
other fleets (Fig. 4 and Supplementary Fig. 10).

Sustainable electricity is the key and most effective approach for 
reducing the life-cycle CO2 emissions of ETs. By transitioning to the 
lower-carbon-intensity electricity generation, most electric fleets 
will have large decarbonization effects compared with DTs (Fig. 4 and 
Supplementary Fig. 10). Battery swapping and Level 3 supercharging 
will also enable ETs with comparable transport capabilities compared 
with DTs, which is particularly useful for reducing costs with electric HD 
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semi-trailers. With a battery capacity increased via an energy density 
increase to 220 Wh kg−1 and a 50% size increase for battery swapping, 
both additional batteries will be needed (Supplementary Table 3) and 
TCO for a single battery will decrease for semi-trailers. As a result, 
with 25% reduction in electricity consumption, future electric HD 
semi-trailers can achieve cost balance with diesel counterparts through 
battery swapping (Fig. 4). As summarized in Fig. 4 and Supplementary 
Fig. 10, all LD and HD electric fleets will have opportunities for receiv-
ing TCO–CO2 synergy effects in the future, but truck manufactur-
ers and relevant stakeholders should understand that differentiated 
improvement strategies are needed to achieve such future cost and 
decarbonization effects.

Discussion
In our life-cycle modelling, numerous economic and technical param-
eters (for example, the battery pack price, the reduction of energy 
consumption, subsidies and so on) influence the TCO and CO2 emission 
outcomes. Sensitivity analysis shows that energy consumption savings 
(electricity consumption reductions for ETs and fuel consumption 
reductions for DTs) are the most influential factor for the modelling 
results, as shown in Supplementary Fig. 11. For ET fleets, a 10% reduc-
tion in electricity consumption will result in a 1.2–3.1% reduction in 
TCO and a 4.9–7.6% reduction in life-cycle CO2 emissions. In addition, 
as there are no real-world data available on battery degradation, we 
also assessed the TCO and CO2 implications if ETs required a battery 
replacement within their lifespan (Supplementary Fig. 12). Except for 
MD sanitation trucks, changing one battery within the ET lifetime will 
cause an increase in TCO of US$0.33–1.41 per km (13.8–28.7%) and 
increase in CO2 emissions of 19.5–82.9 g km−1 (3.6–9.2%). Except for 
battery replacement, energy consumption savings and a reduction in 
the battery pack price will bring marginal effects on the electrification 
effects of LD delivery trucks and HD semi-trailers with usage optimiza-
tion and technological improvements (Supplementary Figs. 11 and 13).

The lower usage intensity of ETs compared with DTs is one of the 
greatest challenges that we have identified regarding the large-scale 
deployment of ETs, which is also the key reason for the high TCO. The 
priority group analysis demonstrates that current high-mileage ETs 
can achieve both economic and environmental benefits over their 
respective DTs, which emphasizes the need for enhancing ET usage as 
a primary step towards effective electrification. Our analysis attributes 
the low usage intensity to two different aspects: the underusage of 
ETs and the limitation of batteries. The real-world performance of ETs 
derived from the dataset reveals that there are sufficient opportunities 
for most ET fleets to improve current usage on both driving mileage and 
charging, which suggests that the underusage may be the result of both 
psychological effects (such as well-documented range anxiety28,31,32) and 
insufficient task assignment (Supplementary Note 3). Therefore, along-
side fundamental technological and infrastructure improvements for 
effective electrification, it is crucial to design policy interventions and 
implement education initiatives for ET drivers and fleet operators, to 
help them alleviate concerns over electrification23 and thus improving 
ET usage. However, for some high-energy-demand fleets (for example, 
HD semi-trailers), improvements in battery technology are needed to 
raise the vehicle mileage and enhance the feasibility of electrification.

Some previous publications have observed the low mileage of 
ETs33–35 but have not successfully linked it to electrification cost or 
decarbonization effects. The usage intensity analysis performed in this 
study reveals that a one-to-one vehicle comparison between the TCO 
and life-cycle CO2 emissions of ETs and DTs is only representative of a 
small subset of fleets (priority fleets), and fleet-level comparison with 
usage intensity normalization is needed to quantify the effects for the 
wide adoption of ETs in the real world.

It is part of the global agenda to deploy zero-emission vehicles in 
the trucking sector3–6. Principal markets such as the United States and 
Europe have provided higher purchase incentives36,37 to improve the 

cost competitiveness of ETs. For instance, the California Hybrid and 
Zero-Emission Truck and Bus Voucher Incentive Project (HVIP)36 could 
cover more than 80% of the purchase price gap, whereas European 
countries have offered maximum price gap incentives of between  
30 and 80% (ref. 37). Recently, demonstration data of daily mileage and 
battery status from ET fleets in California (18 vehicles in total)38 became 
available to understand their real-world usage profiles, cost effects and 
decarbonization benefits (Supplementary Note 4). We noticed that the 
purchase incentives from HVIP played an important role in reducing 
the TCO of ETs in California36, with which electric delivery trucks and 
semi-trailers (such as Tesla Semi trucks) can achieve cost parity with 
diesel counterparts (Supplementary Fig. 18). However, similar to Chi-
nese ET fleets, the real-world performance of Class 6 ETs (categorized as 
MD box trucks in this study) in California also revealed underusage and 
resulted in higher TCO values than the diesel counterparts. Remarkably, 
Tesla Semis operating in California offered a great example of electri-
fying long-haul freight trucks. Equipped with large-capacity batteries 
(approximately 850 kWh), an efficient aerodynamic design and access 
to superchargers, Tesla Semis have achieved an average daily mileage 
of 945 km (Supplementary Fig. 17) with a low electricity consump-
tion (~125 kWh per 100 km; details in Supplementary Note 4)38, which 
could be used in the one-on-one replacement of diesel semi-trailers 
for long-haul transport. Currently, ETs used for long-haul operation 
are scarce in China. Most policies and investments have focused on 
encouraging and advancing infrastructure constructions, such as bat-
tery swapping or supercharging stations. The demonstration experi-
ence for Tesla Semis of PepsiCo in California38 and our scenario analysis 
both highlight the importance of progress in battery technology and 
improvements in energy efficiency for the successful electrification 
of long-haul freight.

Our analysis highlights the importance of leveraging big data to 
inform decision-making during the electrification process. Most policy 
or market decisions so far have been driven by aggregate general sta-
tistics such as the average, which in statistical terms is the first-order 
moment of the involved distributions. With big data, we can look into 
each sample of the distribution and gain a much more nuanced under-
standing of the situation. For example, the individual-level usage data 
enable us to accurately identify the features of DT candidates that 
are feasible for the early adoption of electrification; with detailed 
large-scale trip chains, we can accurately evaluate the fleet-level elec-
trification effects after usage normalization, which are considerably 
different from the vehicle-level comparison. Furthermore, big data 
also shed light on future policy-making and strategic planning. Prior-
ity ratios under usage optimization and technological improvements 
indicate the appropriate penetration targets in both the short and long 
term for different truck categories. A sales target exceeding 30% will 
be low-hanging fruit for most Chinese fleets apart from semi-trailers 
before 2030, while it is promising to have ET sales of more than 80% 
for all categories with a battery density increase (see Supplementary 
Table 2) in the future. Such sales targets and associated incentives, 
which have already been announced for electric passenger cars, have 
not been released for China’s truck market. As electrification is one of 
the most important approaches for the low-carbon energy transition, 
the benefit of big data analysis is not confined to truck electrification: 
big data has great potential to unlock insights and inform more effec-
tive policies and practices on other related topics, such as the ban on 
internal combustion engine vehicles, heat pump installation for sus-
tainable buildings and renewable power plant operations. However, 
the current scarcity of available data on cost and usage still poses 
a challenge and points to the need for encouraging the increasing 
availability of real-world data globally, similar to those provided by 
the North American Council for Freight Efficiency38. With granular 
big data, decision makers can come to more informed and targeted 
decisions that lead to improved efficiency, reduced costs and better 
environmental outcomes.
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Methods
Data acquisition
The real-world monitoring profiles of 61,598 ETs (model year 2018–2021) 
were obtained from the open laboratory of China’s National Big Data  
Alliance of New Energy Vehicles. The samples of ETs were distributed 
in seven provincial regions across China (Beijing, Guangdong, Hebei, 
Jiangsu, Shanghai Sichuan and Zhejiang). The year-long data records 
ranged from November 2020 to October 2021, and included 201 million 
trips and 51 million charging events—Supplementary Table 4 provides 
data examples of driving and charging events. We matched vehicle speci-
fications by vehicle model and categorized the ETs on the basis of the GVW 
and use purpose. Supplementary Table 5 summarizes the number of ET 
samples for each fleet category, and we included only the categories with 
more than ten vehicle samples (nine categories in Fig. 1a) in the analysis.

For DTs as the benchmark, we gathered the OBM data from more 
than 55,000 DTs with the same range of model years (model year 
2020–2021) from regulatory and manufacturer-operated platforms. 
Both types of OBM platform followed the same data collection and 
transmission requirements as in the China VI emission standard39,40 
but were pre-processed into different forms. The OBM data from the 
governmental platforms were processed into daily information on the 
driving distance and fuel consumption, whereas the OBM data from the 
manufacturer-operated platforms provided original high-frequency 
(1 Hz or 0.1 Hz) records of operating conditions and fuel consumption. 
Supplementary Table 6 provides examples of OBM data from the gov-
ernmental and manufacturer-operated platforms. We combined the 
two sources of DT data to analyse the usage pattern and fuel consump-
tion of DTs (see Supplementary Note 1). In line with the categorization 
of ETs, we grouped the DT samples on the basis of GVW and utility (see 
Supplementary Table 5).

Calculation of real-world energy consumption and the usable 
battery range
Supplementary Note 1 explains the calculation procedure from the 
original records to the fleet-averaged results. For ETs, the trip-level 
electricity consumption of each ET is calculated based on the change 
in the SOC, the battery capacity and the driving distance for a single 
trip (equation (1)), which is further aggregated to the vehicle-level and 
fleet-level electricity consumption results (equation (2)):

ECET,k =
100 × BatteryCapacityk ×∑TripNumk

i=1 ΔSOC

∑TripNumk
i=1 Li

(1)

ECET fleet,m =
∑VehicleNumET fleet,m

k=1 ECET,k
VehicleNumET fleet,m

(2)

where ECET,k, BatteryCapacityk and TripNumk denote the vehicle-average 
electricity consumption (kWh per 100 km), battery capacity (kWh) and 
total trip number of ET k, respectively, ΔSOC is the percentage change 
in SOC for a single trip made by ET k, and Li is the distance of trip i (km). 
ECET fleet,m and VehicleNumET fleet,m are the average electricity consump-
tion (kWh per 100 km) and the number of vehicles in electric fleet m, 
respectively.

The UBRs of ETs by vehicle and by fleet are calculated using equa-
tions (3) and (4), respectively:

UBRET,k =
100 × ρ × BatteryCapacityk

ECET,k
(3)

UBRET fleet,m =
∑VehicleNumET fleet,m

k=1 UBRET,k
VehicleNumET fleet,m

(4)

where UBRET,k is the usable battery range (km) of ET k and ρ is the 
maximum SOC change for a fully charged battery, which we use 90%  

(the SOC from 95 to 5%) in this research. UBRET fleet,m is the usable battery 
range (km) of electric fleet m.

For diesel fleets, OBM data from the manufacturer-operated plat-
forms were used to calculate the real-world fuel consumption of the 
vehicles (equation (5)) and fleets (equation (6)):

FCDT,k =
100 ×∑Tk

i=1 FuelRateDT,k,i
∑Tk

i=1 vDT,k,i
(5)

FCDT fleet,m =
∑VehicleNumDTfleet,m

k=1 FCDT,k
VehicleNumDTfleet,m

(6)

where FCDT,k, FuelRateDT,k,i, vDT,k,i and Tk denote the vehicle-average fuel 
consumption (l per 100 km), the instant fuel rate (l h−1), instant speed 
(km h−1) and total recorded time (s) of DT k, respectively. FCDT fleet,m and 
VehicleNumDT fleet,m are, respectively, the average fuel consumption 
(l per 100 km) and the number of vehicles in diesel fleet m. Supple-
mentary Figure 4 shows the real-world fuel consumption values of the 
different DT fleets.

Life-cycle CO2 emissions calculation
Life-cycle CO2 emissions are composed of WTW and vehicle-cycle 
results. We used the Greenhouse Gases, Regulated Emissions, and 
Energy Use in Transportation (GREET) model41 with China-specific 
inputs30,42 to evaluate the life-cycle CO2 emissions of each fleet in China 
at the categorical level. Life-cycle CO2 emissions of ETs and DTs were 
evaluated as equations (7) and (8) separately:

CO2 life-cycle,ETm =
1,000 × CO2vehicle-cycle,ETm

a × VKTm
+ CO2WTW,ETm (7)

where CO2 life-cycle,ETm denotes the life-cycle CO2 emissions (g km−1) of an 
individual ET in fleet m, CO2vehicle-cycle,ETm denotes the vehicle-cycle CO2 
emissions (kg) of an individual ET in fleet m, a is the lifespan of the ETs 
(set to ten years), VKTm is the average yearly vehicle mileage (km y−1) of 
electric fleet m and CO2WTW,ETm is the WTW CO2 emissions (g km−1) of an 
individual ET in fleet m.

For the DTs, we have:

CO2 life-cycle,DTm =
1,000 × CO2vehicle-cycle,DTm

a × VKTm
+ CO2WTW,DTm (8)

where CO2 life-cycle,DTm is the life-cycle CO2 emissions (g km−1) of an indi-
vidual DT in fleet m, CO2vehicle-cycle,DTm is vehicle-cycle CO2 emissions (kg) 
of an individual DT in fleet m, a is the lifespan of DTs (also set to ten 
years), VKTm is the average yearly vehicle mileage (km y−1) of diesel fleet 
m and CO2WTW,DTm is the WTW CO2 emissions (g km−1) of an individual 
DT in fleet m. See Supplementary Table 7 and the Data availability state-
ment for detailed life-cycle CO2 emission results.

For the ETs, the WTW CO2 emissions were evaluated on the basis of 
the GREET model41 with China-specific inputs30. We used the fleet-average 
electricity consumption (equation (9)) as input for the evaluation:

CO2WTW,ETm =
ECET fleet,m × EFelectricity,CO2

100 × η (9)

where ECET fleet,m is the electricity consumption (kWh per 100 km) of 
fleet m and EFelectricity,CO2 is the CO2 emission factor (g kWh−1) of electric-
ity generation30. For the baseline, we used the national averaged gradi-
ent emission factor for the lifespan (2020–2030), that is, 481 g kWh−1 
(Supplementary Table 8). Ƞ is the charging efficiency, 85%.

For the diesel fleets, the WTW CO2 emissions were evaluated based 
on fuel consumption results using equation (10):

CO2WTW,DTm = 10 × FCDT fleet,m × EFdiesel,CO2 (10)
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where FCDT fleet,m is the real-world fuel consumption (l per 100 km) of 
fleet m and EFdiesel,CO2  is the comprehensive CO2 emission factor for 
diesel, for which we used 3.15 kg l−1 in this research. We considered a 
15% fuel consumption reduction for diesel fleets in 2030, referring to 
the fuel consumption limits for commercial vehicles in China41,43. How-
ever, we did not consider the possible vehicle weight change in the 
future and its corresponding influence in this research.

The vehicle cycle estimates the CO2 emissions from the production 
of vehicle materials (excluding batteries for ETs), battery production 
for ETs, vehicle fluids and vehicle assembly30,41,42. For each fleet, we 
used the median kerb vehicle weight and battery weight to represent 
the ET category (see Supplementary Table 7), on the basis of which we 
attributed the material weights by ratio from representative vehicles 
of different fleets. Vehicle-cycle CO2 emissions were evaluated using 
equation (11):

CO2vehicle-cycle,fleetm = ∑wi,m × CO2materiali (11)

where CO2vehicle-cycle,fleetm is vehicle-cycle CO2 emissions (kg) of an indi-
vidual vehicle in fleet m, wi,m is the weight (kg) of material i of the rep-
resentative vehicle in fleet m and CO2materiali  is the carbon intensity 
(kgCO2 kg−1) for the production of material i (refs. 30,41,42), which is 
provided in Data availability statement.

Total cost of ownership
The TCO analysis scoped in China and included five components: (1) 
the purchase cost, which included the vehicle purchase price, purchase 
tax and subsidies; (2) the fuel cost; (3) insurance, tax and other fees, 
such as road tolls, compulsory liability insurance for vehicle traffic 
accidents and annual usage tax; (4) maintenance and repair costs; and 
(5) the residual value, which is zero for a lifespan longer than nine years 
(ref. 10). In Fig. 2b and Supplementary Fig. 6b, components (3)–(5) 
were aggregated as ‘other cost’. Details of these components are given 
in Supplementary Note 2. Notably, because of the high sensitivity of 
truck purchase prices, we could get only the average price of the top 
five/top ten models for each category, so currently the TCO model is 
category-specific but not vehicle model-specific.

We evaluated the category-specific TCO of ETs using equation (12):

TCOindividual,ETm

=
PurCostETm+(ChgCostETm+ITFETm+M&RETm )×

1−(1−r)a

r
−Resa,m

a×VKTETm

(12)

where PurCostETm and ChgCostETm are the fleet-averaged purchase cost 
and charging cost (USD) of electric fleet m, respectively, which are 
evaluated using Supplementary Equation (2) (see Supplementary Note 
2) and equation (13), respectively; ITFETm is a term that represents the 
insurance, taxes, and fees (USD) of electric fleet m, calculated using 
Supplementary Equation (4); M&RETm is the maintenance and repair 
cost (USD) of electric fleet m, calculated using Supplementary Equation 
(6); a is the vehicle lifespan, which is set to ten years in the baseline 
scenario; Resa,m is the average residual value (USD) after lifespan a, 
evaluated using Supplementary Equation (8); r is the discount rate, 
which is 0.05; and VKTETm is the average yearly mileage (km) of fleet m.

ChgCostETm

= ∑
VehicleNumET fleet,m
k=1 ∑

ChgNumET,k
n=1 Chgk,n×(EPhst ,hed ,loc+Ik,n×Fservice,loc)

VehicleNumET fleet,m

(13)

where VehicleNumET fleet,m is the total number of vehicles in ET fleet m; 
ChgNumET,k is the number of charging events of vehicle k in fleet m; 
Chgk,n is the charging electricity volume (kWh) of vehicle k in charging 
event n; EPhst,m ,hed,m ,loc  is the average electricity price (USD kWh-1) within 
the charging hours from hst,m (start hour of charging event n) to hed,m 
(end hour of charging event n) in region loc (vehicle registration place); 

Ik,n is a dummy variable used to identify fast charging events, which is 
set to equal to 1 for fast charging and 0 for slow charging; and Fservice,loc 
is the service fee (USD) of region loc.

The category-specific TCO of DTs was evaluated using  
equation (14):

TCOindividual,DTm

=
PurCostDTm+(FuelCostDTm+ITFDTm+M&RDTm )×

1−(1−r)a

r
−Resa,m

a×VKTDTm

(14)

where PurCostDTm and FuelCostDTm are the fleet-averaged purchase cost 
and fuel cost (USD) of diesel fleet m, respectively, which are evaluated 
using Supplementary Equation (3) (see Supplementary Note 2) and 
equation (15), respectively; ITFDTm is a term representing the insurance, 
taxes and fees (USD) of diesel fleet m, calculated using Supplementary 
Equation (5); M&RDTm is the maintenance and repair cost (USD) of diesel 
fleet m, calculated using Supplementary Equation (7); a is the vehicle 
lifespan, again set to ten years in the baseline scenario; Resa,m is the 
average residual value after lifespan a, and 0 is used for the baseline 
scenario (a = 10); r is the discount rate, also set to 0.05; and VKTDTm is 
the average yearly mileage (km) of diesel fleet m.

FuelCostDTm = 1
100 × DieselPrice × VKTDTm × FCDTm (15)

where DieselPrice is the diesel market price (USD l−1) and FCDT,m is the 
average fuel consumption (L per 100 km) of diesel fleet m. In future 
scenarios, a 15% improvement in fuel economy is considered for diesel 
fleets.

Priority group identification and relevant effects
We identified vehicles in the priority group according to their daily 
mileages. We defined the priority group mileage when, at this daily 
mileage, the ratio of ETs who had a higher average daily mileage (shaded 
in darker green in Fig. 1b) is equivalent to the ratios of DTs who had 
lower average daily mileage (shaded in darker red under the red curve in 
Fig. 1b) in the respective truck category. At the priority group mileage, 
the ratio of ETs who have a higher average daily mileage (or the ratios of 
DTs who have lower average daily mileage) is the priority group ratio. 
We calculated the priority group life-cycle CO2 and TCO values using 
equations (7)–(11) and (12)–(15), respectively, in the basis of energy 
consumption values and vehicle mileages derived from vehicles in 
the priority group.

Replacement rate simulation to match the fleet-level work 
demand
We extracted detailed DT trip chains from the OBM data, which 
included the trip mileage, average speed and parking time. For each 
fleet, we assumed that ETs with a representative battery capacity (the 
median of the capacities for current models in the category) drive the 
same mileage at the same average speed for each trip chain as DT, and 
are charged during the parking time via fast charging (60 kW)28.

During modelling of the replacement rate, we normalized the 
payload (shown in Supplementary Fig. 14), mileage (as trip chains 
from DTs) and truck operational speed (as average speed of DT for 
each trip) of the ETs. We assumed that the ETs can be charged using 
60 kW infrastructures at every parking period between two consecutive 
trip chains. For a specific DT trip, we assumed that the ET must run at 
the same speed as a DT, and estimated the corresponding electricity 
consumption from the speed–electricity consumption relationship 
derived from Supplementary Fig. 3b. Under the current usage scenario, 
we assumed that ETs keep current battery usage patterns as shown in 
Supplementary Table 9—for example, an electric LD delivery truck can 
use 41% of its SOC as a maximum for each trip. With the optimized usage 
scenario, we assumed an average battery usage of 85% SOC for the ETs. 
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We estimated the number of ETs needed on average to complete all of 
the trip chains from one DT in one day, and derived the replacement 
rate by multiplying this number by the payload ratio (derived from 
Supplementary Fig. 14), as in equation (16):

rrm =
NETm
NDTm

× Plm (16)

where rrm is the replacement rate of truck fleet m, NETm is the total num-
ber of ETs needed to complete all of the DT daily trip chains under the 
current/optimized battery usage, NDTm is the total number of DTs pro-
viding the daily trip chains and Plm is the ratio of the average DT payload 
versus the average ET payload for fleet m. Detailed replacement rate 
results are shown in Supplementary Table 2b.

Then, the fleet-level TCO and life-cycle CO2 of ETs after usage nor-
malization were estimated using equations (17) and (18), respectively:

TCOfleet,ETm = rrm × TCOindividual,ETm (17)

where TCOfleet,ETm is the fleet-level TCO (USD per km) of ETs after usage 
normalization and TCOindividual,ETm  is the category-specific TCO 
(USD per km) of individual ETs in fleet m.

CO2fleet,ETm = rrm ×
1,000 × CO2vehicle-cycle,ETm

a × VKTm
+ CO2WTW,ETm (18)

where CO2fleet,ETm is the fleet-level life-cycle CO2 (g km−1) of ET fleet m 
after usage normalization and CO2vehicle-cycle,ETm is the category-specific 
vehicle-cycle CO2 emissions (kg) of individual ETs in fleet m; a is the 
lifespan of the ETs, set to ten years as earlier; VKTm is the average yearly 
vehicle mileage (km y−1) of electric fleet m; and CO2WTW,ETm  is the 
category-specific WTW CO2 emissions (g km−1) of individual ET in fleet 
m.

If vehicle usage is increased, the simulated replacement rate will 
decrease. We quantified the usage intensity increase via the ratio of the 
baseline (without optimization) replacement rate and the optimized 
replacement rate using equation (19):

UsageIncETm =
rrm,baseline
rrm,opt

(19)

where UsageIncETm is the fleet-level usage increase rate of ET fleet m, and 
rrm,baseline and rrm,opt are, respectively, the replacement rates at the base-
line scenario (with current usage) and the optimized usage scenario. 
We then used the usage increase rate to adjust the VKTm (annual mile-
age) and ChgCostETm (charging cost), re-evaluating the life-cycle CO2 
emissions (using equation (7)) and TCO values (using equations (12) 
and (13)) of individual ETs under the optimized usage.

Future scenario design
We designed several future scenarios, as shown in Fig. 4 and Supple-
mentary Fig. 9. All future scenarios are based on the optimized usage 
of ETs (that is, an average battery use of 85% SOC), and include a 15% 
fuel consumption reduction for DTs, as required by the commercial 
vehicle fuel consumption standard in China41. The future scenarios 
are listed as follows:

Current optimized scenario + fast charging (60 kW). The current 
scenario in which ETs use 60 kW fast charging28.

BS increase + fast charging (60 kW). A 50% increase in battery capac-
ity (with unchanged battery energy density and unit cost) and ETs use 
60 kW fast charging.

ED increase + fast charging (60 kW). The average pack-level energy 
density of batteries is increased to 220 Wh kg−1, and battery weights are 
kept the same with current ET models. At the same time, the battery 
pack cost is reduced from US$0.16 to 0.085 per watt-hour. ETs use 
60 kW fast charging.

EC reduction + fast charging (60 kW). The electricity consumption 
of ETs is decreased by 25% compared with the current fleet-averaged 
electricity consumption22,44,45. ETs use 60 kW fast charging.

CE + fast charging (60 kW). Sustainable electricity deployed in 
2030–2040 (see Supplementary Table 7 for CO2 intensity of electricity 
generation). ETs use 60 kW fast charging.

CE + ED increase + fast charging (60 kW). The pack-level energy 
density of batteries is increased to 220 Wh kg−1 (with an unchanged 
battery weight). The battery pack cost is reduced from US$0.16 to 
0.085 per watt-hour. Sustainable electricity deployed in 2030–2040, 
and ETs use 60 kW fast charging.

CE + ED increase + battery swapping. The pack-level energy density 
of batteries is increased to 220 Wh kg−1 (with an unchanged battery 
weight). The battery pack cost is reduced from US$0.16 to 0.085 per 
watt-hour. Sustainable electricity deployed in 2030–2040 with battery 
swapping for ETs.

CE + ED increase + supercharging (350 kW). The pack-level energy 
density of batteries is increased to 220 Wh kg−1 (with an unchanged 
battery weight). The battery pack cost reduced from US$0.16 to 0.085 
per watt-hour. Sustainable electricity deployed in 2030–2040, and ETs 
use 350 kW Level 3 charging.

CE + BS increase + ED increase + EC reduction + battery swapping. 
The pack-level energy density of batteries is increased to 220 Wh kg−1 
(with an unchanged battery weight) and with a 50% increase in battery 
capacity. The battery pack cost is reduced from US$0.16 to 0.085 per 
watt-hour. Electricity consumption of the ETs is decreased by 25% com-
pared with the current fleet-averaged electricity consumption. Sustain-
able electricity deployed in 2030–2040, with battery swapping for ETs.

Calculation of fleet-level electrification effects with battery 
swapping
To evaluate the number of additional swapped batteries, we calculated 
the daily energy demand using equation (20):

EnergyDemandDT,m = 0.2778
100 ×Qdiesel × FCDT,m × ̄LDT,m (20)

where EnergyDemandDT,m is the average daily energy demand (kWh) of 
diesel fleet m, Qdiesel is the calorific value of diesel, which is 35.7 MJ l−1, 
FCDT,m is the same as defined in equation (15) and ̄LDT,m is the average 
daily mileage (km) of diesel fleet m. The number of additional batteries 
needed for swapping (Nbattery,m) is then calculated using equation (21):

Nbattery,m = max(
EnergyDemandDT,m

BatteryCapacityET,m × ρopt
× Plm − 1,0) (21)

where BatteryCapacityET,m is the average battery capacity (kWh) of ET 
fleet m and ρopt is the optimized battery usage ratio (at 85%)—see Sup-
plementary Table 3 for detailed results of the number of additional 
batteries needed under the optimized usage scenarios.

Then fleet-level TCO and life-cycle CO2 of ETs after usage normali-
zation with battery swapping were estimated using equations (22) and 
(23), respectively:

TCOfleet,ETm ,bw = TCOindividual,ETm + Nbattery,m × TCObatterym (22)

where TCOfleet,ETm ,bw  is the fleet-level TCO (USD per km) of ET fleet m 
after usage normalization with battery swapping and TCObatterym   
is the category-specific TCO (USD per km) of one additional battery 
for fleet m.

CO2fleet,ETm ,bw = Nbattery,m × CO2batterym + CO2 life-cycle,ETm (23)

where CO2fleet,ETm ,bw  is the fleet-level life-cycle CO2 (g km−1) of fleet m 
after usage normalization with battery swapping, CO2batterym  is the 
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category-specific vehicle-cycle CO2 emissions (g km−1) of one additional 
battery for fleet m and CO2 life-cycle,ETm  is the category-specific life- 
cycle CO2 emissions (g km−1) of individual ETs in fleet m.

Calculation of cost/CO2 break-even replacement rate
The cost and CO2 break-even replacement rate are estimated as equa-
tions (24) and (25) separately:

rrTCObreakeven =
TCODTm
TCOETm

(24)

where rrTCObreakeven is the replacement rate at which ETs can reach a TCO 
balance with their diesel counterparts, and TCODTm and TCOETm are the 
category-specific TCO values (g km−1) of diesel and electric vehicles in 
fleet m, respectively.

rrCO2 breakeven =
CO2WTW,DTm − CO2WTW,ETm

1,000×CO2vehicle-cycle,ETm
a×VKTETm

− 1,000×CO2vehicle-cycle,DTm
a×VKTDTm

(25)

where rrCO2 breakeven  is the replacement rate at which ETs can reach a 
life-cycle CO2 balance with their diesel counterparts, CO2WTW,DTm and 
CO2WTW,ETm are the category-specific WTW CO2 emissions (g km−1) of 
individual vehicles in diesel and electric fleet m, respectively, and 
CO2vehicle-cycle,ETm  and CO2vehicle-cycle,DTm  are the category-specific 
vehicle-cycle CO2 emissions (kg) of individual vehicles in diesel fleet 
and electric fleet m, respectively.

Data availability
Material CO2 emission factors in China, life-cycle CO2 emission data 
and TCO results are available via Figshare at https://doi.org/10.6084/ 
m9.figshare.24421210 (ref. 46). More specific datasets or materials are 
available from S.Z. or Y.W. upon reasonable request. Source data are 
provided with this paper.

Code availability
The codes that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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