Aufsätze / Papers by Georg J. W. Dorn
Es werden vier verbreitete Verwendungsweisen des Wortes ‚Argument’ beschrieben, an Beispielen erl... more Es werden vier verbreitete Verwendungsweisen des Wortes ‚Argument’ beschrieben, an Beispielen erläutert und dann schrittweise expliziert. Die wichtigsten Explikata sind: ‚eine Satzfolge x ist ein deskriptives Argument in Standardform’, ‚ein deskriptives Argument x in Standardform ist bei der subjektiven Wahrscheinlichkeitsverteilung p stark (bzw. schwach)’, ‚ein Aussagesatz x ist bei der subjektiven Wahrscheinlichkeitsverteilung p ein Argument für (bzw. gegen) einen Aussagesatz y’, ‚ein geordneter Tripel x von deskriptiven Argumenten in Standardform, von Argumentebenen und von Argumentsträngen ist eine deskriptive Argumenthierarchie in Standardform’, ‚eine deskriptive Argumenthierarchie x in Standardform ist gültig (bzw. ungültig); stichhaltig; konsistent; inkonsistent; sichtlich zirkelhaft; stark (bzw. schwach) bei der subjektiven Wahrscheinlichkeitsverteilung p’.
This article presents a comparative theory of subjective argument strength simple enough for appl... more This article presents a comparative theory of subjective argument strength simple enough for application. Using the axioms and corollaries of the theory, anyone with an elementary knowledge of logic and probability theory can produce an – at least minimally rational – ranking of any set of arguments according to their subjective strength, provided that the arguments in question are descriptive ones in standard form. The basic idea is that the strength of argument A as seen by person x is a function of three factors: x’s degree of belief in the premisses of A; x’s degree of belief in the conclusion of A under the assumption that all premisses of A are true; and x ’s belief in the conclusion of A under the assumption that not all premisses of A are true.
"Zwischen 1987 und 1994 sandte ich 20 Briefe an Karl Popper. Die meisten betrafen Fragen bezüglic... more "Zwischen 1987 und 1994 sandte ich 20 Briefe an Karl Popper. Die meisten betrafen Fragen bezüglich seiner Antiinduktionsbeweise und seiner Wahrscheinlichkeitstheorie, einige die organisatorische und inhaltliche Vorbereitung eines Fachgesprächs mit ihm in Kenly am 22. März 1989 (worauf hier nicht eingegangen werden soll), einige schließlich ganz oder in Teilen nicht-fachliche Angelegenheiten (die im vorliegenden Bericht ebenfalls unberücksichtigt bleiben). Von Karl Popper erhielt ich in diesem Zeitraum 10 Briefe. Der bedeutendste ist sein siebter, bestehend aus drei Teilen, geschrieben am 21., 22. und 23. Oktober 1992, in dem er eine Vorform jener Definition der probabilistischen Unabhängigkeit entwickelte, die er 1994 im neuen Anhang *XX der 10. Auflage seiner Logik der Forschung (LdF) der wissenschaftstheoretischen Forschergemeinde vorstellte. Der berührendste ist sein letzter, geschrieben am 26. Juli 1994, in dem er trotz Erschöpfung mit Humor schildert, wie mühselig der Druck des Anhangs *XX verlaufen ist.
Mein Bericht ist zugleich chronologisch und systematisch gegliedert: die ersten, vergleichsweise wenigen Briefe, großteils 1987 geschrieben, handeln von der Induktion; der große Rest, zeitlicher Schwerpunkt 1992, beschäftigt sich mit der Wahrscheinlichkeitstheorie.
Das Kapitel 1 über Induktion ist in vier Abschnitte unterteilt:
1.1 Das Popper/Miller-Argument: eine Nachkonstruktion
1.2 Karl Poppers Brief vom 25.8.1987: Deduktive Stützung
1.3 Karl Poppers Brief vom 29.9.1987: Nochmals zur deduktiven Stützung
1.4 Echt induktive Stützung und Schwächung: zwei eigene Beweise
Das Kapitel 2 über Wahrscheinlichkeit ist ebenfalls in vier Abschnitte unterteilt:
2.1 Ein Mangel an Überschußgesetzen in der Logic of Scientific Discovery
2.2 Probabilistische Unabhängigkeit
2.3 Wahrscheinlichkeitstheorie und Wahrscheinlichkeitssemantik
2.4 Die neue Unabhängigkeitsdefinition im Anhang *XX der LdF"
The basic idea by means of which Popper and Miller proved the non-existence of inductive probabil... more The basic idea by means of which Popper and Miller proved the non-existence of inductive probabilistic support in 1983/1985/1987, is used to prove that inductive probabilistic countersupport does exist. So it seems that after falsification has won over verification on the deductive side of science, countersupport wins over support on the inductive side.
Our report and bibliography concentrate on research in the philosophy of science carried out in A... more Our report and bibliography concentrate on research in the philosophy of science carried out in Austria within the last 20 years. The term ‘philosophy of science’ is here to be understood in the broad sense of ‘Wissenschaftstheorie’, that is, syntactics, semantics and pragmatics of the natural sciences and of the humanities, including law. After a general introduction to the philosophy of science scene in Austria, we report about those institutions in Austria at which relevant research has been conducted, starting with institutions in Graz and then continuing — in alphabetical order — with institutions in Innsbruck, Klagenfurt, Linz, Salzburg, and Wien. Our report is supplemented by a bibliography; please note that this contains only references to original publications which deal mainly with questions in the philosophy of science, hence no contributions to lexica, no reviews, no translations, no articles in mass media, no editorial and no unpublished works are cited. Finally, there is an appendix "Alphabetical List of Austrian Institutions at which Philosophy of Science is Conducted", to facilitate communication between you and Austrian philosophers in whose work you may become interested by reading this report.
Zusammenfassung: Karl Popper erkannte 1938, daß die unbedingte Wahrscheinlichkeit eines materiale... more Zusammenfassung: Karl Popper erkannte 1938, daß die unbedingte Wahrscheinlichkeit eines materialen Implikationssatzes der Form ‘Wenn A, dann B’ normalerweise die bedingte Wahrscheinlichkeit von B unter der Bedingung A übersteigt. Damit war (ihm wohl als einzigem in jener Zeit) klar, daß bedingte Wahrscheinlichkeit nicht auf unbedingte Wahrscheinlichkeit von materialen Implikationssätzen reduzierbar ist. Ich verfolge zunächst die Entwicklung dieser Erkenntnis in Poppers Schriften und schließe der historischen eine logische Studie an, in der ich Gesetze des Überschusses in der Kolmogorovschen mit denen in der Popperschen Wahrscheinlichkeitstheorie vergleiche.
Summary: Karl Popper discovered in 1938 that the unconditional probability of a conditional of the form ‘If A, then B’ normally exceeds the conditional probability of B given A, provided that ‘If A, then B’ is taken to mean the same as ‘Not (A and not B)’. So it was clear (but presumably only to him at that time) that the conditional probability of B given A cannot be reduced to the unconditional probability of the material conditional ‘If A, then B’. I describe how this insight was developed in Popper’s writings and I add to this historical study a logical one, in which I compare laws of excess in Kolmogorov probability theory with laws of excess in Popper probability theory.
I set up two axiomatic theories of inductive support within the framework of Kolmogorovian probab... more I set up two axiomatic theories of inductive support within the framework of Kolmogorovian probability theory. I call these theories ‘Popperian theories of inductive support’ because I think that their specific axioms express the core meaning of the word ‘inductive support’ as used by Popper (and, presumably, by many others, including some inductivists). As is to be expected from Popperian theories of inductive support, the main theorem of each of them is an anti-induction theorem, the stronger one of them saying, in fact, that the relation of inductive support is identical with the empty relation.
It seems to me that an axiomatic treatment of the idea(s) of inductive support within orthodox probability theory could be worthwhile for at least three reasons.
Firstly, an axiomatic treatment demands from the builder of a theory of inductive support to state clearly in the form of specific axioms what he means by ‘inductive support’. Perhaps the discussion of the new anti-induction proofs of Karl Popper and David Miller would have been more fruitful if they had given an explicit definition of what inductive support is or should be.
Secondly, an axiomatic treatment of the idea(s) of inductive support within Kolmogorovian probability theory might be accommodating to those philosophers who do not completely trust Popperian probability theory for having theorems which orthodox Kolmogorovian probability theory lacks; a transparent derivation of anti-induction theorems within a Kolmogorovian frame might bring additional persuasive power to the original anti-induction proofs of Popper and Miller, developed within the framework of Popperian probability theory.
Thirdly, one of the main advantages of the axiomatic method is that it facilitates criticism of its products: the axiomatic theories. On the one hand, it is much easier than usual to check whether those statements which have been distinguished as theorems really are theorems of the theory under examination. On the other hand, after we have convinced ourselves that these statements are indeed theorems, we can take a critical look at the axioms—especially if we have a negative attitude towards one of the theorems. Since anti-induction theorems are not popular at all, the adequacy of some of the axioms they are derived from will certainly be doubted. If doubt should lead to a search for alternative axioms, sheer negative attitudes might develop into constructive criticism and even lead to new discoveries.
I proceed as follows. In section 1, I start with a small but sufficiently strong axiomatic theory of deductive dependence, closely following Popper and Miller (1987). In section 2, I extend that starting theory to an elementary Kolmogorovian theory of unconditional probability, which I extend, in section 3, to an elementary Kolmogorovian theory of conditional probability, which in its turn gets extended, in section 4, to a standard theory of probabilistic dependence, which also gets extended, in section 5, to a standard theory of probabilistic support, the main theorem of which will be a theorem about the incompatibility of probabilistic support and deductive independence. In section 6, I extend the theory of probabilistic support to a weak Popperian theory of inductive support, which I extend, in section 7, to a strong Popperian theory of inductive support. In section 8, I reconsider Popper's anti-inductivist theses in the light of the anti-induction theorems. I conclude the paper with a short discussion of possible objections to our anti-induction theorems, paying special attention to the topic of deductive relevance, which has so far been neglected in the discussion of the anti-induction proofs of Popper and Miller.
Basic statements play a central role in Popper's "The Logic of Scientific Discovery", since they ... more Basic statements play a central role in Popper's "The Logic of Scientific Discovery", since they permit a distinction between empirical and non-empirical theories. A theory is empirical iff it consists of falsifiable statements, and statements (of any kind) are falsifiable iff they are inconsistent with at least one basic statement. Popper obviously presupposes that basic statements are themselves empirical and hence falsifiable; at any rate, he claims several times that they are falsifiable. In this paper we prove that no basic statement is falsifiable, if the term 'basic statement' is to be understood according to Popper's definitions of that term. More precisely, we prove not only that no Popperian basic statement in the narrow sense of the word is falsifiable, but also that no Popperian basic statement in the broader sense, and even in the broadest possible sense, is falsifiable. This leads to the paradoxical result that, according to Popper's definitions of 'basic statement', the basis of the empirical sciences is not itself empirical. Furthermore, we point out a similar paradox as regards Popper's falsifiability scheme for theories. We close with a look at possibilities for overcoming these paradoxes.
Basissätze spielen eine zentrale Rolle in Poppers “Logik der Forschung”, denn sie erlauben die Unterscheidung zwischen empirischen und nicht-empirischen Theorien: Eine Theorie ist empirisch genau dann, wenn sie aus falsifizierbaren Aussagesätzen besteht, und Aussagesätze (beliebiger Art) sind falsifizierbar genau dann, wenn sie mindestens einem Basissatz widersprechen. Popper setzt offensichtlich voraus, daß die Basissätze selbst empirisch und somit falsifizierbar sind. Jedenfalls behauptet er mehrmals ihre Falsifizierbarkeit. Wir beweisen in unserem Aufsatz, daß die Basissätze nicht falsifizierbar sind, und wir beweisen dies nicht nur für Poppersche Basissätze im engeren Sinn, sondern auch für Poppersche Basissätze im weiteren Sinn und schließlich für Poppersche Basissätze im weitesten, mit den Vorstellungen Poppers gerade noch verträglichen Sinn. Dies führt zu dem paradoxen Ergebnis, daß nach Poppers eigenen methodologischen Postulaten die Basis der empirischen Wissenschaften nicht selbst empirisch ist. Darüber hinaus entwickeln wir ein ähnliches Paradoxon bezüglich Poppers Falsifizierbarkeitsschema für Theorien. Zum Abschluß unseres Aufsatzes betrachten wir einige Möglichkeiten, die von uns entdeckten Paradoxa zu überwinden.
Bolzano hat seine Wahrscheinlichkeitslehre in 15 Punkten im § 14 des zweiten Teils seiner Religio... more Bolzano hat seine Wahrscheinlichkeitslehre in 15 Punkten im § 14 des zweiten Teils seiner Religionswissenschaft sowie in 20 Punkten im § 161 des zweiten Bandes seiner Wissenschaftslehre niedergelegt. (Ich verweise auf die Religionswissenschaft mit 'RW II', auf die Wissenschaftslehre mit 'WL II'.) In der RW II (vgl. p. 37) ist seine Wahrscheinlichkeitslehre eingebettet in seine Ausführungen "Über die Natur der historischen Erkenntniß, besonders in Hinsicht auf Wunder", und die Lehrsätze, die er dort zusammenstellt, dienen dem ausdrücklichen Zweck, mit mathematischem Rüstzeug Lehrmeinungen entgegentreten zu können, gemäß denen Wundererzählungen keine Glaubwürdigkeit zukommen könne. In der WL II (vgl. p. 171) führt Bolzano im großen und ganzen dieselben Lehrsätze an wie in der RW II, entwickelt nun aber die Wahrscheinlichkeitslehre innerhalb seiner Lehre von den Sätzen an sich. Dabei orientiert er sich zwar durchaus an den Lehrsätzen in den damaligen "Schriften über die Wahrscheinlichkeitsrechnung" (vg. WL II, p. 190), korrigiert aber dort, wo es ihm nötig erscheint (vgl. WL II, pp. 187–191), und leistet so im Grunde eine Reformulierung des elementaren Teils der Wahrscheinlichkeitslehre seiner Zeit innerhalb seiner logischen Theorie von den Sätzen an sich.
Ich bezwecke hier keine historische Studie über Bolzanos Wahrscheinlichkeitslehre, obwohl es von Interesse sein mag, herauszuschälen, worin Bolzano mit welchen Wahrscheinlichkeitstheoretikern seiner Zeit übereinstimmt, und worin nicht, insbesondere welche Schwächen von Bolzanos Wahrscheinlichkeitslehre Schwächen aller damaligen Wahrscheinlichkeitslehren waren. Eine wichtige systematische Studie über Bolzanos Wahrscheinlichkeitslehre bestünde — wie von Berg (1962, pp. 148-149) ansatzweise begonnen — in einer exakten Rekonstruktion seiner Wahrscheinlichkeitslehre innerhalb eines konsistenten logischen Systems der Sätze an sich. Ich werde im folgenden etwas bei weitem Bescheideneres, doch möglicherweise durchaus Fruchtbares versuchen, nämlich die Lehrsätze von Bolzanos Wahrscheinlichkeitslehre in die Sprache einer heutigen Wahrscheinlichkeitstheorie zu übersetzen und die übersetzten Lehrsätze dort herzuleiten, soweit dies möglich ist. Man könnte dann in einem zweiten Schritt, der hier nicht mehr unternommen wird, untersuchen, inwieweit jene Thesen, die den Herleitungstest überstanden haben, jenen Zweck erfüllen, den Bolzano ihnen ursprünglich zugedacht hat: als mathematisches Rüstzeug für seine Argumentationen gegen die Auffassung zu dienen, Wundererzählungen könnten nicht glaubwürdig sein.
In paragraph 21 of his Logic of Scientific Discovery, Karl Popper characterizes with the help of ... more In paragraph 21 of his Logic of Scientific Discovery, Karl Popper characterizes with the help of two seemingly synonymous definitions the falsifiability of a theory as a logical relation between the theory itself and its basic statements. It is shown that his definitions do not agree with each other, and this result is applied to the problem of the falsifiability of contradictions, to the difference between falsifiable and empirical statements and to the demarcation criterion.
This is, to the best of my knowledge, the first published attempt at a rigorous logical formaliza... more This is, to the best of my knowledge, the first published attempt at a rigorous logical formalization of a passage in Leibniz's Monadology. The method we followed was suggested by Johannes Czermak.
Paul Weingartner's classification of the sciences ('science' taken in a broad sense of the word) ... more Paul Weingartner's classification of the sciences ('science' taken in a broad sense of the word) is analyzed in detail. There is a small mistake in the definition of the set of descriptive-normative sciences, which makes the classification incorrect, but which can easily be remedied.
Bücher / Books by Georg J. W. Dorn
"This work is in two parts. The main aim of part 1 is a systematic examination of deductive, prob... more "This work is in two parts. The main aim of part 1 is a systematic examination of deductive, probabilistic, inductive and purely inductive dependence relations within the framework of Kolmogorov probability semantics. The main aim of part 2 is a systematic comparison of (in all) 20 different relations of probabilistic (in)dependence within the framework of Popper probability semantics (for Kolmogorov probability semantics does not allow such a comparison). Added to this comparison is an examination of (in all) 15 purely inductive dependence relations.
Part 1 leads in an axiomatic step-by-step development from the elementary classical truth value semantics of a sentential-logical language, called ‘L’, (chapter 1) to the elementary Kolmogorov probability semantics of L (chapter 2), which is then extended to four axiomatic semantical theories of dependence relations between the formulae of L. First the elementary Kolmogorov probability semantics of L is extended to a theory, called ‘Kdd’, of the relations of deductive dependence and deductive independence between formulae of L (chapter 3). Then Kdd is extended to a theory, called ‘Kpd1’, of the degree to which formulae of L probabilistically depend on each other in regard to a given probability distribution on the set of all formulae of L (chapter 4). Kpd1, in its turn, gets extended to a theory, called ‘Kpd2’, of the relations of probabilistic dependence and independence, relativized to unary Kolmogorov probability functions defined on L (chapter 5). Then Kpd2 is extended to a theory, called ‘Kid’, of the relations of inductive dependence and inductive independence, again relativized to unary Kolmogorov probability functions defined on L (chapter 6). Finally, Kid is extended to a theory, called ‘Kpid’, of the relations of purely inductive positive and negative dependence, relativized to unary Kolmogorov probability functions defined on L (chapter 7).
Chapter 1, which deals with the familiar notions of truth value functions, tautologies, consequence relations and relations of logical opposition, is naturally the shortest chapter of part 1.
In chapter 2, the elementary classical semantics of L is extended to the elementary Kolmogorov probability semantics of L, i.e. to an axiomatic theory of unary and of binary Kolmogorov probability functions defined on the set of formulae of L. Because of the elementary character of this theory, chapter 2 is also rather short.
Chapter 3 introduces the first theory on dependence relations, to wit: Kdd, the theory of deductive (in)dependence between formulae of L. I follow here the well-known idea of Popper and Miller, who have used it in a famous discussion on the nature of probabilistic support for their arguments that probabilistic support is deductive, not inductive. I develop Kdd in the form of about 100 theorems, making ample use of the fact that deductive independence is nothing but subcontrary opposition, and close with a remark on the fundamental difference between deductive and logical dependence—two relations the ideas of which are all too easily mixed up.
Chapters 4 and 5 deal extensively with the traditional ideas of probabilistic (in)dependence, applied to formulae rather than to events. As always, I proceed axiomatically in a step-by-step process under systematic viewpoints and obtain about 300 theorems in this way. In the formulation of the theorems, I took special care to state clearly and expressly so-called tacit assumptions, especially those concerning the probability values of the formulae said to be dependent on each other. These assumptions are usually missing in the literature, due either to economy of writing or to sloppiness of thinking. Presumably, both chapters contain little that is new, their value lying more in the systematic grouping and organic development of the theorems than in the newness of these.
In chapter 6, I extend the axiomatic theory about probabilistic (in)dependence which has been elaborated in chapter 5, to an axiomatic theory of inductive (in)dependence by requiring of the relation of inductive (in)dependence that it be probabilistic (in)dependence, but not also logical implication or logical opposition. I point out the differences between probabilistic and inductive (in)dependence by means of some 60 theorems and close my examination of inductive (in)dependence by considering its relationship to the notion of support in the philosophy of science.
Finally, in chapter 7, the last of part 1, I take the step from inductive dependence to what I call ‘purely inductive dependence’ by combining the idea of inductive dependence with that of deductive independence in a way which is suggested by writings of Popper and Miller. I arrive at two noteworthy theorems. Firstly, there is indeed no purely inductive support. But secondly, and perhaps amazingly, countersupport is purely inductive.
Whereas the probabilistic framework of part 1 of the present work is Kolmogorov probability semantics, the framework of part 2 is Popper probability semantics, which is not only worth examining as a fascinating alternative to orthodox Kolmogorov probability semantics, but also allows us to examine dependence relations more deeply, than Kolmogorov probability semantics does. Part 2 leads—again in an axiomatic step-by-step development—from the basic Popper probability semantics of L, called ‘Pb’, (chapter 8) via a probabilistic theory of logical attributes, called ‘Ps’, (chapter 9) to four axiomatic semantical theories of dependence relations between the formulae of L. First, Ps is extended to a theory, called ‘Pdd’, of the relations of deductive dependence and deductive independence between formulae of L (chapter 10). Then Pdd is extended to a theory, called ‘Ppd’, of (in all) 20 relations of probabilistic (in)dependence, relativized to binary Popper probability functions defined on L (chapter 11). Ppd, in its turn, is extended to a theory, called ‘Pid’, of (in all) 10 relations of inductive dependence, again relativized to binary Popper probability functions defined on L (first part of chapter 12). Finally, Pid is extended to a theory, called ‘Ppid’, of (in all) 15 relations of purely inductive positive and negative dependence, relativized to binary Popper probability functions defined on L (second part of chapter 12).
Chapter 8, the first chapter of part 2 of the present work, is entirely preparatory. It introduces the axioms and about 180 theorems (150 of them together with their proofs) of basic Popper probability semantics in order to set this kind of semantics under way.
Then, in chapter 9, basic Popper probability semantics is extended to a probabilistic theory of logical properties of and relations between the formulae of L. Although I think that the way I did this extension is of some interest in itself, the main task of chapter 9 is again a preparatory one: to yield the indispensable lemmata (about 90 in number) for the theorems concerning probabilistic dependence relations in chapter 11 and concerning inductive dependence relations in chapter 12.
Chapter 10 brings the extension of Ps to the theory Pdd of deductive (in)dependence. Only half a dozen theorems are noted here for later use in the Pdd-extensions Ppd and Ppid. In view of the over 100 theorems already gained on this topic in the Kolmogorovian framework (cf. chapter 3), a similar extensive elaboration of Pdd would have been superfluous.
Chapter 11 is the most important one of part 2. It consists of a systematic comparison of 20 probabilistic (in)dependence concepts by means of about 230 theorems, obtained within the axiomatic theory Ppd, which is built up as an extension of Pdd. The main points of comparison were: differences in logical strength; reflexivity and symmetry; behaviour under the condition that the probability values of the formulae in question are extreme. It turned out that each of the examined concepts violates a strong and straightforward version of the intuitive requirement that probabilistic dependence should go with logical dependence. Whereas the corresponding chapter 5 in part 1 of the present work may not have led to new theorems, chapter 11 yields dozens of them in the process of comparison of concepts of dependence and independence which had—as far as I know—never before been treated in a single theoretical framework. With Popper probability semantics, this framework has become available, and here I have simply made full use of it.
In chapter 12, I extend the theory Ppd of probabilistic (in)dependence to the theories Pid and Ppid of inductive and purely inductive dependence, in a way very similar to that in which I have extended the theory Kpd2 to the theories Kid and Kpid in chapters 6 and 7. The first main result of Kpid (roughly: there is no purely inductive support) could be repeated for four of the five purely inductive positive dependence relations considered in chapter 12, whereas the second main result of Kpid (roughly: there is purely inductive countersupport ) could be repeated for each of the five examined purely inductive negative dependence relations. Chapter 12 closes with a brief recapitulation and critical discussion of the main results."
Herausgeberschaften / Editions by Georg J. W. Dorn
Der Sammelband beschäftigt sich mit folgenden Themen:
1. Logik der Argumentation, der Begründung... more Der Sammelband beschäftigt sich mit folgenden Themen:
1. Logik der Argumentation, der Begründung, des Beweises
2. Argumente der Philosophie: eine medizinethische Argumentation, das Problem der rationalen Begründung in der Metaphysik
3. Philosophie der Argumente: logische Analyse von Argumenten, deskriptive und präskriptive Argumente, Deduktivismus
4. Didaktik der Argumentation
Dieses Buch bietet eine elementare, in sich geschlossene Einführung in das Gebiet der induktiven ... more Dieses Buch bietet eine elementare, in sich geschlossene Einführung in das Gebiet der induktiven Logik. Was an Aussagenlogik und Wahrscheinlichkeitstheorie für die Entwicklung des Themas der Induktion benötigt wird, wird im Buch selbst anschaulich und ausführlich beigestellt, sodass es auch für alle jene, die keine Vorkenntnisse in deduktiver Logik und mathematischer Wahrscheinlichkeitslehre besitzen, leicht lesbar bleibt. Thematisch wird ein weiter Bogen gespannt: Vom Humeschen Induktionsproblem über Mills Methoden und über Goodmans Paradox bis zu Forschungsergebnissen in der modernen, epistemisch orientierten Interpretation des Wahrscheinlichkeitskalküls (faire Wetten und Dutch-book-Argumente). Die Einführung schließt mit einem philosophischen Blick auf die Hauptinterpretationen von 'Wahrscheinlichkeit'.
Uploads
Aufsätze / Papers by Georg J. W. Dorn
Mein Bericht ist zugleich chronologisch und systematisch gegliedert: die ersten, vergleichsweise wenigen Briefe, großteils 1987 geschrieben, handeln von der Induktion; der große Rest, zeitlicher Schwerpunkt 1992, beschäftigt sich mit der Wahrscheinlichkeitstheorie.
Das Kapitel 1 über Induktion ist in vier Abschnitte unterteilt:
1.1 Das Popper/Miller-Argument: eine Nachkonstruktion
1.2 Karl Poppers Brief vom 25.8.1987: Deduktive Stützung
1.3 Karl Poppers Brief vom 29.9.1987: Nochmals zur deduktiven Stützung
1.4 Echt induktive Stützung und Schwächung: zwei eigene Beweise
Das Kapitel 2 über Wahrscheinlichkeit ist ebenfalls in vier Abschnitte unterteilt:
2.1 Ein Mangel an Überschußgesetzen in der Logic of Scientific Discovery
2.2 Probabilistische Unabhängigkeit
2.3 Wahrscheinlichkeitstheorie und Wahrscheinlichkeitssemantik
2.4 Die neue Unabhängigkeitsdefinition im Anhang *XX der LdF"
Summary: Karl Popper discovered in 1938 that the unconditional probability of a conditional of the form ‘If A, then B’ normally exceeds the conditional probability of B given A, provided that ‘If A, then B’ is taken to mean the same as ‘Not (A and not B)’. So it was clear (but presumably only to him at that time) that the conditional probability of B given A cannot be reduced to the unconditional probability of the material conditional ‘If A, then B’. I describe how this insight was developed in Popper’s writings and I add to this historical study a logical one, in which I compare laws of excess in Kolmogorov probability theory with laws of excess in Popper probability theory.
It seems to me that an axiomatic treatment of the idea(s) of inductive support within orthodox probability theory could be worthwhile for at least three reasons.
Firstly, an axiomatic treatment demands from the builder of a theory of inductive support to state clearly in the form of specific axioms what he means by ‘inductive support’. Perhaps the discussion of the new anti-induction proofs of Karl Popper and David Miller would have been more fruitful if they had given an explicit definition of what inductive support is or should be.
Secondly, an axiomatic treatment of the idea(s) of inductive support within Kolmogorovian probability theory might be accommodating to those philosophers who do not completely trust Popperian probability theory for having theorems which orthodox Kolmogorovian probability theory lacks; a transparent derivation of anti-induction theorems within a Kolmogorovian frame might bring additional persuasive power to the original anti-induction proofs of Popper and Miller, developed within the framework of Popperian probability theory.
Thirdly, one of the main advantages of the axiomatic method is that it facilitates criticism of its products: the axiomatic theories. On the one hand, it is much easier than usual to check whether those statements which have been distinguished as theorems really are theorems of the theory under examination. On the other hand, after we have convinced ourselves that these statements are indeed theorems, we can take a critical look at the axioms—especially if we have a negative attitude towards one of the theorems. Since anti-induction theorems are not popular at all, the adequacy of some of the axioms they are derived from will certainly be doubted. If doubt should lead to a search for alternative axioms, sheer negative attitudes might develop into constructive criticism and even lead to new discoveries.
I proceed as follows. In section 1, I start with a small but sufficiently strong axiomatic theory of deductive dependence, closely following Popper and Miller (1987). In section 2, I extend that starting theory to an elementary Kolmogorovian theory of unconditional probability, which I extend, in section 3, to an elementary Kolmogorovian theory of conditional probability, which in its turn gets extended, in section 4, to a standard theory of probabilistic dependence, which also gets extended, in section 5, to a standard theory of probabilistic support, the main theorem of which will be a theorem about the incompatibility of probabilistic support and deductive independence. In section 6, I extend the theory of probabilistic support to a weak Popperian theory of inductive support, which I extend, in section 7, to a strong Popperian theory of inductive support. In section 8, I reconsider Popper's anti-inductivist theses in the light of the anti-induction theorems. I conclude the paper with a short discussion of possible objections to our anti-induction theorems, paying special attention to the topic of deductive relevance, which has so far been neglected in the discussion of the anti-induction proofs of Popper and Miller.
Basissätze spielen eine zentrale Rolle in Poppers “Logik der Forschung”, denn sie erlauben die Unterscheidung zwischen empirischen und nicht-empirischen Theorien: Eine Theorie ist empirisch genau dann, wenn sie aus falsifizierbaren Aussagesätzen besteht, und Aussagesätze (beliebiger Art) sind falsifizierbar genau dann, wenn sie mindestens einem Basissatz widersprechen. Popper setzt offensichtlich voraus, daß die Basissätze selbst empirisch und somit falsifizierbar sind. Jedenfalls behauptet er mehrmals ihre Falsifizierbarkeit. Wir beweisen in unserem Aufsatz, daß die Basissätze nicht falsifizierbar sind, und wir beweisen dies nicht nur für Poppersche Basissätze im engeren Sinn, sondern auch für Poppersche Basissätze im weiteren Sinn und schließlich für Poppersche Basissätze im weitesten, mit den Vorstellungen Poppers gerade noch verträglichen Sinn. Dies führt zu dem paradoxen Ergebnis, daß nach Poppers eigenen methodologischen Postulaten die Basis der empirischen Wissenschaften nicht selbst empirisch ist. Darüber hinaus entwickeln wir ein ähnliches Paradoxon bezüglich Poppers Falsifizierbarkeitsschema für Theorien. Zum Abschluß unseres Aufsatzes betrachten wir einige Möglichkeiten, die von uns entdeckten Paradoxa zu überwinden.
Ich bezwecke hier keine historische Studie über Bolzanos Wahrscheinlichkeitslehre, obwohl es von Interesse sein mag, herauszuschälen, worin Bolzano mit welchen Wahrscheinlichkeitstheoretikern seiner Zeit übereinstimmt, und worin nicht, insbesondere welche Schwächen von Bolzanos Wahrscheinlichkeitslehre Schwächen aller damaligen Wahrscheinlichkeitslehren waren. Eine wichtige systematische Studie über Bolzanos Wahrscheinlichkeitslehre bestünde — wie von Berg (1962, pp. 148-149) ansatzweise begonnen — in einer exakten Rekonstruktion seiner Wahrscheinlichkeitslehre innerhalb eines konsistenten logischen Systems der Sätze an sich. Ich werde im folgenden etwas bei weitem Bescheideneres, doch möglicherweise durchaus Fruchtbares versuchen, nämlich die Lehrsätze von Bolzanos Wahrscheinlichkeitslehre in die Sprache einer heutigen Wahrscheinlichkeitstheorie zu übersetzen und die übersetzten Lehrsätze dort herzuleiten, soweit dies möglich ist. Man könnte dann in einem zweiten Schritt, der hier nicht mehr unternommen wird, untersuchen, inwieweit jene Thesen, die den Herleitungstest überstanden haben, jenen Zweck erfüllen, den Bolzano ihnen ursprünglich zugedacht hat: als mathematisches Rüstzeug für seine Argumentationen gegen die Auffassung zu dienen, Wundererzählungen könnten nicht glaubwürdig sein.
Bücher / Books by Georg J. W. Dorn
Part 1 leads in an axiomatic step-by-step development from the elementary classical truth value semantics of a sentential-logical language, called ‘L’, (chapter 1) to the elementary Kolmogorov probability semantics of L (chapter 2), which is then extended to four axiomatic semantical theories of dependence relations between the formulae of L. First the elementary Kolmogorov probability semantics of L is extended to a theory, called ‘Kdd’, of the relations of deductive dependence and deductive independence between formulae of L (chapter 3). Then Kdd is extended to a theory, called ‘Kpd1’, of the degree to which formulae of L probabilistically depend on each other in regard to a given probability distribution on the set of all formulae of L (chapter 4). Kpd1, in its turn, gets extended to a theory, called ‘Kpd2’, of the relations of probabilistic dependence and independence, relativized to unary Kolmogorov probability functions defined on L (chapter 5). Then Kpd2 is extended to a theory, called ‘Kid’, of the relations of inductive dependence and inductive independence, again relativized to unary Kolmogorov probability functions defined on L (chapter 6). Finally, Kid is extended to a theory, called ‘Kpid’, of the relations of purely inductive positive and negative dependence, relativized to unary Kolmogorov probability functions defined on L (chapter 7).
Chapter 1, which deals with the familiar notions of truth value functions, tautologies, consequence relations and relations of logical opposition, is naturally the shortest chapter of part 1.
In chapter 2, the elementary classical semantics of L is extended to the elementary Kolmogorov probability semantics of L, i.e. to an axiomatic theory of unary and of binary Kolmogorov probability functions defined on the set of formulae of L. Because of the elementary character of this theory, chapter 2 is also rather short.
Chapter 3 introduces the first theory on dependence relations, to wit: Kdd, the theory of deductive (in)dependence between formulae of L. I follow here the well-known idea of Popper and Miller, who have used it in a famous discussion on the nature of probabilistic support for their arguments that probabilistic support is deductive, not inductive. I develop Kdd in the form of about 100 theorems, making ample use of the fact that deductive independence is nothing but subcontrary opposition, and close with a remark on the fundamental difference between deductive and logical dependence—two relations the ideas of which are all too easily mixed up.
Chapters 4 and 5 deal extensively with the traditional ideas of probabilistic (in)dependence, applied to formulae rather than to events. As always, I proceed axiomatically in a step-by-step process under systematic viewpoints and obtain about 300 theorems in this way. In the formulation of the theorems, I took special care to state clearly and expressly so-called tacit assumptions, especially those concerning the probability values of the formulae said to be dependent on each other. These assumptions are usually missing in the literature, due either to economy of writing or to sloppiness of thinking. Presumably, both chapters contain little that is new, their value lying more in the systematic grouping and organic development of the theorems than in the newness of these.
In chapter 6, I extend the axiomatic theory about probabilistic (in)dependence which has been elaborated in chapter 5, to an axiomatic theory of inductive (in)dependence by requiring of the relation of inductive (in)dependence that it be probabilistic (in)dependence, but not also logical implication or logical opposition. I point out the differences between probabilistic and inductive (in)dependence by means of some 60 theorems and close my examination of inductive (in)dependence by considering its relationship to the notion of support in the philosophy of science.
Finally, in chapter 7, the last of part 1, I take the step from inductive dependence to what I call ‘purely inductive dependence’ by combining the idea of inductive dependence with that of deductive independence in a way which is suggested by writings of Popper and Miller. I arrive at two noteworthy theorems. Firstly, there is indeed no purely inductive support. But secondly, and perhaps amazingly, countersupport is purely inductive.
Whereas the probabilistic framework of part 1 of the present work is Kolmogorov probability semantics, the framework of part 2 is Popper probability semantics, which is not only worth examining as a fascinating alternative to orthodox Kolmogorov probability semantics, but also allows us to examine dependence relations more deeply, than Kolmogorov probability semantics does. Part 2 leads—again in an axiomatic step-by-step development—from the basic Popper probability semantics of L, called ‘Pb’, (chapter 8) via a probabilistic theory of logical attributes, called ‘Ps’, (chapter 9) to four axiomatic semantical theories of dependence relations between the formulae of L. First, Ps is extended to a theory, called ‘Pdd’, of the relations of deductive dependence and deductive independence between formulae of L (chapter 10). Then Pdd is extended to a theory, called ‘Ppd’, of (in all) 20 relations of probabilistic (in)dependence, relativized to binary Popper probability functions defined on L (chapter 11). Ppd, in its turn, is extended to a theory, called ‘Pid’, of (in all) 10 relations of inductive dependence, again relativized to binary Popper probability functions defined on L (first part of chapter 12). Finally, Pid is extended to a theory, called ‘Ppid’, of (in all) 15 relations of purely inductive positive and negative dependence, relativized to binary Popper probability functions defined on L (second part of chapter 12).
Chapter 8, the first chapter of part 2 of the present work, is entirely preparatory. It introduces the axioms and about 180 theorems (150 of them together with their proofs) of basic Popper probability semantics in order to set this kind of semantics under way.
Then, in chapter 9, basic Popper probability semantics is extended to a probabilistic theory of logical properties of and relations between the formulae of L. Although I think that the way I did this extension is of some interest in itself, the main task of chapter 9 is again a preparatory one: to yield the indispensable lemmata (about 90 in number) for the theorems concerning probabilistic dependence relations in chapter 11 and concerning inductive dependence relations in chapter 12.
Chapter 10 brings the extension of Ps to the theory Pdd of deductive (in)dependence. Only half a dozen theorems are noted here for later use in the Pdd-extensions Ppd and Ppid. In view of the over 100 theorems already gained on this topic in the Kolmogorovian framework (cf. chapter 3), a similar extensive elaboration of Pdd would have been superfluous.
Chapter 11 is the most important one of part 2. It consists of a systematic comparison of 20 probabilistic (in)dependence concepts by means of about 230 theorems, obtained within the axiomatic theory Ppd, which is built up as an extension of Pdd. The main points of comparison were: differences in logical strength; reflexivity and symmetry; behaviour under the condition that the probability values of the formulae in question are extreme. It turned out that each of the examined concepts violates a strong and straightforward version of the intuitive requirement that probabilistic dependence should go with logical dependence. Whereas the corresponding chapter 5 in part 1 of the present work may not have led to new theorems, chapter 11 yields dozens of them in the process of comparison of concepts of dependence and independence which had—as far as I know—never before been treated in a single theoretical framework. With Popper probability semantics, this framework has become available, and here I have simply made full use of it.
In chapter 12, I extend the theory Ppd of probabilistic (in)dependence to the theories Pid and Ppid of inductive and purely inductive dependence, in a way very similar to that in which I have extended the theory Kpd2 to the theories Kid and Kpid in chapters 6 and 7. The first main result of Kpid (roughly: there is no purely inductive support) could be repeated for four of the five purely inductive positive dependence relations considered in chapter 12, whereas the second main result of Kpid (roughly: there is purely inductive countersupport ) could be repeated for each of the five examined purely inductive negative dependence relations. Chapter 12 closes with a brief recapitulation and critical discussion of the main results."
Herausgeberschaften / Editions by Georg J. W. Dorn
1. Logik der Argumentation, der Begründung, des Beweises
2. Argumente der Philosophie: eine medizinethische Argumentation, das Problem der rationalen Begründung in der Metaphysik
3. Philosophie der Argumente: logische Analyse von Argumenten, deskriptive und präskriptive Argumente, Deduktivismus
4. Didaktik der Argumentation
Mein Bericht ist zugleich chronologisch und systematisch gegliedert: die ersten, vergleichsweise wenigen Briefe, großteils 1987 geschrieben, handeln von der Induktion; der große Rest, zeitlicher Schwerpunkt 1992, beschäftigt sich mit der Wahrscheinlichkeitstheorie.
Das Kapitel 1 über Induktion ist in vier Abschnitte unterteilt:
1.1 Das Popper/Miller-Argument: eine Nachkonstruktion
1.2 Karl Poppers Brief vom 25.8.1987: Deduktive Stützung
1.3 Karl Poppers Brief vom 29.9.1987: Nochmals zur deduktiven Stützung
1.4 Echt induktive Stützung und Schwächung: zwei eigene Beweise
Das Kapitel 2 über Wahrscheinlichkeit ist ebenfalls in vier Abschnitte unterteilt:
2.1 Ein Mangel an Überschußgesetzen in der Logic of Scientific Discovery
2.2 Probabilistische Unabhängigkeit
2.3 Wahrscheinlichkeitstheorie und Wahrscheinlichkeitssemantik
2.4 Die neue Unabhängigkeitsdefinition im Anhang *XX der LdF"
Summary: Karl Popper discovered in 1938 that the unconditional probability of a conditional of the form ‘If A, then B’ normally exceeds the conditional probability of B given A, provided that ‘If A, then B’ is taken to mean the same as ‘Not (A and not B)’. So it was clear (but presumably only to him at that time) that the conditional probability of B given A cannot be reduced to the unconditional probability of the material conditional ‘If A, then B’. I describe how this insight was developed in Popper’s writings and I add to this historical study a logical one, in which I compare laws of excess in Kolmogorov probability theory with laws of excess in Popper probability theory.
It seems to me that an axiomatic treatment of the idea(s) of inductive support within orthodox probability theory could be worthwhile for at least three reasons.
Firstly, an axiomatic treatment demands from the builder of a theory of inductive support to state clearly in the form of specific axioms what he means by ‘inductive support’. Perhaps the discussion of the new anti-induction proofs of Karl Popper and David Miller would have been more fruitful if they had given an explicit definition of what inductive support is or should be.
Secondly, an axiomatic treatment of the idea(s) of inductive support within Kolmogorovian probability theory might be accommodating to those philosophers who do not completely trust Popperian probability theory for having theorems which orthodox Kolmogorovian probability theory lacks; a transparent derivation of anti-induction theorems within a Kolmogorovian frame might bring additional persuasive power to the original anti-induction proofs of Popper and Miller, developed within the framework of Popperian probability theory.
Thirdly, one of the main advantages of the axiomatic method is that it facilitates criticism of its products: the axiomatic theories. On the one hand, it is much easier than usual to check whether those statements which have been distinguished as theorems really are theorems of the theory under examination. On the other hand, after we have convinced ourselves that these statements are indeed theorems, we can take a critical look at the axioms—especially if we have a negative attitude towards one of the theorems. Since anti-induction theorems are not popular at all, the adequacy of some of the axioms they are derived from will certainly be doubted. If doubt should lead to a search for alternative axioms, sheer negative attitudes might develop into constructive criticism and even lead to new discoveries.
I proceed as follows. In section 1, I start with a small but sufficiently strong axiomatic theory of deductive dependence, closely following Popper and Miller (1987). In section 2, I extend that starting theory to an elementary Kolmogorovian theory of unconditional probability, which I extend, in section 3, to an elementary Kolmogorovian theory of conditional probability, which in its turn gets extended, in section 4, to a standard theory of probabilistic dependence, which also gets extended, in section 5, to a standard theory of probabilistic support, the main theorem of which will be a theorem about the incompatibility of probabilistic support and deductive independence. In section 6, I extend the theory of probabilistic support to a weak Popperian theory of inductive support, which I extend, in section 7, to a strong Popperian theory of inductive support. In section 8, I reconsider Popper's anti-inductivist theses in the light of the anti-induction theorems. I conclude the paper with a short discussion of possible objections to our anti-induction theorems, paying special attention to the topic of deductive relevance, which has so far been neglected in the discussion of the anti-induction proofs of Popper and Miller.
Basissätze spielen eine zentrale Rolle in Poppers “Logik der Forschung”, denn sie erlauben die Unterscheidung zwischen empirischen und nicht-empirischen Theorien: Eine Theorie ist empirisch genau dann, wenn sie aus falsifizierbaren Aussagesätzen besteht, und Aussagesätze (beliebiger Art) sind falsifizierbar genau dann, wenn sie mindestens einem Basissatz widersprechen. Popper setzt offensichtlich voraus, daß die Basissätze selbst empirisch und somit falsifizierbar sind. Jedenfalls behauptet er mehrmals ihre Falsifizierbarkeit. Wir beweisen in unserem Aufsatz, daß die Basissätze nicht falsifizierbar sind, und wir beweisen dies nicht nur für Poppersche Basissätze im engeren Sinn, sondern auch für Poppersche Basissätze im weiteren Sinn und schließlich für Poppersche Basissätze im weitesten, mit den Vorstellungen Poppers gerade noch verträglichen Sinn. Dies führt zu dem paradoxen Ergebnis, daß nach Poppers eigenen methodologischen Postulaten die Basis der empirischen Wissenschaften nicht selbst empirisch ist. Darüber hinaus entwickeln wir ein ähnliches Paradoxon bezüglich Poppers Falsifizierbarkeitsschema für Theorien. Zum Abschluß unseres Aufsatzes betrachten wir einige Möglichkeiten, die von uns entdeckten Paradoxa zu überwinden.
Ich bezwecke hier keine historische Studie über Bolzanos Wahrscheinlichkeitslehre, obwohl es von Interesse sein mag, herauszuschälen, worin Bolzano mit welchen Wahrscheinlichkeitstheoretikern seiner Zeit übereinstimmt, und worin nicht, insbesondere welche Schwächen von Bolzanos Wahrscheinlichkeitslehre Schwächen aller damaligen Wahrscheinlichkeitslehren waren. Eine wichtige systematische Studie über Bolzanos Wahrscheinlichkeitslehre bestünde — wie von Berg (1962, pp. 148-149) ansatzweise begonnen — in einer exakten Rekonstruktion seiner Wahrscheinlichkeitslehre innerhalb eines konsistenten logischen Systems der Sätze an sich. Ich werde im folgenden etwas bei weitem Bescheideneres, doch möglicherweise durchaus Fruchtbares versuchen, nämlich die Lehrsätze von Bolzanos Wahrscheinlichkeitslehre in die Sprache einer heutigen Wahrscheinlichkeitstheorie zu übersetzen und die übersetzten Lehrsätze dort herzuleiten, soweit dies möglich ist. Man könnte dann in einem zweiten Schritt, der hier nicht mehr unternommen wird, untersuchen, inwieweit jene Thesen, die den Herleitungstest überstanden haben, jenen Zweck erfüllen, den Bolzano ihnen ursprünglich zugedacht hat: als mathematisches Rüstzeug für seine Argumentationen gegen die Auffassung zu dienen, Wundererzählungen könnten nicht glaubwürdig sein.
Part 1 leads in an axiomatic step-by-step development from the elementary classical truth value semantics of a sentential-logical language, called ‘L’, (chapter 1) to the elementary Kolmogorov probability semantics of L (chapter 2), which is then extended to four axiomatic semantical theories of dependence relations between the formulae of L. First the elementary Kolmogorov probability semantics of L is extended to a theory, called ‘Kdd’, of the relations of deductive dependence and deductive independence between formulae of L (chapter 3). Then Kdd is extended to a theory, called ‘Kpd1’, of the degree to which formulae of L probabilistically depend on each other in regard to a given probability distribution on the set of all formulae of L (chapter 4). Kpd1, in its turn, gets extended to a theory, called ‘Kpd2’, of the relations of probabilistic dependence and independence, relativized to unary Kolmogorov probability functions defined on L (chapter 5). Then Kpd2 is extended to a theory, called ‘Kid’, of the relations of inductive dependence and inductive independence, again relativized to unary Kolmogorov probability functions defined on L (chapter 6). Finally, Kid is extended to a theory, called ‘Kpid’, of the relations of purely inductive positive and negative dependence, relativized to unary Kolmogorov probability functions defined on L (chapter 7).
Chapter 1, which deals with the familiar notions of truth value functions, tautologies, consequence relations and relations of logical opposition, is naturally the shortest chapter of part 1.
In chapter 2, the elementary classical semantics of L is extended to the elementary Kolmogorov probability semantics of L, i.e. to an axiomatic theory of unary and of binary Kolmogorov probability functions defined on the set of formulae of L. Because of the elementary character of this theory, chapter 2 is also rather short.
Chapter 3 introduces the first theory on dependence relations, to wit: Kdd, the theory of deductive (in)dependence between formulae of L. I follow here the well-known idea of Popper and Miller, who have used it in a famous discussion on the nature of probabilistic support for their arguments that probabilistic support is deductive, not inductive. I develop Kdd in the form of about 100 theorems, making ample use of the fact that deductive independence is nothing but subcontrary opposition, and close with a remark on the fundamental difference between deductive and logical dependence—two relations the ideas of which are all too easily mixed up.
Chapters 4 and 5 deal extensively with the traditional ideas of probabilistic (in)dependence, applied to formulae rather than to events. As always, I proceed axiomatically in a step-by-step process under systematic viewpoints and obtain about 300 theorems in this way. In the formulation of the theorems, I took special care to state clearly and expressly so-called tacit assumptions, especially those concerning the probability values of the formulae said to be dependent on each other. These assumptions are usually missing in the literature, due either to economy of writing or to sloppiness of thinking. Presumably, both chapters contain little that is new, their value lying more in the systematic grouping and organic development of the theorems than in the newness of these.
In chapter 6, I extend the axiomatic theory about probabilistic (in)dependence which has been elaborated in chapter 5, to an axiomatic theory of inductive (in)dependence by requiring of the relation of inductive (in)dependence that it be probabilistic (in)dependence, but not also logical implication or logical opposition. I point out the differences between probabilistic and inductive (in)dependence by means of some 60 theorems and close my examination of inductive (in)dependence by considering its relationship to the notion of support in the philosophy of science.
Finally, in chapter 7, the last of part 1, I take the step from inductive dependence to what I call ‘purely inductive dependence’ by combining the idea of inductive dependence with that of deductive independence in a way which is suggested by writings of Popper and Miller. I arrive at two noteworthy theorems. Firstly, there is indeed no purely inductive support. But secondly, and perhaps amazingly, countersupport is purely inductive.
Whereas the probabilistic framework of part 1 of the present work is Kolmogorov probability semantics, the framework of part 2 is Popper probability semantics, which is not only worth examining as a fascinating alternative to orthodox Kolmogorov probability semantics, but also allows us to examine dependence relations more deeply, than Kolmogorov probability semantics does. Part 2 leads—again in an axiomatic step-by-step development—from the basic Popper probability semantics of L, called ‘Pb’, (chapter 8) via a probabilistic theory of logical attributes, called ‘Ps’, (chapter 9) to four axiomatic semantical theories of dependence relations between the formulae of L. First, Ps is extended to a theory, called ‘Pdd’, of the relations of deductive dependence and deductive independence between formulae of L (chapter 10). Then Pdd is extended to a theory, called ‘Ppd’, of (in all) 20 relations of probabilistic (in)dependence, relativized to binary Popper probability functions defined on L (chapter 11). Ppd, in its turn, is extended to a theory, called ‘Pid’, of (in all) 10 relations of inductive dependence, again relativized to binary Popper probability functions defined on L (first part of chapter 12). Finally, Pid is extended to a theory, called ‘Ppid’, of (in all) 15 relations of purely inductive positive and negative dependence, relativized to binary Popper probability functions defined on L (second part of chapter 12).
Chapter 8, the first chapter of part 2 of the present work, is entirely preparatory. It introduces the axioms and about 180 theorems (150 of them together with their proofs) of basic Popper probability semantics in order to set this kind of semantics under way.
Then, in chapter 9, basic Popper probability semantics is extended to a probabilistic theory of logical properties of and relations between the formulae of L. Although I think that the way I did this extension is of some interest in itself, the main task of chapter 9 is again a preparatory one: to yield the indispensable lemmata (about 90 in number) for the theorems concerning probabilistic dependence relations in chapter 11 and concerning inductive dependence relations in chapter 12.
Chapter 10 brings the extension of Ps to the theory Pdd of deductive (in)dependence. Only half a dozen theorems are noted here for later use in the Pdd-extensions Ppd and Ppid. In view of the over 100 theorems already gained on this topic in the Kolmogorovian framework (cf. chapter 3), a similar extensive elaboration of Pdd would have been superfluous.
Chapter 11 is the most important one of part 2. It consists of a systematic comparison of 20 probabilistic (in)dependence concepts by means of about 230 theorems, obtained within the axiomatic theory Ppd, which is built up as an extension of Pdd. The main points of comparison were: differences in logical strength; reflexivity and symmetry; behaviour under the condition that the probability values of the formulae in question are extreme. It turned out that each of the examined concepts violates a strong and straightforward version of the intuitive requirement that probabilistic dependence should go with logical dependence. Whereas the corresponding chapter 5 in part 1 of the present work may not have led to new theorems, chapter 11 yields dozens of them in the process of comparison of concepts of dependence and independence which had—as far as I know—never before been treated in a single theoretical framework. With Popper probability semantics, this framework has become available, and here I have simply made full use of it.
In chapter 12, I extend the theory Ppd of probabilistic (in)dependence to the theories Pid and Ppid of inductive and purely inductive dependence, in a way very similar to that in which I have extended the theory Kpd2 to the theories Kid and Kpid in chapters 6 and 7. The first main result of Kpid (roughly: there is no purely inductive support) could be repeated for four of the five purely inductive positive dependence relations considered in chapter 12, whereas the second main result of Kpid (roughly: there is purely inductive countersupport ) could be repeated for each of the five examined purely inductive negative dependence relations. Chapter 12 closes with a brief recapitulation and critical discussion of the main results."
1. Logik der Argumentation, der Begründung, des Beweises
2. Argumente der Philosophie: eine medizinethische Argumentation, das Problem der rationalen Begründung in der Metaphysik
3. Philosophie der Argumente: logische Analyse von Argumenten, deskriptive und präskriptive Argumente, Deduktivismus
4. Didaktik der Argumentation
2 Meinong: die drei Grundprinzipien seiner Theorie: das Referenzprinzip, das Soseinsprinzip, das Nichtseinsprinzip; seine Lösungsvorschläge für die Hauptprobleme; die Russellsche Kritik
3 Russell: seine Theorie und ihre Bewertung
4 Frege und Carnap: Freges Theorie(n) und Carnaps Variante; Bewertung ihrer Lösungsvorschläge für die drei Hauptprobleme
5 Strawson: seine zentrale These, seine zwei Lösungsvorschläge, deren Bewertung
6 Donnellan: seine Position und ihre Anwendung auf die Referenzproblematik
7 Kripke: seine drei Hauptthesen und ihre Anwendung auf die Referenzproblematik
8 Schlußbemerkungen
The abstracts in Section 14 deal with fundamental principles of the ethics of science.
1 Wissenschaft, allgemeine und spezielle Wissenschaftstheorie
2 Ausdrücke, Namen, Begriffe
3 Aussagesätze, Arten von und Beziehungen zwischen Aussagesätzen
4 Definieren
5 Theoretisieren
6 Argumente und Argumenthierarchien aus logischer und epistemischer Sicht
7 Erklärung, Vorhersage, Zurücksage"
0 Einleitende Bemerkungen
1 Inwieweit genügt der jeweilige Text den wichtigeren Forderungen aus der logischen Begriffslehre?
2 Inwieweit genügt der jeweilige Text den wichtigeren Forderungen aus der logischen Satzlehre?
3 Inwieweit genügt der jeweilige Text den wichtigeren Forderungen aus der logischen Argumentationslehre?
4 Inwieweit genügt der jeweilige Text den wichtigeren Forderungen aus der allgemeinen Wissenschaftstheorie?
1 Die aussagenlogische Basis: Das aussagenlogische System G
2 Das modallogische System T
3 Ausblick auf einige weitere modallogische Systeme
4 Zum philosophischen Hintergrund der Kripke-Semantik
5 Die Repräsentierungsproblematik
Hinweis:
Das Skriptum ist von einem Nicht-Logiker, der Logik-Anwender ist, für Nicht-Logiker geschrieben, die Logik-Anwender werden wollen. Aus diesem Grund wurde bewusst das System T in den Vordergrund gerückt sowie die Problematik angesprochen, natürlichsprachliche Sätze durch modallogische Formeln zu repräsentieren. Aus Sicht der mathematischen Logik ist vorliegende Einführung in die modale Aussagenlogik allzu elementar.