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Abstract. In 1961, Jan-Erik Roos published a “theorem”, which says that
in an [AB4∗] abelian category, lim1 vanishes on Mittag–Leffler sequences.
See Propositions 1 and 5 in [4]. This is a “theorem” that many people
since have known and used. In this article, we outline a counterexample.
We construct some strange abelian categories, which are perhaps of some
independent interest.

These abelian categories come up naturally in the study of triangulated
categories. A much fuller discussion may be found in [3]. Here we provide
a brief, self contained, non–technical account. The idea is to make the
counterexample easy to read for all the people who have used the result in
their work.

In the appendix, Deligne gives another way to look at the counterexam-
ple.

0. Introduction

Abelian categories are old, venerable objects in mathematics, playing an
important rôle. We are very accustomed to working with examples, such as
categories of modules over a ring R, or more generally categories of sheaves
of modules. Much of our intuition comes from these examples.

Here we will see an amusing construction of new and very different
abelian categories. Let me explain the phenomenon we will observe.

Suppose A is an abelian category, satisfying [AB3]. That is, all small
coproducts (and hence all small direct limits) exist in A. Suppose further
that the category A has enough injectives. Let us be given a sequence of
monomorphisms in A

a0 −−−→ a1 −−−→ a2 −−−→ · · ·
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Because the category A has enough injectives, there is an injective object i
and an embedding a0 −→ i. Because i is injective and the map a0 −→ a1
is a monomorphism, the map a0 −→ i factors as

a0 −−−→ a1 −−−→ i.

Because a1 −→ a2 is a monomorphism, the map a1 −→ i factors as

a1 −−−→ a2 −−−→ i.

Proceeding by induction, we obtain for every n a map an −→ i, which
combine to give a map

colim−→ {an} −−−→ i.

In other words, the monomorphism a0 −→ i factors as

a0 −−−→ colim−→ {an} −−−→ i;

it follows that the map a0 −→ colim−→ {an} is a monomorphism.

Thus, in an abelian category with enough injectives, given any sequence
of monomorphisms

a0 −−−→ a1 −−−→ a2 −−−→ · · ·
then the map a0 −→ colim−→ {an} is a monomorphism.

Of course, even in the absence of injectives, this still often happens. For
example, if A satisfies [AB5] (that is, filtered direct limits are exact), then
the sequence of monomorphisms

a0 −−−→ a0 −−−→ a0 −−−→ · · ·� � �
a0 −−−→ a1 −−−→ a2 −−−→ · · ·

has a monomorphism for its direct limit; hence a0 −→ colim−→ {an} is

a monomorphism.
In this article, we will construct new and unusual abelian categories. In

particular, we will construct an abelian category A satisfying [AB4] and
[AB4∗] (that is, coproducts and products exist and are exact), but in A we
will construct a sequence of monomorphisms

a0 −−−→ a1 −−−→ a2 −−−→ · · ·
so that colim−→ {an} = 0.

To realise just how counterintuitive this example is, the reader should
check Proposition 5 in [4], or Lemma 1.15 on page 213 of [2]. What we



Counterexample in homological algebra 399

have here amounts to a counterexample to the Proposition stated there. This
point is discussed, in infinitely more detail, in Sect. A.5 of [3].

The abelian categories we produce and study are genuinely strange. They
are not categories of sheaves on any site; they are not Grothendieck abelian
categories, and neither are their duals. In the book [3], they are studied for the
information they provide, in the study of triangulated categories. But since
they are of some independent interest, and might well arise elsewhere, the
author thought this brief note might be worthwhile. It contains a very brief
sketch of some of the properties that make these unusual abelian categories
interesting.

Acknowledgements. The author would like to thank Joseph Bernstein, who encouraged me
to write this note. Bernstein felt that the abelian categories I construct should not be buried,
in the appendices of a long book about triangulated categories. The author would also like
to thank Lars Hesselholt and Henning Krause for helpful discussions, and Pierre Deligne
for several helpful suggestions of expository improvements, as well as for the illuminating
appendix.

1. The construction

We begin with two definitions.

Definition 1.1. Let S be an essentially small additive category. The cate-
gory Cat(Sop,Ab) is defined to be the category of all additive functors

F : Sop −−−→ Ab.

So far, we have done nothing unusual. The category Cat(Sop,Ab) is an old
friend, which can be expressed as a category of sheaves on a suitable site.
In fact, it is very nearly a category of modules over a ring.

Definition 1.2. Let α be an infinite cardinal. Let S be an essentially small
additive category, closed under the formation of coproducts of ≤ α of its
objects.

The category Ex(Sop,Ab) ⊂ Cat(Sop,Ab) is defined to be the full
subcategory of all additive functors F, which take coproducts [of ≤ α
objects in S] to products of abelian groups.

Let us remind the reader what Definition 1.2 means. Let Λ be a set of
cardinality ≤ α. Suppose we are given a family of objects in S, of the form
{sλ, λ ∈ Λ}. By the hypothesis on S, the coproduct exists in S; there is
a coproduct

∐
λ∈Λ sλ. For each λ ∈ Λ, the contravariant functor F gives

a map

F

{∐
λ∈Λ

sλ

}
−−−→ F(sλ).
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The universal property of the product assembles these to a map

F

{∐
λ∈Λ

sλ

}
−−−→

∏
λ∈Λ

F(sλ).

The hypothesis on F is that all such maps are isomorphisms.

Lemma 1.3. Let α be an infinite cardinal. Suppose S is an essentially small
additive category, containing coproducts for any collection of ≤ α of its ob-
jects. The category Ex(Sop,Ab) is an abelian subcategory of Cat(Sop,Ab).
That is, Ex(Sop,Ab) is an abelian category, and the inclusion

Ex(Sop,Ab) ⊂ Cat(Sop,Ab)

is an exact functor.

Proof. Suppose F −→ F ′ is a morphism in Ex(Sop,Ab). That is, F and
F ′ are functors Sop −→ Ab taking coproducts of fewer than α objects
to products, and F −→ F ′ is a natural transformation. We need to show
that the kernel and cokernel of the natural transformation, which are clearly
objects of the big category Cat(Sop,Ab), actually lie in the subcategory
Ex(Sop,Ab).

Complete the map F −→ F ′ to an exact sequence in Cat(Sop,Ab)

0 −−−→ K −−−→ F −−−→ F ′ −−−→ Q −−−→ 0.

Let {sλ, λ ∈ Λ} be a set of ≤ α objects in S. Because F and F ′ lie in
Ex(Sop,Ab), the natural maps

F

(∐
λ∈Λ

sλ

)
−−−→

∏
λ∈Λ

F(sλ)

F ′
(∐

λ∈Λ

sλ

)
−−−→

∏
λ∈Λ

F ′(sλ)

are both isomorphisms. We deduce that in the commutative square

F

(∐
λ∈Λ

sλ

)
−−−→ F ′

(∐
λ∈Λ

sλ

)

|
�� |

��∏
λ∈Λ

F(sλ) −−−→
∏
λ∈Λ

F ′(sλ)

the vertical maps are both isomorphisms. But Ab satisfies [AB4∗]. Hence
the product of the exact sequences

0 −−−→ K(sλ) −−−→ F(sλ) −−−→ F ′(sλ) −−−→ Q(sλ) −−−→ 0
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over λ ∈ Λ is an exact sequence. In the comparison map

K

(∐
λ∈Λ

sλ

)
−−−→ F

(∐
λ∈Λ

sλ

)
−−−→ F ′

(∐
λ∈Λ

sλ

)
−−−→ Q

(∐
λ∈Λ

sλ

)
� |

�� |
�� �∏

λ∈Λ

K(sλ) −−−→
∏
λ∈Λ

F(sλ) −−−→
∏
λ∈Λ

F ′(sλ) −−−→
∏
λ∈Λ

Q(sλ)

both the top and bottom rows are exact. It easily follows that the natural
maps

K

(∐
λ∈Λ

sλ

)
−−−→

∏
λ∈Λ

K(sλ)

Q

(∐
λ∈Λ

sλ

)
−−−→

∏
λ∈Λ

Q(sλ)

are both isomorphisms. ��
This completes the construction. Out of any essentially small additive

category S, closed under coproducts of ≤ α objects, we have produced an
abelian category Ex(Sop,Ab).

2. Properties of the construction

It is now incumbent on us to study the properties of this construction. We
begin with the easy and the well–known.

Lemma 2.1. Let α be an infinite cardinal. Let S be an essentially small
additive category, closed under coproducts of ≤ α of its objects. Then the
abelian category Ex(Sop,Ab) satisfies [AB4∗]; it contains arbitrary small
products, and products are exact.

Proof. Since products of functors taking coproducts to products also take
coproducts to products, the product, in Cat(Sop,Ab), of a family of objects
in the smaller

Ex(Sop,Ab) ⊂ Cat(Sop,Ab)

lies in Ex(Sop,Ab). It follows that not only do products exist in Ex(Sop ,Ab);
the inclusion into Cat(Sop,Ab) preserves them. Since products are exact
in Ab, they are exact in Cat(Sop,Ab), and hence also in Ex(Sop,Ab). ��
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Notation 2.2. Next we will want to study the existence and exactness of
colimits in Ex(Sop,Ab). The colimits that obviously exist are the α–filtered
colimits. Recall that a category I is called α–filtered if every subcategory
I ′ ⊂ I of cardinality ≤ α can be embedded in a subcategory I ′ ⊂ I ′′ ⊂ I ,
where I ′′ has a terminal object. The colimit of any functor I −→ A, where I
is α–filtered, is called an α–filtered colimit. It is very classical that α–filtered
colimits, taken in Cat(Sop,Ab), of functors

I −−−→ Ex(Sop,Ab)

actually lie in Ex(Sop,Ab). The colimits therefore exist in Ex(Sop,Ab),
and agree with the colimits in Cat(Sop,Ab).

In this section, we will consider colimits both in Ex(Sop,Ab) and in
Cat(Sop,Ab). This being the case, we need to adopt some notational con-
ventions to stop us from getting confused. In this section, when we write
colim−→ Fµ, then we assume that the Fµ form an α–filtered system. If all the

Fµ’s lie in Ex(Sop,Ab), then it does not matter whether the colimit is being
computed in Ex(Sop,Ab) or in Cat(Sop,Ab). The only colimits we will
consider in this section which are not α–filtered are coproducts. Coproducts
in Cat(Sop,Ab) (resp. in Ex(Sop,Ab)) will be denoted⊕

Fµ, respectively
∐

Fµ.

Note that we do not yet know that the coproduct on the right exists.

Remark 2.3. Since S is an additive category, the representable functors
S(−, s) are additive. And representable functors always take coproducts
to products. Therefore, all the functors S(−, s) are objects in Ex(Sop,Ab).
The Yoneda map, which is usually written as a functor S −→ Cat(Sop,Ab),
can be factored

S −−−→ Ex(Sop,Ab) ⊂ Cat(Sop,Ab).

It is classical that S(−, s) is a projective object in the large category
Cat(Sop,Ab). It must therefore also be projective in the exact subcate-
gory Ex(Sop,Ab). It is also a well–known consequence of Yoneda’s lemma
that every object in Cat(Sop,Ab) is the quotient of a direct sum of repre-
sentables S(−, s). We will next prove

Lemma 2.4. Let α be an infinite cardinal. Let S be an essentially small
additive category, closed under coproducts of ≤ α of its objects. Then the
Yoneda map, S −→ Ex(Sop,Ab), preserves coproducts of ≤ α objects.

Proof. Suppose {sλ, λ ∈ Λ} is a family of ≤ α objects in S. Suppose that
F is an object in Ex(Sop,Ab), and suppose that, for each λ ∈ Λ, we are
given a morhpism

S(−, sλ) −−−→ F.
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By Yoneda’s lemma, each of the given maps S(−, sλ) −→ F corresponds,
uniquely, to an element rλ ∈ F(sλ). This gives us an element,

∏
λ∈Λ

rλ ∈
∏
λ∈Λ

F(sλ) = F

(∐
λ∈Λ

sλ

)
.

The last equality,
∏

λ∈Λ F(sλ) = F
(∐

λ∈Λ sλ

)
, is because F ∈ Ex(Sop,Ab).

Now applying Yoneda’s lemma again, the above corresponds to a unique
map

S

(
−,
∐
λ∈Λ

sλ

)
−−−→ F.

In other words, any collection of ≤ α maps in Ex(Sop,Ab)

S(−, sλ) −−−→ F

factors through a unique map

S

(
−,
∐
λ∈Λ

sλ

)
−−−→ F.

This precisely says that

S

(
−,
∐
λ∈Λ

sλ

)
=

∐
λ∈Λ

S(−, sλ).

��
Proposition 2.5. Let α be an infinite cardinal. Let S be an essentially small
additive category, closed under coproducts of ≤ α of its objects. Then the
inclusion Ex(Sop,Ab) ⊂ Cat(Sop,Ab) has a left adjoint.

Proof. [In the interest of keeping this paper self contained, we give the
entire proof. It is a modification of the argument of Gabriel and Ulmer; see
Korollar 5.8 on page 60 of [1].]

We want to produce a functor

L : Cat(Sop,Ab) −−−→ Ex(Sop,Ab),

left adjoint to the inclusion. That is, for every object F ∈ Cat(Sop,Ab),
we wish to produce an object L F ∈ Ex(Sop,Ab), so that for any G ∈
Ex(Sop,Ab),

Cat(Sop,Ab){F, G} = Ex(Sop,Ab){L F, G}.
Let us begin by treating the special case where

F(−) =
⊕
i∈I

S(−, si)
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is the direct sum of representables (see Remark 2.3). In this special case,
we define

L F(−) = colim
I ′⊂I, #I ′≤α

S

(
−,
∐
i∈I ′

si

)
.

The notation means that we take the colimit over all I ′ ⊂ I , where the
cardinality of I ′ is ≤ α, and hence

∐
i∈I ′ si makes sense. Notice that the

right hand side is an α–filtered colimit of objects in Ex(Sop,Ab), and hence
lies in Ex(Sop,Ab). By Lemma 2.4, S

(−,
∐

i∈I ′ si

)
is the coproduct in

Ex(Sop,Ab) of the objects S(−, si). Given any object G ∈ Ex(Sop,Ab),
to give a map

S

(
−,
∐
i∈I ′

si

)
−−−→ G(−)

is just to give, for every i ∈ I ′, maps S(−, si) −→ G. Putting this together,
we have that for any G ∈ Ex(Sop,Ab)

Hom(L F, G) = lim
I ′⊂I, #I ′≤α

Hom

{
S

(
−,
∐
i∈I ′

si

)
, G

}

= lim
I ′⊂I, #I ′≤α

∏
i∈I ′

Hom{S(−, si), G}

=
∏
i∈I

Hom{S(−, si), G}

= Hom(F, G).

That is, L F satisfies the required universal property.
But now note that, by Remark 2.3, every object F ∈ Cat(Sop,Ab) has

a projective presentation

F ′′ −−−→ F ′ −−−→ F −−−→ 0,

with

F ′′(−) =
⊕
i∈I

S(−, si), F ′(−) =
⊕
j∈J

S(−, s j).

Define L F to be the quotient in the exact sequence

L F ′′ −−−→ L F ′ −−−→ L F −−−→ 0,

with L F ′′ and L F ′ as above. For any object G ∈ Ex(Sop,Ab) we have
a commutative diagram with exact rows

0 −−−→ Hom(L F, G) −−−→ Hom(L F ′, G) −−−→ Hom(L F ′′, G)

�
�| �

�|
0 −−−→ Hom(F, G) −−−→ Hom(F ′, G) −−−→ Hom(F ′′, G)
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from which it immediately follows that Hom(L F, G) is naturally isomor-
phic to Hom(F, G). ��
Corollary 2.6. Let α be an infinite cardinal. Let S be an essentially small
additive category, closed under coproducts of ≤ α of its objects. Then the
category Ex(Sop,Ab) satisfies [AB3]. It contains arbitrary small coprod-
ucts of its objects.

Proof. Let L be the left adjoint to the inclusion

Ex(Sop,Ab) ⊂ Cat(Sop,Ab).

The existence of L is guaranteed by Proposition 2.5. Let {Fµ,µ ∈ M} be a
family of objects in Ex(Sop ,Ab). Because coproducts exist inCat(Sop ,Ab),
there is a coproduct in Cat(Sop,Ab). We denote it⊕

µ∈M

Fµ.

The functor L is a left adjoint, and hence preserves coproducts. It follows
that

L



⊕
µ∈M

Fµ




is the coproduct in Ex(Sop,Ab), of L Fµ = Fµ. ��
Now make the following definition

Definition 2.7. Let α be an infinite cardinal. Let S be an essentially small
additive category, closed under coproducts of ≤ α of its objects. Let s −→
s′ −→ s′′ be two morphisms in S, whose composite is zero. The sequence
is called exact if it induces an exact sequence in the abelian category
Ex(Sop,Ab). That is, if the sequence of functors

S(−, s) −−−→ S(−, s′) −−−→ S(−, s′′)

is exact.

Remark 2.8. Suppose the category Ex(Sop,Ab) satisfies [AB4]; that is,
coproducts are exact. Then it would follow in particular that if we take
a family of ≤ α exact sequences in S, of the form

sλ −−−→ s′λ −−−→ s′′λ,

then the sequence ∐
λ∈Λ

sλ −−−→
∐
λ∈Λ

s′λ −−−→
∐
λ∈Λ

s′′λ
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is also exact in S. After all, by Lemma 2.4, coproducts in S agree with those
in Ex(Sop,Ab).

There is therefore a necessary condition for the category Ex(Sop,Ab)
to satisfy [AB4]. If all coproducts are to be exact in Ex(Sop,Ab), then
at the very least the coproducts of ≤ α objects must be exact in S. The
next Proposition asserts that, under reasonable hypotheses, this necessary
condition is also sufficient.

Proposition 2.9. Let α be an infinite cardinal. Let S be an essentially small
additive category, closed under coproducts of ≤ α of its objects. Suppose
the following two conditions hold

2.9.1. Any morphism s′ −→ s′′ in S may be completed to an exact
sequence s −→ s′ −→ s′′.

2.9.2. The coproduct of any collection of ≤ α exact sequences in S is
exact in S.

Then the category Ex(Sop,Ab) satisfies [AB4].

Proof. Consider the following full subcategory A(S) ⊂ Ex(Sop,Ab). An
object F ∈ A(S) is any functor F : Sop −→ Ab admitting a presentation

S(−, s) −−−→ S(−, t) −−−→ F(−) −−−→ 0.

It is well–known that under Hypothesis 2.9.1 above, this is an abelian
subcategory of Ex(Sop,Ab); the proof is basically the same as the proof
showing that coherent sheaves on a noetherian scheme form an abelian
category. The objects F ∈ A(S) will be referred to as “coherent functors”.

Next observe that any object of Ex(Sop,Ab) is an α–filtered colimit of
coherent functors. Let F be an object of Ex(Sop,Ab). It admits a projective
presentation in Cat(Sop,Ab)⊕

i∈I

S(−, si) −−−→
⊕
j∈J

S(−, s j) −−−→ F(−) −−−→ 0.

But then F is the α–filtered colimit of all quotients⊕
i∈I ′

S(−, si) −−−→
⊕
j∈J ′

S(−, s j) −−−→ F ′(−) −−−→ 0,

where the cardinalities of I ′ ⊂ I and of J ′ ⊂ J are bounded by α. Now the
functor L has a right adjoint, and preserves colimits. Hence L F = F is the
α–filtered colimit of L F ′, and L F ′ has a presentation

S

(
−,
∐
i∈I ′

si

)
−−−→ S


−,

∐
j∈J ′

s j


 −−−→ L F ′(−) −−−→ 0.
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A similar argument shows that any short exact sequence

0 −−−→ F −−−→ G −−−→ H −−−→ 0

in Ex(Sop,Ab) is an α–filtered colimit of short exact sequences in A(S); we
leave the details to the reader. Hence to prove that coproducts of short exact
sequences in Ex(Sop,Ab) exact, it suffices to assume that all the sequences
for which we take the coproduct lie in A(S) ⊂ Ex(Sop,Ab). Furthermore,
a coproduct over a set Λ is the α–filtered colimit of coproducts over subsets
Λ′ ⊂ Λ, of cardinality ≤ α. We may therefore assume the coproduct is over
an index set Λ of cardinality ≤ α.

Assume therefore that Λ is a set of cardinality ≤ α, and for every λ ∈ Λ
we have a short exact sequence in A(S)

0 −−−→ Fλ −−−→ Gλ −−−→ Hλ −−−→ 0.

Because Fλ and Hλ lie in A(S), each admits a presentation

S
(−, f λ

1

) −−−→ S
(−, f λ

0

) −−−→ Fλ −−−→ 0,

S
(−, hλ

1

) −−−→ S
(−, hλ

0

) −−−→ Hλ −−−→ 0.

By 2.9.1, these presentations may be continued to a projective resolution

−−→ S
(−, f λ

2

) −−→ S
(−, f λ

1

) −−→ S
(−, f λ

0

) −−→ Fλ −−→ 0,

−−→ S
(−, hλ

2

) −−→ S
(−, hλ

1

) −−→ S
(−, hλ

0

) −−→ Hλ −−→ 0.

By standard homological algebra, these may be combined to give a projec-
tive resolution of the short exact sequence

0 −−→ Fλ −−→ Gλ −−→ Hλ −−→ 0.

We want to show that the coproduct of these ≤ α short exact sequences
is exact. It suffices to show that the coproduct in Ex(Sop,Ab) of their
resolutions is a resolution of a short exact sequence. But this is immediate
from 2.9.2.

[This trick, of reducing statements about Ex(Sop ,Ab) to α–filtered direct
limits of statements about representables, is very much in the spirit of
Gabriel and Ulmer [1]. See, for example, the proof of Satz 5.9 on page 60
of [1]. A completely different proof of [AB4], somewhat more explicit, may
be found in [3], Lemma 6.3.2.] ��

3. A counterexample

In this section, we look at a special case of a category S. We let our cardinal
α be ℵ0, the first infinite cardinal. Now we define the category S.
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Definition 3.1. Let S be the category whose objects are complete, non–
archimedean, normed abelian groups of cardinality ≤ 2ℵ0 , and whose mor-
phisms are the contractions.

Remark 3.2. Definition 3.1 is quite a mouthful, so let us paraphrase it. An
object of S is an abelian group A of cardinality ≤ 2ℵ0 , having a norm map.
That is

3.2.1. For every a ∈ A, there is a number ‖a‖ ∈ R. These numbers
satisfy the inequality ‖a‖ ≥ 0, with equality if and only if a = 0.

3.2.2. The norm is non–archimedean. It satisfies the inequality

‖a − b‖ ≤ max(‖a‖, ‖b‖).
3.2.3. The group A is complete with respect to the metric induced by
the norm.

The morphisms in the category S are the contractions. They are homomor-
phisms of abelian groups f : A −→ B satisfying

‖ f(a)‖ ≤ ‖a‖.
Lemma 3.3. The category S contains coproducts of ≤ ℵ0 of its objects.

Proof. Suppose we are given ≤ ℵ0 objects of S, that is countably many
objects {A0, A1, A2, · · · }. The Ai are all abelian groups of cardinality ≤ 2ℵ0 .
Therefore the set theoretic product group

∞∏
i=0

Ai

has cardinality

≤ {
2ℵ0
}ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 .

Define a norm map on
∏∞

i=0 Ai by the formula∥∥∥∥∥
∞∏

i=0

ai

∥∥∥∥∥ = ∞
sup
i=0

‖ai‖.

This norm takes its value inR∪{∞}. The coproduct of the objects Ai in the
category S is the subset of all elements of the set theoretic product, which
are sequences whose norm tends to zero. That is,

∞∐
i=0

Ai ⊂
∞∏

i=0

Ai ,
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and the condition for a sequence {a0, a1, a2, · · · } ∈ ∏∞
i=0 Ai to lie in the

smaller
∐∞

i=0 Ai is that

lim
i→∞‖ai‖ = 0.

We need to establish that this satisfies the universal property of the coprod-
uct.

Suppose for each 0 ≤ i < ∞ we have, in the category S, a map
fi : Ai −→ B. That is, we have a contraction. Define

f :
∞∐

i=0

Ai −−−→ B

by the formula

f(a0, a1, a2, · · · ) =
∞∑

i=0

fi(ai).

This sum converges since as i → ∞, we have first ‖ai‖ → 0, but as
‖ fi(ai)‖ ≤ ‖ai‖, we deduce ‖ fi(ai)‖ −→ 0. Since the norm is non–
archimedean,∥∥∥∥∥

n∑
i=m

fi(ai)

∥∥∥∥∥ ≤ n
sup
i=m

∥∥ fi(ai)
∥∥ −→ 0

as m, n → ∞. The partial sums form a cauchy sequence, which converges
in the complete metric space B.

The uniqueness of f is obvious. ��
Lemma 3.4. The category S is an additive category.

Proof. Given two morphisms f, g : A −→ B in S, we form f − g by the
formula

{ f − g}(a) = f(a) − g(a).

Since f and g are contractions, ‖ f(a)‖ ≤ ‖a‖ and ‖g(a)‖ ≤ ‖a‖. This
makes ∥∥{ f − g}(a)

∥∥ = ∥∥ f(a) − g(a)
∥∥

≤ max
(‖ f(a)‖, ‖g(a)‖)

≤ ‖a‖.
Hence f − g is a contraction, that is a morphism in S.

This gives the Hom–sets S(A, B) the natural structure of abelian groups.
Now observe that by Lemma 3.3 the category S contains countable coprod-
ucts of its objects, hence certainly finite coproducts. The reader can easily
check that finite coproducts, as given in the proof of Lemma 3.3, also satisfy
the universal property of finite products. Hence the category S is additive. ��
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Lemma 3.5. The category S contains kernels for all its morphisms.

Proof. Let f : A −→ B be a morphism in S. The set theoretic kernel
of f , given the subspace norm in A, is a closed subgroup of A and hence
complete. It is the categorical kernel. ��
Lemma 3.6. Suppose we are given countably many morphisms in S

{ fi : Ai −→ Bi | 0 ≤ i < ∞}.
The kernel of the coproduct map

∞∐
i=0

fi :
∞∐

i=0

Ai −−−→
∞∐

i=0

Bi

is the coproduct of the kernels.

Proof. Both the kernel of the coproduct map and the coproduct of the kernels
consist of sequences {a0, a1, a2, · · · }, with ai ∈ Ai , so that ‖ai‖ → 0 and
fi(ai) = 0. ��
Proposition 3.7. Let α be the cardinal ℵ0. Then S is an additive category
closed under coproducts of ≤ α of its objects, any map s′ → s′′ may be
completed to an exact sequence s → s′ → s′′, and coproducts of ≤ α exact
sequences in S are exact.

Proof. The fact that S is additive is Lemma 3.4. The fact that it is closed
under countable coproducts is Lemma 3.3. That any map s′ → s′′ may be
completed to a short exact sequence s → s′ → s′′ follows from Lemma 3.5;
more precisely, s may be chosen to be the kernel of s′ → s′′. The only fact
that we still have not completely proved is that coproducts of countably
many exact sequences in S are exact.

Let f : s′ −→ s′′ be a morphism in S, and let k be its kernel. As we said
in the previous paragraph, the sequence

k −−−→ s′ −−−→ s′′

is exact in S. After all, by the universal property of the kernel, the sequence

0 −−−→ S(−, k) −−−→ S(−, s′) −−−→ S(−, s′′)

is exact in Ex(Sop,Ab).
Now suppose that s −→ s′ −→ s′′ is an exact sequence in S. Then

S(−, s) −−−→ S(−, s′) −−−→ S(−, s′′)

is an exact sequence of functors. But if k is the kernel of s′ −→ s′′ as above,
then we have a map k −→ s′ whose composite k −→ s′ −→ s′′ vanishes.
By the exactness of

S(k, s) −−−→ S(k, s′) −−−→ S(k, s′′)
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we deduce that it factors as

k
f−−−→ s −−−→ s′.

Also, since k is the kernel of s′ −→ s′′ and the composite s −→ s′ −→ s′′
vanishes, the map s −→ s′ must factor uniquely as

s
g−−−→ k −−−→ s′.

Because the composite

k
f−−−→ s

g−−−→ k −−−→ s′

is the inclusion k −→ s′, it follows thar g f : k −→ k is the identity. Thus
the sequence

s −−−→ s′ −−−→ s′′

is a direct sum of the sequence

k −−−→ s′ −−−→ s′′

and the sequence

k′ −−−→ 0 −−−→ 0.

Any exact sequence s −→ s′ −→ s′′ in S can be decomposed as a direct
sum of a kernel, and a trivial exact sequence.

Now we need to show that a countable coproduct of exact sequences is
exact. The above argument shows that it suffices to show that a countable
coproduct of kernels is a kernel, and we showed that in Lemma 3.6. ��
Corollary 3.8. It follows that Ex(Sop,Ab) is an abelian category (Lem-
ma 1.3) satisfying [AB4∗] (Lemma 2.1) and [AB4] (Proposition 2.9). ��
Construction 3.9. Consider now the sequence of objects and morphisms
in S

Zp
p−−−→ Zp

p−−−→ Zp
p−−−→ · · ·

where Zp is the p–adic numbers with the usual norm, and the connecting
maps are multiplication by p. The Yoneda functor

S −−−→ Ex(Sop,Ab)

takes this to a sequence in Ex(Sop,Ab). We remind the reader: the Yoneda
functor takes an object s ∈ S to the representable functor S(−, s). In the
rest of this section, we will freely confuse the sequence in S with its image
in Ex(Sop,Ab).
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Lemma 3.10. The sequence

Zp
p−−−→ Zp

p−−−→ Zp
p−−−→ · · ·

is a sequence of monomorphisms in Ex(Sop,Ab).

Proof. The kernel of p : Zp −→ Zp is trivial, and hence the map

S(−,Zp)
p−−−→ S(−,Zp)

is injective. ��
Lemma 3.11. The sequence in Ex(Sop,Ab)

Zp
p−−−→ Zp

p−−−→ Zp
p−−−→ · · ·

has a vanishing colimit (and also a vanishing colim−→
1).

Proof. The colimit and colim−→
1 are, respectively, the cokernel and kernel of

the map
∞∐

i=0

S(−,Zp)
1 − p{shift}−−−−−−−−→

∞∐
i=0

S(−,Zp).

By Lemma 2.4, the natural map gives an isomorphism

∞∐
i=0

S(−,Zp) −−−→ S

(
−,

∞∐
i=0

Zp

)
;

in the commutative square below the vertical maps are isomorphisms

∞∐
i=0

S(−,Zp)
1 − p{shift}−−−−−−−−→

∞∐
i=0

S(−,Zp)

|
�� |

��
S

(
−,

∞∐
i=0

Zp

)
1 − p{shift}−−−−−−−−→ S

(
−,

∞∐
i=0

Zp

)

It therefore suffices to show that the map
∞∐

i=0

Zp
1 − p{shift}−−−−−−−−→

∞∐
i=0

Zp.

is an isomorphism. But its inverse is given by

{1 − p{shift}}−1 = 1 + p{shift} + p2{shift}2 + · · ·
and the right hand side clearly converges. ��



Counterexample in homological algebra 413

Consider next the map of sequences in S

A
.= Zp

1−−−→ Zp
1−−−→ Zp

1−−−→ · · ·� 1

� p

� p2

�
B

.= Zp
p−−−→ Zp

p−−−→ Zp
p−−−→ · · ·

If we apply the Yoneda functor S −→ Ex(Sop,Ab) to this map of se-
quences, we get a monomorphism of sequences in the abelian category
Ex(Sop,Ab). We can form the quotient, deducing a short exact sequence
of sequences in Ex(Sop,Ab)

0 −−−→ A −−−→ B −−−→ C −−−→ 0,

with B the sequence of Lemma 3.11. We now prove

Proposition 3.12. In the category Ex(Sop,Ab), there exists a sequence C
of monomorphisms

C0 −−−→ C1 −−−→ C2 −−−→ · · ·
with a non–zero colim−→

1.

Proof. Let C be the sequence of monorphisms in the short exact sequence

0 −−−→ A −−−→ B −−−→ C −−−→ 0

above, where B is the sequence of Lemma 3.11. Applying the derived
functor of the colimit, we have an exact sequence

colim−→
1C −−−→ colim−→ A −−−→ colim−→ B.

By Lemma 3.11, colim−→ B = 0. But A is a constant sequence

S(−,Zp)
1−−−→ S(−,Zp)

1−−−→ S(−,Zp)
1−−−→ · · ·

and hence colim−→ A = S(−,Zp) �= 0. The exact sequence implies that

colim−→
1C �= 0. ��

Remark 3.13. The sequence B, of Lemma 3.11, is a counterexample to
Proposition 5 in [4]. It is a sequence of monomorphisms, but the map
B0 −→ colim−→ B is not mono. In the absence of Proposition 5, Proposition 1

of [4] does not imply that colim−→
1 vanishes for sequences of monomorphisms.

Proposition 3.12 gives an explicit example where this fails. We have an
abelian category satisfying [AB4], and in it a sequence C of monomorphisms
with a non-vanishing colim−→

1.
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4. Appendix, by P. Deligne∗: a special case

4.1. We fix a ring with unit R. Modules are left R-modules. By a projective
system we will mean a projective system indexed by the ordered set N of
integers. If M = (Mn)n∈N is a projective system of modules, with transition
maps ϕ : Mn+1 → Mn , the derived projective limits lim0 M = lim M and
lim1 M of M are the kernel and cokernel of the morphism

1 − ϕ : ∏Mn →∏
Mn : (xn) �−→ (xn − ϕ(xn+1)),(4.1.1)

while the limi M vanish for i ≥ 2. We define A to be the category of pro-
jective systems of modules for which the derived projective limit vanishes,
that is, for which (4.1.1) is invertible.

Example 4.1.2. If almost all Mn are zero, then M is in A. Indeed, the
filtration of

∏
Mn by the ⊕

n<N
Mn is then a finite filtration, it is stable by

1 − ϕ, and 1 − ϕ induces the identity on the associated graded.

Example 4.1.3. A module V with a decreasing filtration F indexed by N
defines the projective system of the Fn . This construction is an equivalence,
noted V �→ F(V ), from the category of filtered modules (V, F) with F
exhaustive (F0 = V ) to the category of projective systems of modules
with injective transition maps. If F is an exhaustive filtration of V , then
F(V ) is in A if and only if the filtration F is separated and complete, that
is, V ∼−→ lim V/Fn. Indeed, we have a short exact sequence of projective
systems

0 → Fn → V → V/Fn → 0,

the constant projective system V has surjective transition maps, hence a van-
ishing lim1, and one applies the long exact sequence of limi:

0 → lim Fn → V → lim V/Fn → lim1 Fn → 0.

Fix M in A. For m ≥ n, we denote ϕn,m : Mm → Mn the iter-
ated transition map. For (xn) in

∏
n

Mn , the defining property of (sn) :=
(1 − ϕ)−1((xn)) is that

(4.1.4) sn = ϕ(sn+1) + xn

If almost all xn are zero, the sums
∑

m≥n
ϕn,m(xm) reduce to finite sums. They

obey (4.1.4), hence

(4.1.5) sn =
∑
m≥n

ϕn,m(xm) (when almost all xn are zero).

∗ Institute for Advanced Studies, Princeton, NJ 08540, USA
(e-mail: deligne@math.ias.edu)
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In general, we define linear maps “
∑

m≥n
”ϕn,m(xm) : ∏Mi → Mn , by

(4.1.6)
(

“
∑

m≥n
”ϕn,m(xm)

)
n∈N

:= (1 − ϕ)−1((xn)n∈N).

As the notation suggests, “
∑

m≥n
”ϕn,m(xm) depends only on the xm for m ≥ n.

This follows by linearity from the fact that if xi = 0 for i ≥ n, then sn ,
given by (4.1.5), vanishes.

Proposition 4.2. The category A is an abelian category in which small
products and small coproducts exist and are exact, that is, AB4 and AB4∗
hold.

Proof. Let f : M → N be a morphism in A. Define K and C to be the pro-
jective systems of kernels and cokernels of the components fn : Mn → Nn
of f . They are the kernel and cokernel of f in the abelian category P of
all projective systems of modules. By exactness of products in the category
of modules, the products

∏
Kn and

∏
Cn are the kernel and cokernel of

( fn) : ∏Mn →∏
Nn . The endomorphism (4.1.1) is functorial. As it is an

automorphism for M and N, it is one for K and C, which hence are in A.
The formation of (4.1.1) is compatible with products. If (Ma)a∈A is

a family of objects of A, the projective system of products
(∏

a
Ma

n

)
n∈N

is

hence again in A: the category A is a full subcategory of the abelian category
P stable by kernels, cokernels and products. It inherits from P being an
abelian category in which small products exist and are exact. A sequence in
A is exact if and only if it is exact in P .

Let I be the set of the functions f : A → N ∪ {∞} such that for any n
in N, the set of a in A with f(a) ≤ n is finite. It is suggestive to write this
condition f(a) → ∞ for a → ∞. For each n, let I(n) be the subset of I
consisting of those f which are ≥ n. When taking colimits indexed by I(n),
I(n) will be ordered by ≥. As, if f and g are in I(n), so is their infimum,
such colimits are filtering.

Lemma 4.3. Let (Ma)a∈A be a family of objects of A, and define Ma∞ := 0.
The projective system S of the

Sn := colim f∈I(n)

∏
a

Ma
f(a)

is then in A and is the coproduct, in A, of the Ma.

In the colimit, the transition map
∏

Ma
f(a)→

∏
Ma

g(a), defined for g ≤ f ,
is the product of the ϕg(a), f(a) (resp. 0) for f(a) �= ∞ (resp. f(a) = ∞). The
map Sn+1 → Sn is induced by the inclusion I(n + 1) ⊂ I(n).
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The components ia
n of the natural morphism ia : Ma → S are as follows:

if f ∈ I(n) is such that f(a) = n, ia
n is the composite

Ma
n →∏

b
Mb

f(b) → Sn.

As filtering colimits and products are exact in a category of modules,
Lemma 4.3 implies the existence and exactness of small coproducts in A,
and its proof will complete that of 4.2.

Example 4.3.1. Suppose that each Ma has injective transition maps, hence
is deduced as in 4.1.3 from a module V a with an exhaustive, separated
and complete filtration F. We define F∞(V a) := 0. The module Sn is
then the submodule of

∏
Fn(V a) consisting of the (xa) such that for

some f in I(n) each xa is in F f(a)(V a). It is the completed direct sum
limm ⊕

a
Fn(V a)/Fm(V a), and the projective system S is deduced as in 4.1.3

from the completed direct sum of the V a.

Proof of Lemma 4.3. We first prove that S is in A. One has∏
n

Sn =∏
n

colim f∈I(n)

∏
a

Ma
f(a) = colim( fn)∈∏ I(n)

∏
n

∏
a

Ma
fn(a).

We map I to
∏

I(n) by f �→ (sup( f, n))n∈N. This map is cofinal (for the
order ≥). Indeed, for ( fn) in

∏
n

I(n), the infimum f of the fn is in I , and

fn ≥ sup( f, n). The colimit over the product of the I(n) can hence be
replaced by a colimit over I :∏

Sn = colim f ∈I
∏
n

∏
a

Ma
sup( f(a),n) = colim f∈I

∏
a

∏
n

Ma
sup( f(a),n) :

the morphism (4.1.1) for S is the colimit over f in I of the product of the
morphisms (4.1.1) for the following projective systems:

for f(a) �= ∞ : Ma
sup( f(a),n)

for f(a) = ∞ : 0 .
(4.3.2)

For f(a) �= ∞, the projective system (4.3.2) coincides with Ma for n ≥
f(a). As Ma is in A, it follows from 4.1.2 that (4.3.2) is in A too, and its
map (4.1.1) is invertible. By passage to the colimit in f , (4.1.1) is invertible
for S, and S is in A.

It remains to check that for X in A, the map

(4.3.3) u �−→ (uia) : Hom(S, X) →∏
Hom(Ma, X)

is bijective. We first prove injectivity, i.e., that u : S → X is uniquely
determined by the ua := uia : Ma → X.
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Fix f in I(n) and x in
∏
a

Ma
f(a) with image x̄ in Sn. We have then

x̄ = “
∑

m≥n
”ϕn,m

( ∑
f(a)=m

ia
m(xa)

)
,

where the inner sum is a finite sum in Sm, and the outer “sum” is given by
(4.1.6). Indeed, for m ≥ n, let x≥m in

∏
a

Ma
sup( f(a),m) have as components xa,

for f(a) ≥ m, and 0 otherwise. Let x̄≥m be its image in Sm. We have

x̄≥m = ϕ(x̄≥m+1) +
∑

f(a)=m

ia
m(xa)

and, as x̄≥n = x̄, the claim follows. The “sums” (4.1.6) being functorial, we
get

(4.3.4) u(x̄) = “
∑

m≥n
”ϕn,m

( ∑
f(a)=m

ua
m(xa)

)
,

computing u in terms of the ua.
Given a family of morphisms ua : Ma → X, (4.3.4) defines a morphism

u : S → X which induces the ua. To prove the surjectivity of (4.3.3), one
has to check that this definition of u is legitimate, i.e., that for f ≥ g in
I(n), the diagram ∏

Ma
f(a)

��(4.3.4) ��
��

��
��

�
��
∏

Ma
g(a)

�� (4.3.4)��
��

��
��

�

Xn

is commutative. Fix (xa) in
∏

Ma
f(a). For p ≥ q, let ypq in X p be the sum

of the ua
p(x

a) for f(a) = p and g(a) = q. For each fixed q, the set of a
for which g(a) = q is finite, hence only finitely many ypq are not zero. We
have to check that

“
∑
p≥n

”ϕn,p

(∑
q

yp,q

)
= “

∑
q≥n

”ϕn,q

(∑
p

ϕq,p(yp,q)
)
.

The difference is “
∑
p≥n

”ϕn,p applied to the sum in
∏

Xn

∑
p,q

(
(yp,q in X p) − (ϕq,p(yp,q) in Xq)

)

=
∑
p,q

( ∑
p≥i>q

(1 − ϕ)(ϕi,p(yp,q) in Xi)
)

This sum is (1−ϕ) applied to an element of
∏
p>n

X p, and its “
∑
p≥n

”ϕn,p hence

vanishes.
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4.4. For a an integer, define the filtered module R(a) to be R, purely in
filtration a. By 4.1.2 or 4.1.3, the corresponding projective system T a :=
F(R(a)) is in A. It is given by T a

n = R for n ≤ a, 0 otherwise. The morphism
R(a) → R(a + 1) which is the identity on the underlying modules induces
a monomorphism of projective systems T a → T a+1:

T a : · · · → 0 → · · · → 0 → 0 → R → · · · → R� � � � �
T a+1 : · · · → 0 → · · · → 0 → R → R → · · · → R

.
Proposition 4.4.1. In the category A, colim T a = 0.

Proof. One has to show that for any X in A, lima Hom(T a, X) = 0. Indeed,

(4.4.2) Hom(T a, X) = Xa,

and lim Xa = 0.

Remark 4.4.3. As in 3.12, one can deduce from 4.4.1 the existence of
inductive sequences with injective transition maps in A, for which the
left derived colim1 does not vanish. Example: the inductive system of the
coker(T 0 → T a). In the opposite category, this becomes a projective system
with surjective transition maps for which lim1 does not vanish.

4.5. We now assume that R is a field. In 1.2, we take α = ℵ0. Let S be the
category of filtered modules (V, F) as in 4.1.3, with F exhaustive, separated
and complete, and in addition such that each Gr n

F(V ) is of countable dimen-
sion. Countable coproducts exist in S: the coproduct in S of a countable
family of objects (Vi, F) of S is the completed direct sum∐

i
Vi = lim

(
⊕
i

Vi/Fn
)
.

We found the category A by unravelling the definition of Ex(Sop, Ab).
With the notation R(n) of 4.4, if T is an additive contravariant functor from
S to Ab, each T(R(n)) has a natural structure of R-vector space. Indeed, in
S, R(n) has a right R-module structure. We define M(T ) to be the projective
system of the vector spaces T(R(n)).

Proposition 4.5.1. With the notation above, the functor T �→ M(T ) in-
duces an equivalence of categories from Ex(Sop, Ab) to A

Proof. We first prove that when T is in Ex(Sop, Ab), M(T ) is in A. Indeed,∏
Mn(T ) =∏

T(R(n)) = T
(∐

R(n)
)
,

the maps R(n) → R[t], x �→ xtn , identify the ordinary direct sum of the
R(n) with R[t], provided with the t-adic filtration, and the completed direct
sum

∐
R(n) is R[[t]], with the t-adic filtration. The endomorphism (4.1.1)

for M(T ) is the image by T of the endomorphism 1 − t of R[[t]]. As the
latter is invertible, M(T ) is in A.
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Let S0 be the full subcategory of S consisting of the finite sums of R(n)
(the (V, F) in S with V finite dimensional). Evaluation at the R(n) is an
equivalence from the category Homadd(S

op
0 , Ab) of contravariant additive

functors from S0 to Ab, to the category P of projective systems. The
functor T �→ M(T ), from Ex(Sop, Ab) to A, becomes in this way the
functor T �→ T 0 of restriction to S0.

The construction 4.1.3 turns S into a full subcategory of A, and, by
4.3.1, countable direct sums in S are direct sums in A. If to each A in A we
attach the restriction to S of the representable functor h A, we hence obtain

A → Ex(Sop, Ab).

By (4.4.2), the composite A → Ex(Sop, Ab) → A is isomorphic to the
identity. It remains to check that the composite Ex(Sop, Ab) → A →
Ex(Sop, Ab) is isomorphic to the identity as well. This composite sends
a functor T to the functor

V �−→ Hom
(
h0

V , T 0
)

(Hom in Homadd(S0, Ab)). By Yoneda’s lemma, the functor T can be
identified with V �−→ Hom(hV , T ). Restriction to S0 defines

(4.5.2) T(V ) = Hom(hV , T ) → Hom
(
h0

V , T 0).
and it remains to check that for V in S and T in Ex(Sop, Ab), (4.5.2) is an
isomorphism. In other words, a system of tX,e ∈ T(X), functorial in X, e : X
in S0 and e : X → V , should come from a unique t ∈ T(V ).

For each n, let us lift in Fn(V ) a basis (en,α)α∈An of Fn/Fn+1. This gives
us morphisms e(n, α) : R(n)α → V , where R(n)α is a copy of R(n). The
resulting morphism ∐

n,α

R(n)α → V

countable coproduct in S, indexed by A = ∐
An , of 1-dimensional

objects. By assumption, T(V )
∼−→∏

n,α

T(R(n)α). The injectivity of this map

proves that of (4.5.2).
If (tX,e) is in Hom(h0

V , T 0), the tR(n)α,e(n,α) come from a unique t ∈ T(V ).
To check surjectivity of (4.5.2), it remains to see that if the tR(n)α,e(n,α) are
zero, so are all tX,e, and it suffices to check this when X is a R(k). The
map e : R(k) → V is a sum

∑
n≥k

fn , where fn factors through a finite sum

of R(n)α. For 
 ≥ k, the morphism
∑
n≥


fn factors through e
 : R(
) → V .

The difference of e
 : R(
) → V and of R(
)
ϕ−−−→R(
+ 1)

e
+1−−−→V factors
through a finite sum of Rn,α, hence tR(
),e
−e
+1◦ϕ = 0 and ϕ(tR(
+1),e
+1) =
tR(e),e


. As lim T(R(
)) = 0, it follows that the tR(k),e

and in particular tR(k),e

are zero.
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