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Abstract

We start with a Lie Algebra g over a Field K, then we construct the universal enveloping algebra
Ug and define the cohomology groups Hn(g,A) for every (left) g-module A, by regarding A as a Ug-
module. Then we give proofs of the Weyl Theorem and deduce the Whitehead Lemmas as corollaries.

1 Introduction

The origin of Cohomology theory of Lie Algebras lies in algebraic topology. Chevalley-Eilenberg (see
[1]) have shown that the real cohomology of the underlying topological space of a compact connected
Lie group is isomorphic to the real cohomology of its algebra. We are going to give cohomological proofs
of the two main theorems in the theory of Lie algebras over a field of characteristic 0.
The first of these theorem is that the finite-dimensional representations of a semi-simple Lie algebra are
completely reducible. The main step in that proof will be to show that the first cohomology group of
a semi-simple Lie algebra with arbitrary finite-dimensional coefficient module is trivial. This is known
as the first Whitehead Lemma. Then we are going to prove that every finite dimensional Lie algebra g
is the split extension of a semi-simple Lie algebra by the radical of g. The main step in the proof of this
result will be to show that the second cohomology group of a semi-simple Lie algebra with arbitrary
finite-dimensional coefficient module is trivial. This is known as the second Whitehead Lemma.

2 The Universal enveloping algebra

Let K be a field. A Lie algebra g over K is a vector space over K together with a bilinear map [ , ] : g×g→ g,
satisfying the following two identities

[x,x] = 0, x ∈ g
[x, [y,z]] + [y, [z,x]] + [z, [x,y]] = 0, x,y,z ∈ g.

The second equation is known as the Jacobi identity. A Lie algebra homomorphism f : g→ h is a K-linear
map compatible with the Lie Bracket. A Lie subalgebra h of g is a linear subspace closed under the
bracket. A Lie subalgebra h is called a Lie ideal of g, if [x,y] ∈ h for every x ∈ g and every y ∈ h. If h is a
Lie ideal of g, then the quotient space g/h inherits the Lie algebra structure from g.

A Lie algebra is called abelian if [x,y] = 0 for all x,y ∈ g. This is a special case, because any K-
vector space can be regarded as an abelian Lie algebra. In fact, given any K-algebra Λ we can associate
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(functorially) a Lie Algebra LΛwith the same underlying vector space asΛ, the Lie bracket being defined
by

[x,y] = xy − yx.

In order to define a the cohomology group of a Lie algebra we need to find a left adjoint to the functor
L (i.e. a functor U determined by the Hom( , ) functor, going from the category of Lie Algebras to the
category of Algebras). Such functor indeed exists and the image of the Lie algebra g is called the universal
enveloping algebra of g and is denoted by Ug.
Let us start with the notion of a tensor algebra over the K-vector space M.

Definition 2.1. Denote, for n ≥ 1, the n-fold tensor product of M by TnM,

TnM =M ⊗KM ⊗K ...⊗KM, n times.

Set T0M = K . Then, the tensor algebra TM is
⊕∞

n=0TnM, with the multiplication induced by

(m1 ⊗ ...⊗mp) · (m′1 ⊗ ...m
′
q) =m1 ⊗ ...⊗mp ⊗m′1 ⊗ ...m

′
q

where mi ,mj ∈M for 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Note that TM is the free K-algebra over M; More precisely: To any K-algebra Λ and any K-linear map
f : M → Λ there exists a unique algebra homomorphism f0 : TM → Λ extending f. In other words, the
functor T is left-adjoint to the underlying functor to K-vector spaces which forgets the algebra structure.
This is because f0(m1 ⊗ ...⊗mp) may and must be defined as

f (m1)f (m2)...f (mp).

Definition 2.2. Given a K-Lie algebra g, we define the universal enveloping algebra Ug of g to be the quotient
of the tensor algebra T g by the ideal I generated by the elements of the form

x⊗ y − y ⊗ x − [x,y] , x,y ∈ g.

Then Ug = T g/I .

Clearly, we have a canonical mapping of K-vector spaces i : g → Ug defined by the projection g ⊂
T g→Ug which can be easily turned into a Lie algebra homomorphism

i : g→ LUg.

It is now easy to see that any Lie algebra homomorphism f : g→ LΛ induces a unique homomorphism
f1 :Ug→Λ since the homomorphism f0 : T g→Λ vanishes on the ideal I. We may summarize this in the
following proposition:

Proposition 2.3. The universal enveloping algebra functor is a left adjoint to the functor L.

The next step of our construction is to study the structure of Ug. Let {ei}, i ∈ J be a K-basis of g
indexed by a simply-ordered set J. Let I = {i1, ..., in} denote an increasing sequence of elements in J. Then
define eI = ei1 · · ·ein ∈Ug to be the projection of ei1 ⊗ ...⊗ ein ∈ T g.

Theorem 2.4. (Birkhoff-Witt) Let {ei}, i ∈ J , be a K-basis of g. Then the elements eI corresponding to all finite
increasing sequence I (including the empty one) form a K-basis of Ug.
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Proof. We are going to prove this in several steps. We begin defining the index of a monomial ej1 ⊗ ...⊗ejn
as follows. For any 1 ≤ i < k ≤ n, set

ηik =
{

0 if ji ≤ jk
1 if ji > jk

and define the index
ind(ej1 ⊗ ...⊗ ejn) =

∑
i<k

ηik .

Note that ind=0 if and only if j1 ≤ ... ≤ jn. Monomials having this property will be called standard. We
now suppose jk > jk+1 and we wish to compare

ind(ej1 ⊗ ...⊗ ejn) and (1)

ind(ej1 ⊗ ...⊗ ejk+1
⊗ ejk ⊗ ...⊗ ejn) (2)

where the second monomial is obtained by interchanging ek and ek+1. Let η′ik be denotes the η′s for the
second monomial. Then we have η′ij = ηij if i, j , k,k + 1; η′ik = ηi,k+1, η

′
i,k+1 = ηik if i < k; η′k,j = ηk+1,j ,

η′k+1,j = ηk,j if j > k + 1 and η′k,k+1 = 0, η′k,k+1 = 1. Hence,

ind(ej1 ⊗ ...⊗ ejn) = 1 + ind(ej1 ⊗ ...⊗ ek+1 ⊗ ek ⊗ ...⊗ ejn).

We use these remarks to the following claims.

Claim 2.5. Every element of T g is congruent mod I to a K-linear combination of 1 and standard monomials.

Proof. It suffices to prove the statement for monomials. We order these by degree and for a given degree
by the index. To prove the assertion for a monomial ej1 ⊗ ...⊗ ejn it suffices to assume it for monomials
of lower degree and for those of the same degree n which are of lower index than the given monomial.
Assume the monomial is not standard and suppose jk > jk+1. We have,

ej1 ⊗ ...⊗ ejn = ej1 ⊗ ...⊗ ek+1 ⊗ ek ⊗ ...⊗ ejn + ej1 ⊗ ...⊗
[
ejk , ejk+1

]
⊗ ...⊗ ejn , (mod I).

The first term of the right-hand side is of lower index than the given monomial while the second is a
linear combination of monomials of lower degree. The result follows from the induction hypothesis.

We wish to show that the the cosets of 1 and the standard monomials are linearly independent and so
form a basis for Ug. For this purpose we introduce the vector space Vn with the basis ej1 · · ·ejn , i1 ≤ ... ≤ in
and the vector space V = K1⊕V1⊕V2⊕ ... The next claim will help us prove the independence we want.

Claim 2.6. There exists a linear mapping σ of T g onto V such that

σ (1) = 1 (3)

σ (ei1 ⊗ ei2 ⊗ ...⊗ ein) = ei1ei2 · · ·ein , if i1 ≤ ... ≤ in (4)

σ (ej1 ⊗ ...⊗ ejn − ej1 ⊗ ejk+1
⊗ ejk ⊗ ...⊗ ejn) = σ (ej1 ⊗ ...⊗

[
ejk , ejk+1

]
⊗ ...⊗ ejn) (5)

Proof. Set σ (1) = 1 and let Tn,jg be the subspace of Tng spanned by the monomials of degree n and index
less or equal to j. Suppose a linear mapping σ has already been defined for K1⊕ T1gg⊕ T1g⊕ ...⊕ Tn−1g

satisfying equations 4 and 5 for the monomials in this space. We extend σ linearly to K1⊕ T1g⊕ T1g⊕
...⊕Tn−1g⊕Tn,jg by requiring that σ (ei1 ⊗ ei2 ⊗ ...⊗ ejn) = ei1 · · ·ein for the standard monomials of degree n.
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Next assume thatσ has been defined for K1⊕ T1g⊕ T1g⊕ ...⊕ Tn−1g⊕ Tn,i−1g, satisfying 4 and 5 for the
monomials belonging to this space and let ej1 ⊗ ...⊗ ejn be of index i ≥ 1. Suppose jk > jk+1. Then we set

σ (ej1 ⊗ ...⊗ ejn) = σ (ej1 ⊗ ...⊗ ejk+1
⊗ ejk ⊗ ...⊗ ejn) + σ ((ej1 ⊗ ...⊗

[
ejk , ejk+1

]
⊗ ...⊗ ejn) (6)

This makes sense since the two terms on the right are in K1⊕ T1g⊕ T1g⊕ ...⊕ Tn−1g⊕ Tn,i−1g. We show
first that equation 6 is independent of the choice of the pair (jk , jk+1), jk > jk+1. Let (jl , jj+1) be a second
pair with jl > jl+1. There are essentially two cases: I. l > k + 1, II. l = k + 1.

I. Set ujk = u, ujk+1
= v, ujl = w, ujl+1

= x. Then the induction hypothesis permits us to write for the
right hand side of 6

σ (...v ⊗u...⊗ x⊗w....) + σ (...v ⊗u ⊗ ...⊗ [w,x]⊗ ...)
+ σ (... [u,v]⊗ ...⊗ x⊗w⊗ ...) + σ (...⊗ [u,v]⊗ ...⊗ [w,x]⊗ ...)

If we start with (jl , jl+1) we obtain

σ (...u ⊗ v ⊗ ...⊗ x⊗w⊗ ...) + σ (...⊗u ⊗ v ⊗ ...⊗ [w,x]⊗ ...) =

σ (...v ⊗u...⊗ x⊗w....) + σ (... [u,v]⊗ ...⊗ x⊗w⊗ ...)
+ σ (...v ⊗u ⊗ ...⊗ [w,x]⊗ ...) + σ (...⊗ [u,v]⊗ ...⊗ [w,x]⊗ ...)

This is the same as the value obtained before.

II. Set ujk = u, ujk+1
= v = ujl , ujl+1

= w. If we use the induction hypothesis we can change the right
hand side of 6 to

σ (...w⊗ v ⊗u...) + σ (... [v,w]⊗u...) + σ (...v ⊗ [u,w] ...) + σ (... [u,v]⊗w...)

Similarly, if we start with
σ (...u ⊗w⊗ v...) + σ (...u ⊗ [v,w] ...)

we can wind up with

σ (w⊗ v ⊗u...) + σ (...w⊗ [u,v] ...) + σ (... [u,w]⊗ v...) + σ (...u ⊗ [v,w] ...).

Hence we have to show that σ annihilates the following element of K1⊕ T1g⊕ ...⊕ Tn−1g:

(... [v,w]⊕u...)− (...u ⊕ [v,w] ...) + (...v ⊕ [u,w] ...)− (... [u,w]⊕ v....) + (... [u,v]⊕w...)− (...w⊕ [u,v] ...). (7)

Now, it follows easily from the properties of σ in K1⊕T1g⊕ ...⊕Tn−1g that if (...a⊗b...) ∈ Tn−1gwhere
a,b ∈ T1g, then

σ (...a⊗ b...)− σ (...b⊗ a...) + σ (... [a,b]) = 0 (8)

Hence σ applied to 7 gives

σ (... [[v,w] ,u] ...) + σ (... [v, [u,w]] ...) + σ (... [[u,v]w] ...) (9)

But this is zero because of Jacobi identity. Hence, in this case too, the right hand side of 6 is
uniquely determinated. We now apply 6 to define σ for the monomials of degree n and index
i. The linear extension of this mapping on Tn,ig gives a mapping on K1⊕ ...⊕ Tnig satisfying our
conditions. This completes the proof of the lemma.
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Now we can come back to the proof of the Birkhoff-Witt Theorem. Claim 2.5 shows that every coset
is a linear combination of 1 + I and the cosets of the standard monomials. Claim 2.6 gives us a linear
mapping σ of T g into V satisfying equations 4 and 5. It is easy to see that every element of the ideal I is
a linear combination of elements of the form

(ej1 ⊗ ...⊗ ejn)− (ej1 ⊗ ejk+1
⊗ ejk ⊗ ...⊗ ejn)− (ej1 ⊗ ...⊗

[
ejk , ejk+1

]
⊗ ...⊗ ejn).

Since σ maps these elements into 0, σ induces a linear mapping a linear mapping from Ug = T g/I to V .
Since equation 4 holds, the induced mapping send the cosets of 1 and the standard monomial ei1⊗ ...⊗ein
into 1 and ei1 · · ·ein respectively. Since these images are linearly independent in V we have the linear
independence in Ug of the cosets of 1 and the standard monomials. This completes the proof.

Corollary 2.7. The mapping i : g→Ug is injective and K1∩ i(g) = ∅.

Proof. If {ej} is a basis for g over K , then 1 = 1 + I and the cosets i(ej ) = ej + I are linearly independent.
This implies both statements.

Corollary2.7 implies that every Lie algebra g over K is isomorphic to a Lie subalgebra of a Lie algebra
of the form LΛ for some K-algebra Λ (in this case Λ =Ug)

Definition 2.8. A left g-module A is a K-vector space A together with a homomorphism of Lie algebras ρ : g→
L(EndKA).

We may think of the elements of g as acting on A and write x◦a for ρ(x)a, x ∈ g, a ∈ A so that x◦a ∈ A.
Then A is a left g-module and x ◦ a is K-linear in x and a. Note also that by the universal property of
Ug the map ρ induces a unique algebra homomorphism ρ1 : Ug→ EndKA, thus making A in a left Ug-
module. Conversely, if A is a left Ug-module, so that we have a structure map σ :Ug→ EndKA, it is also
a g-module using ρ = σ ◦ i. Thus the notion of g−module and Ug−module coincide.
An important phenomenon in the theory of Lie algebra is that the Lie algebra g itself may be regarded as
a left g−module. The structure map is written ad : g→ L(EndKg) and is defined by ad(x)y = [x,y] , x,y ∈ g.
A g−module is called trivial, i.e. if x◦a = 0 for all x ∈ g. It follows that a trivial g−module is just a K-vector
space. Conversely, any K-vector space may be regarded a a trivial g−module for any Lie algebra g.
The structure map of K, regarded as a trivial g-module, sends every x ∈ g into zero. The associated
(unique) algebra homomorphism ε : Ug → K is called the augmentation of Ug. The kernel Ig of ε is
called the augmentation ideal of Ug. Note that Ig is just the ideal of Ug generated by i(g).

3 Definition of Cohomology

Recall that a left resolution of a R-module M over ring R is a long exact sequence of R-modules:

· · · → P2
δ2−−→ P1

δ1−−→ P0
δ0−−→M→ 0

We say that this resolution is projective if each Pi , i = 0,1,2, ... is projective; meaning that the functor
Hom(Pi , ·) preserves exact sequences. With this in mind we may define the functor Ext. If C is another
R-module, apply Hom(·,C) to the chosen projective resolution of M, yielding

· · · ←Hom(P2,C)
Hom(δ2,C)
←−−−−−−−−−Hom(P1,C)

Hom(δ1,C)
←−−−−−−−−−Hom(P0,C)

Hom(δ0,C)
←−−−−−−−−− 0

with Hom(B,C) deleted as before. The nth homology of this is Extn(B,C). Again, even though directions
are reversed (since Hom(·,C) is contravariant), different projective resolutions give isomorphic homol-
ogy, and everything in sight is well defined.
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Example 3.1. Let M = Z/pZ and R = Z. As a projective resolution, use · · · → 0→ Z→ Z→M → 0. The
map from Z to Z is multiplication by p. Applying Hom(·,C) (and deleting the first term) gives

· · ·0← C
×p
←−− C 0←− 0,

so Ext0
Z

(M,C) ≈ {x ∈ C : px = 0} and Ext1
Z

(M,C) ≈ C/pC.

Definition 3.2. Given a Lie algebra g over K and a g−module A, we define the nth cohomology group of g with
coefficients in A by

Hn(g,A) = Extng (K,A), n = 0,1, ... (10)

where K is regarded, of course, as a trivial g−module.

Note that each Hn(g,A) is a K-vector space. We start by computing H0 and H1. For any g−module A,
H0(g,A) is by definition Homg(K,A). Now, an g−module homomorphism φ : K → A is determined by the
image of 1 ∈ K , φ(1) = a ∈ A. As K is regarded as a trivial module, we have that 0 = φ(0) = φ(x ◦1) = x ◦ a
for every x ∈ g. Then φ(1) = a defines a g−module homomorphism if and only if x ◦ a = 0. Consequently,

H0(g,A) = {a ∈ A : x ◦ a = 0, f or all x ∈ g};

we call this the the subspace of invariant elements in A and denote it by Ag.

In order to study the first cohomology group (we keep calling it group even though it is a K-vector
space) we define derivations.

Definition 3.3. A derivation from a Lie algebra g into a g−module A is a K-linear map d : g→ A such that

d [x,y] = x ◦ d(y) + y ◦ d(x).

We denote the K-vector space of all derivations by Der(g,A).

Note that if A is a trivial g−module, a derivation is simply a Lie algebra homomorphism where A is
regarded as an abelian Lie algebra. Also note that for a ∈ A fixed we obtain a derivation da : g→ A by
setting da(x) = x ◦ a. Derivations of this kind are called inner. The inner derivations in Der(g,A) clearly
form a K-vector subspace, which we denote bu Ider(g,A).

Theorem 3.4. The functor Der(g, ·) is represented by the g-module Ig , (the augmentation ideal) that is, for any
g−module A there is a natural isomorphism between the K-vector spaces Der(g,A) and Homg(Ig,A).

Proof. Given a derivation d : g→ A, we define a K-linear map f ′d : T g→ A by sending K = T 0g ⊂ T g into
zero and x1⊗ ...⊗xn into x1◦ (x2◦ ...◦ (xn−1◦dxn)...). Since d is a derivation f ′d vanishes on all the elements
of the form t ⊗ (x ⊗ y − y ⊗ x − [x,y]), x,y ∈ g and t ∈ T g. Since A is a g−module, f ′d vanishes in all the
elements of the form t1 ⊗ (x ⊗ y − y ⊗ x − [x,y])⊗ t1, for x, y ∈ g and t1, t2 ∈ T g. Thus f

′

d defines a map
fd : Ig→ A, which is by definition a g-module homomorphism.
On the other hand, if f : Ig→ A is given, we extend f to Ug by setting f (K) = 0 and then we define a
derivation df : g→ A by df = f i, where i : g→Ug is the canonical map.

1. We check that f(df ) = f . Viewing Ig as an g−module we have that f (x1⊗ ...⊗xn) = f (x1⊗ ...⊗ i(xn)) =
x1 ◦ (x2 ◦ ... ◦ (xn−1 ◦ f i(xn))) = x1 ◦ (x2 ◦ ... ◦ (xn−1 ◦ df (xn))) = fdf (x1 ⊗ ...⊗ xn).

2. We check that d(fd ) = d. This is easily seen because dfd (x) = fdi(x) = d(x) for all x ∈ g.
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3. And finally, we check that the map f 7→ df is K-linear. Just note that dλf1+f2(x) = (λf1 + f2)i(x) =
λf1i(x) + f i(x) = λdf1(x) + df2(x) for all x ∈ g.

If the take the following free resolution of K

0→ Ig→Ug→ K → 0,

then given a g−module A, we obtain that

H1(g,A) = coker(Homg(Ug,A)→Homg(Ig,A)).

Hence H1(g,A) is ismomorphic to the vector space of derivation from g into A modulo those that arise
from g−module homomorphism f : Ug→ A. If f (1Ug) = a, then clearly df (x) = x ◦ a, so that these are
precisely the inner derivations. Note that any a ∈ A defines an inner derivation da : g→ A that can be
lifted to a g−module homomorphism fda : Ug→ A using the technique in Theorem 3.4, and in this case
fda(1Ug) = a.

Proposition 3.5. H1(g,A) �Der(g,A)/Ider(g,A). If A is a trivial g−module, H1(g,A) �HomK (g/ [g,g] ,A).

Proof. In the previous discussion we showed the first assertion, so it only remains to prove the second
one. Since A is trivial, there are no nontrivial inner derivations, and a derivation d : g→ A is simply a
Lie algebra homomorphism, A being regarded as an abelian Lie Algebra.

4 A resolution for K

In this section we describe a convenient resolution for the ground field K. For any K-vector space V, and
n > 0, we define EnV to be the quotient of the n-fold tensor product of V, that is, TnV , by the subspace
generated by

x1 ⊗ x2 ⊗ ...⊗ xn − (signσ )xσ1 ⊗ xσ2 ⊗ ...⊗ xσn,

for x1, ...,xn ∈ V , and all permutation σ of the n-symmetric group. We shall use 〈x1, ...,xn〉 to denote an
element of EnV corresponding to x1 ⊗ ...⊗ xn. Clearly we have

〈x1, ...,xi , ...,xj , ...,xn〉 = −〈x1, ...,xj , ...,xi , ...,xn〉.

Note that E1V � V , and set E0V = K . Then EnV is called the nth exterior power of V and the graded
K-algebra EV =

⊕∞
n=0EnV , with multiplication induced by that in T V , is called the exterior algebra on

the vector space V.
Now let g be a Lie algebra over K, and let V be the underlying vector space of g. Denote by Cn the
g−module Ug⊗K EnV , n = 0,1, .... For short we shall write u〈x1, ....,xn〉 for u⊗〈x1, ....,xn〉, u ∈Ug. We have
the following result available in [2], page 243.

Fact 4.1. Let Cn = Ug ⊗K EnV where V is the vector space underlying g, and let dn : Cn → Cn−1 be the
g−module maps defined by

dn(〈x1, ...,xn〉) =
n∑
i=0

(−1)i+1xi〈x1, ..., x̂i , ...,xn〉

+
∑

1≤i<j≤n
(−1)i+j〈

[
xi ,xj

]
,x1, ..., x̂i , ..., x̂j , ...,xn〉.
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then the sequence

· · · → Cn
dn−−→ Cn−1→ ·· · → C0

ε−→ K → 0

is a g−free resolution of the trivial g−module K.

5 Semi-simple Lie Algebras

In this section we review some results from the Lie theory. In the whole of this section g will denote a
finite-dimensional Lie algebra over a field K of characteristic 0. Also, A will denote a finite-dimensional
g−module.

Definition 5.1. To any Lie algebra g and any g−module A we define ans associated bilinear form β from g

to K as follows. Let ρ : g → L(EndKA) be the structure map of A. If x,y ∈ g then ρx and ρy are K-linear
endomorphisms of A. We define β(x,y) to be the trace of the the endomorphism (ρx)(ρy),

β(x,y) = T r((ρx)(ρy))

Clearly this is a bilinear symmetric form. Recall that if A = g then the associated bilinear form is
called the Killing form of g. Also note that the associated bilinear form is associative, i.e.

β([x,y] , z) = T r((ρxρy − ρyρx)ρz) = T r(ρx(ρyρz − ρzρy)) = β(x, [y,z])

Definition 5.2. Given a Lie algebra g, we defined its derived series g0, g1,... inductively by

g0 = g, gn+1 = [gn,gn] , n = 0,1, ...

A lie algebra is called solvable if there is an integer n ≥ 0 with gn = {0}.

The following is an important result of the theory of Lie algebras. It is known as the Cartan’s criterion
for solvable lie algebras. A proof is accessible in [3], page 68.

Theorem 5.3. (Cartan’s criterion for solvability) Suppose g has finite dimensional module A such that

1. The kernel of the structure map ρ is solvable.

2. T r((ρx)2) = 0 for every x ∈ [g,g].

Then g is solvable.

Definition 5.4. A Lie algebra g is called semi-simple if {0} is the only abelian ideal of g.

The following is a rather deep result related with the Cartan’s criterion for solvability of Lie algebras.
It is a key fact for what is next.

Theorem 5.5. Let g be semi-simple (over a field characteristic 0), and A be a g−module. If the structure map
ρ is injective, then the bilinear form β corresponding to A is non-degenerate.

Proof. Let S be the kernel of the associate bilinear form β; that is, the set of all z ∈ g such that β(x,z) = 0
for all x ∈ g. Since β(a, [z,b]) = −β([ab] , z) we see that S is an ideal of g. Then, by the Cartan criterion for
solvability (Theorem 5.3) S is solvable because T r((ρx)2) = 0 for every a ∈ S and ρ is injective. Since g is
semi-simple, S = {0} which implies that β is non-degenerate.
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Corollary 5.6. The Killing form of a semi-simple Lie algebra is non-degenerate.

Proof. The structure map ad : g→ L(EndKg) of the g−module g has the center of g as kernel. Since the
center is an abelian ideal, is is trivial. Hence ad is injective.

Corollary 5.7. Let a be and ideal in the semi-simple Lie algebra g. Then there exists an ideal b of g such that
g = a⊕ b, as Lie algebras.

Proof. Define b to be the orthogonal complement of a with respect to the killing form β. Clearly it is
sufficient to show (i) that b is an ideal and (ii) that a∩ b = {0}. To prove (i) let x ∈ g, a ∈ a and b ∈ b. We
have that β(a, [x,b]) = β([a,x] ,b) = β(a′ ,b) = 0, where [a,x] = a′ ∈ a. Hence for all x ∈ g, [x,b] ∈ b so that b is
an ideal. To prove (ii) let x,y ∈ a∩ b, z ∈ g; then β([x,y] , z) = β(x, [y,z]) = 0, since [y,z] ∈ b and a ∈ a. Since
β is non-degenerate it follows that [x,y] = 0. Thus a∩ b is an abelian ideal of g, hence trivial.

Corollary 5.8. If g is semi-simple, then every ideal a in g is semi-simple also.

Proof. Since g = a⊕ b by Corollary 5.7, every ideal a′ in a is also an ideal in g. In particular if a′ is an
abelian ideal, it follows that a′ = 0.

We now return to the cohomology theory of Lie algebras. Recall that the ground field K is assumed
to have characteristic 0.

Theorem 5.9. (Whitehead’s Theorem) Let A be a (finite-dimensional) simple module over the semi-simple
Lie algebra g with non-trivial g-action. Then Hq(g,A) = 0 for all q ≥ 0.

Proof. Let the structure map ρ : g→ L(EndKA) have kernel h′ . By Corollary 5.7, h′ has a compliment h
in g, which is non-zero because A is non-trivial. Since h is semi-simple by Corollary 5.8, and since ρ
restricted to h is injective, the associated bilinear form β is non-degenerate by Theorem 5.5. Note that β
is the restriction to h of the bilinear form on g associated with ρ. By linear algebra we can choose K-bases
{ei}, i = 1, ...,m, and {e′j}, j = 1, ...,m, of h such that β(ei , e′j ) = δij . We now prove the following assertions:

1. If x ∈ g and if [ei ,x] =
∑m
k=1 cikek and

[
x,e′j

]
=

∑m
l=1djle

′
l , then

cij = dji .

Proof. β([ei ,x] , e′j ) = β(
∑
cikek , e

′
j ) = cij ; but β([ei ,x]) = β(ei ,

[
x,e′j

]
) = β(ej ,

∑
djle

′
l) = dji .

2. Then element
∑m
i=1 eie

′
i ∈Ug is in the center ofUg; hence for any g−module B the map t = tB : B→ B

defined by t(b) =
∑m
i=1 ei ◦ (e′i ◦ b) is a g−module homomorphism.

Proof. Let x ∈ g, then

x

∑
i

eie
′
i

 =
∑
i

(
[x,ei]e

′
i + eixe

′
i

)
= −

∑
i,k

cikeke
′
i +

∑
i

eixe
′
i = −

∑
i,k

dkieke
′
i +

∑
k

ekxe
′
k

+ −
∑
k

ek
[
x,e′k

]
+
∑
k

ekxe
′
k =

∑∑
k

eke
′
k

x
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It is clear that, if φ : B1→ B2 is a homomorphism of g−modules, then tφ = φt.

3. Consider the resolution ...→ Cn → Cn−1 → ...→ C0 of the Theorem 4.1. The homomorphism tCn
defines a chain map τ of the chain into itself. We claim that τ is chain-homotopic ti the zero map.

Proof. We have to find maps Σn : Cn→ Cn+1, n = 0,1, ... such that d1Σ0 = τ0 and dn+1Σn +Σn−1dn =
τn, n ≥ 1. Define Σn to be the g−module homomorphism given by

Σ〈x1, ...,xn〉 = σmk=1ek〈e
′
k ,x1, ....,xn〉.

The assertion is the proved by the following computation (k varies from 1 to m; i,j vary from 1 to
n):

(dn+1Σn +Σn−1dn)〈x1, ...,xn〉 =
∑
k

ekek′〈x1, ...,xn〉+
∑
i,k

(−1)iekxi〈e′k ,x1, ....,xi , ...,xn〉

+
∑
i,k

(−1)iek〈
[
e′k ,xi

]
, ..., x̂i , ...,xn〉

+
∑
k,i<j

(−1)i+jek〈
[
xi ,xj

]
, e′k ,x1, ..., x̂i , ..., x̂j , ...,xn〉

+
∑
i,k

(−1)i+1xiek〈e′k ,x1, ..., x̂i , ...,xn〉

+
∑
k,i<j

(−1)i+jek〈ek′ ,
[
xi ,xj

]
, ,x1, ..., x̂i , ..., x̂j , ...,xn〉

= τn〈x1, ...,xn〉+
∑
i,k

(−1)i〈e′k ,x1, ..., x̂i , ...,xn〉

+
∑
i,k

(−1)iek〈
[
e′k ,xi

]
,x1, ..., x̂i , ...,xn〉

Using that cij = dji as in assertion 1. we see that the two latter sums cancel each other, and thus
assertion 3. is proved

Consider now the map t = tA : A→ A and the induced map

t∗ :Hq(g,A)→Hq(g,A).

By the nature of tA (see final remark in assertion 2.), it is clear that t∗ may be computed as the map
induced by τ : C → C. Hence, by assertion 3., t∗ is the zero map. On the other hand t : A → A must
either be an automorphism or teh zero map since A is simple, but it cannot be the zero map, because the
trace of the linear transformation t equals

∑m
i=1β(ei , e′i) =m , 0. Hence it follows that Hq(g,A) = 0 for all

q ≥ 0.

Theorem 5.10. (The first Whitehead Lemma) Let g be a finite dimensional semi-simple Lie algebra and let
A be a finite dimensional g−module. Then H1(g,A) = 0.

Proof. Suppose there is a g−module A with H1(g,A) , 0. Then there is such a g−module A with minimal
K-dimension. If A is not simple, then there is a proper submodule 0 , A′ = A. Consider 0→ A′ → A→
A/A′→ 0 and the associated long exact cohomology sequence

· · · →H1(g,A′)→H1(g,A)→H1(g,A/A′)→ ·· · .
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Since dimKA′ < dimKA and dimKA/A′ < dimKA is follows that

H1(g,A′) =H1(g,A/A′) = 0.

Hence H1(g,A) = 0, which is a contradiction. It follows that A has to be simple. But then A has to be a
trivial g−module by Theorem 5.9. We then have thatH1(g,A) �Hom(g/ [g,g] ,A) by Proposition 3.5. Now
consider

0→ [g,g]→ g→ g/ [g,g]→ 0.

By Corollary 5.7 the ideal [g,g] has a complement which plainly must be isomorphic to g/ [g,g] , in par-
ticular it must be abelian. Since g is semi-simple, g/ [g,g] = 0. Hence H1(g,A) � HomK (g/ [g,g] ,A) = 0,
which is a contradiction. It follows that H1(g,A) = 0 for all g−modules A.

Corollary 5.11. (Weyl) Every (finite-dimensional) module A over a semi-simple Lie algebra g is a direct sum
of simple g−modules.

Proof. Using induction on the K-dimension of A, we have only to show that every non-trivial submodule
=, A′ ⊂ A is a direct summand in A. To that end we consider the short exact sequence

0→ A′→ A→ A′′→ 0 (11)

and the induced sequence

0→HomK (A′′ ,A′)→HomK (A,A′)→HomK (A′ ,A′)→ 0, (12)

which is exact since K is a field. We remark that each of the vector spaces in 12 is finite-dimensional
and can be made into a g−module by the following procedure. Let B,C be g−modules; then Hom(B,C) is
a g−module by (xf ) (b) = xf (b)− f (bx), x ∈ g, b ∈ B. With this in mind, 12 becomes an exact sequence of
g−modules. Note that the invariant elements in Homk(B,C) are precisely the g−module homomorphism
from B to C. Now consider the long exact cohomology sequence arising from 12

0→H0(g,Hom(A′′ ,A′))→H0(g,HomK (A,A′))→H0(g,HomK (A′,A
′
))→H1(g,HomK (A′′ ,A′)→ ... (13)

By Theorem 5.10, H1(g,HomK (A′′ ,A′)) is trivial. Passing to the interpretation of H0 as the group of
invariant elements, we obtain a surjective map

Homg(A,A
′)→HomK (A′ ,A′).

If follows that there is a g−module homomorphism A→ A′ inducing the identity in A′; hence 11 splits
which is what we wanted.

We proceed with the proof of the the second Whitehead Lemma. First, we need some additional no-

tions. Let 0→ A
i−→ g

p
−→ h→ 0 be an extension of Lie algebras over K, with abelian kernel A. If s : h→ g

us a section, that is, a K-linear map such that ps = 1h, we can define iA, and hence in A, an h−action
structure by x ◦ ia = [sx, ia] for a ∈ A, x ∈ h, where [ , ] denotes the bracket in g. This h−action defined on
A does not depend upon the choice of section s. Indeed if s′ is another section then sx−s′x lies in A since
p(sx − s′x) = 0 and as A is commutative the action of sx − s′x in A is trivial. This h−module structure on
A is called the h−module structure induced by the extension.
An extension of h by an h−module A is an extension of Lie algebras 0→ A→ g→ h→ 0, with abelian
kernel, such that the given h−module structure in A agrees with the one induced by the extension.
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We shall call two extensions 0 → A → g → h → 0 and 0 → A → g′ → h → 0 equivalent, if there a Lie
algebra isomorphism f : g→ g′ such that the diagram

A → g � h

‖ ↓ ‖
A → g′ � h

(14)

commutes. We denote the set of equivalence classes of extensions of h by A by M(h,A). By the above,
M(h,A) contains at least one element, the equivalence class containing the semi-direct product 0→ A→
A× h→ h→ 0. With this all we have the following fact that can be found in [2] page 238 Theorem 3.3.

Theorem 5.12. (and definition) There is a one-to-one correspondence between H2(h,A) and the set M(h,A) of
equivalence classes of extensions of h by A. The set M(h,A) has a natural K-vector space structure whose zero

element is the class containing the semi-direct product A
iA−−→ A × h

ph−−→ h which splits by ih : h→ A × h. The
bracket is defined by [(a,x), (b,y)] = (x ◦ b − y ◦ a, [x,y]).

Proof. Let 0→ A→ g→ h→ 0 be an extension of Lie algebras over K. Let s : h→ g be a section, that is, a
K-linear map with ps = Idh (here p stands for the projection g→ h), so that as K-vector spaces g = A⊕ h.
Then the Lie algebra structure of g may be described by a K-bilinear function h : h × h→ A defined by
h(x,y) = [sx, sy]− s [x,y] , x,y ∈ h, because over A⊕ h we may define a bracket

[(a,x), (b,y)] = (x ◦ b − y ◦ a+ h(x,y), [x,y])

wich coincides with the bracket in g since the adjoint action of g over A induces a g−module structure
on A.
Note that h is a 2-cocycle in Homh(C,A) where C is the resolution of Fact 4.1 for the Lie algebra h. In
fact, because of the definition and the Jacobi identity we have

dh(x1,x2,x3) = x1 ◦ h(x2,x3)− x2 ◦ h(x1,x3) + x3 ◦ h(x1,x2)

− h([x1,x2] ,x3)− h([x2,x3] ,x1) + h([x1,x3] ,x2)

= [sx1, [sx2, sx3]] + [sx2, [sx3, sx1]] + [sx3, [sx1, sx2]]

− s [x1, [x2,x3]]− s [x2, [x3,x1]]− s [x3, [x1,x2]] = 0

Moreover notice that if s1 and s2 are two sections then we have for the associated bilinear functions that
h1 − h2 = d(s1 − s2), which means that h is defined up to a boundary. This comes from the fact that,

d(s1 − s2)(x,y) = x ◦ (s1 − s2)y − y ◦ (s1 − s2)x − (s1 − s2) [x,y]

= [s1x, (s1 − s2)y]− [s2x, (s1 − s2)y]− (s1 − s2) [x,y]

= ([s1x,s1y]− s1 [x,y])− ([s2x,s2y]− s2 [x,y])

= h1(x,y)− h2(x,y)

where we have made use of the fact that the action does not depend on the choice of the section.
Now, let A be a h−module. To each 2-cocycle h ∈ Z2(h,A) we associate a Lie algebra A⊕h h as the vector
space A⊕ h endowed with the Lie bracket

[(a,x), (b,y)] = (x ◦ b − y ◦ a+ h(x,y), [x,y]).

The quotient map p : A⊕h h→ h, (a,x) 7→ x is a Lie algebra homomorphism with kernel A, hence define
a A-extension of h. The map x 7→ (0,x) is section of p. Then we have defined a map

Z2(h,A) → M(h,A)

h 7→ A⊕h h

12



By the previous discussion it is a surjective map. Now let us show that its kernel consists of boundaries
B2(h,A), that is, A⊕h h and A⊕h′ h are isomorphic extensions if and only if h− h′ is a boundary. Suppose
that f : A⊕h h→ A⊕h′ h is an isomorphism of extensions, then we know that f (a,0) = (a,0) and that there
exist a K-linear map mf : h→ A such that f (0,x) = (mf (x),x). We have the following:

dmf (x,y) = x ◦mf (y)− y ◦mf (x)−mf ([x,y])

= h(x,y)− h′(x,y)

because (h(x,y),0) + f (0, [x,y]) = (h(x,y) +mf ([x,y])) = f [(0,x), (0, y)] = [f (0,x), f (0, y)] = (x ◦mf (y) − y ◦
mf (x) + h′(x,y), [x,y]). This means that h− h′ is a boundary.
Conversely , if h − h′ is a boundary, there exist a K-linear map ω : h→ A such that dω = h − h′ , then the
map fω : A⊕h h→ A⊕h′ h defined by fω(a,x) = (a+ω(x),x) is an A-extension isomorphism. This implies
that

H2(h,A) = Z2(h,A)/B2(h,A)→M(h,A)

[h] 7−−−−−−−−−−−−→A⊕h h

is an isomorphism. This concludes the proof.

Now we a ready to prove the second Whitehead Lemma.

Corollary 5.13. (The second Whitehead Lemma) Let g be a semi-simple Lie algebra and let A be a (finite-
dimensional) g−module. Then H2(g,A) = 0.

Proof. Suppose there is a module A with H2(g,A) , 0. Then there is such a g−module with minimal K-
dimension. If A is not simple, then there is a proper submodule 0 , A′ ⊂ A. Consider 0→ A′ → A→
A/A′→ 0 and the associated long exact sequence in cohomology

· · · →H2(g,A′)→H2(g,A)→H2(g,A/A′)→ ·· · .

Since A′ is a proper submodule, the minimality property of A leads to the contradiction H2(g,A) = 0.
Hence A has to be simple. But then A has to be a trivial g−module by Proposition 5.9. Since K is the only
simple trivial g−module, we have to show that H2(g,K) = 0. This will yield the desired contradiction.
By the interpretation of H2 given by Theorem 5.12, we have to show that every central extension

0→ K
i−→ h

p
−→ g→ 0

of the Lie algebra g splits.
Let s : g→ h be a K-linear section such that ps = 1g, which exists if we regard h and g as vector spaces.
Using the section s, we define, in the K-vector space underlying h, a g−module structure by

x ◦ y = [sx,y] , x ∈ g, y ∈ h

where the bracket is in h. Note that since p is a Lie algebra homomorphism and ps = 1g we have that
s ([x,x′])−[sx, sx′] ∈ iK. So that for x,x′ ∈ g, y ∈ hwe have x′◦(x◦y)−x◦(x′◦y) = [s [x′ ,x] , y]+[ik,y] = [x′ ,x]◦y
where k ∈ K. Clearly K is a submodule of the g−module h so defined.
Now regard h as a g−module. By Corollary 5.11 K is a direct summand in h, say h = K ⊕ h′ . If x,x′ ∈ h′
and k,k′ ∈ K then [x′ + k′ ,x+ k] = [x′ ,x] which means that [x′ ,x] ∈ h′ .Hence h′ is a Lie subalgebra of h and
must be isomorphic to g. Consequently, h � K ⊕ g and the central extension of we proposed above splits
as we wanted.
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