The Complexity of Satisfiability Problems:
Refining Schaefer’s Theorem*

Eric Allender!, Michael Bauland?, Neil Immerman®, Henning Schnoor?, and
Heribert Vollmer®

! Department of Computer Science, Rutgers University, Piscataway, NJ 08855,
allender@cs.rutgers.edu
2 Theoretische Informatik, Universitét Hannover, Appelstr. 4, 30167 Hannover,
Germany. bauland@thi.uni-hannover.de
3 Department of Computer and Information Science, University of Massachusetts,

Ambherst, MA 01003, immerman@cs.umass.edu

4 TInstitut fiir Informatik, Christian-Albrechts-Universitat zu Kiel, 24098 Kiel,
Germany schnoor@ti.informatik.uni-kiel.de

5 Corresponding author: Theoretische Informatik, Universitat Hannover,
Appelstr. 4, 30167 Hannover, Germany. vollmer@thi.uni-hannover.de.
Phone: +49 511 762 19768. Fax: +49 511 762 19606.

* Supported in part by DFG grants Vo 630/5-1/2, Vo 630/6-1, and NSF Grants CCF-
0514155, DMS-0652582, CCF-0830133, CCF-0832787, and CCF-0514621.

Abstract. Schaefer proved in 1978 that the Boolean constraint satis-
faction problem for a given constraint language is either in P or is NP-
complete, and identified all tractable cases. Schaefer’s dichotomy theo-
rem actually shows that there are at most two constraint satisfaction
problems, up to polynomial-time isomorphism (and these isomorphism
types are distinct if and only if P # NP). We show that if one con-
siders AC" isomorphisms, then there are exactly six isomorphism types
(assuming that the complexity classes NP, P, L, NL, and L are all dis-
tinct). A similar classification holds for quantified constraint satisfaction
problems.

Keywords: Computational Complexity, Constraint Satisfaction Problem,
Propositional Satisfiability, Clone Theory

1 Introduction

In 1978, Schaefer classified the Boolean constraint satisfaction problem and
showed that, depending on the allowed relations in a propositional formula, the
problem is either in P or is NP-complete [Sch78]. This famous “dichotomy theo-
rem” does not consider the fact that different problems in P have quite different
complexity, and there is now a well-developed complexity theory to classify dif-
ferent problems in P. Furthermore, in Schaefer’s original work (and in the many
subsequent simplified presentations of his theorem [CKS01]) it is already appar-
ent that certain classes of constraint satisfaction problems are either trivial (the
0-valid and 1-valid relations) or are solvable in NL (the bijunctive relations) or
@®L (the affine relations), whereas for other problems (the Horn and anti-Horn re-
lations) he provides only a reduction to problems that are complete for P. Is this
a complete list of complexity classes that can arise in the study of constraint sat-
isfaction problems? Given the amount of attention that the dichotomy theorem
has received, it is surprising that no paper had addressed the question of how to
refine Schaefer’s classification beyond some steps in this direction in Schaefer’s
original paper (see [Sch78, Theorem 5.1]), prior to a preliminary version of the
current work [ABIT05]. Subsequently, there have been some efforts to refine the
classification of non-Boolean constraint satisfaction problems [Dal05,LT07].

Our own interest in this question grew out of the observation that there
is at least one other fundamental complexity class that arises naturally in the
study of Boolean constraint satisfaction problems that does not appear in the list
(NL, ®L, P) of nontrivial feasible cases identified by Schaefer. This is the class SL
(symmetric logspace) that has recently been shown by Reingold to coincide with
deterministic logspace [Rei05]. (Theorem 5.1 of [Sch78] does already present
examples of constraint satisfaction problems that are complete for SL.) Are
there other classes that arise in this way? We give a negative answer to this
question. If we examine constraint satisfaction problems using AC® reducibility
Sf‘nco, then we are able to show that the following list of complexity classes is
exhaustive: Every constraint satisfaction problem not solvable in coONLOGTIME
is isomorphic to the standard complete set for one of the classes NP, P, &L, NL, or
L under isomorphisms computable and invertible in AC°. (Definitions of notions
such as coNLOGTIME and ACY can be found in Section 2)

Our proofs rely heavily on universal algebra (in particular, the theory of
polymorphisms and clones) and its consequences concerning the complexity of
constraints. An introduction to this connection can be found in [Pip97], and in
the surveys [BCRV03,BCRV04]. A more general introduction to clones on non-
Boolean domains is [Lau06]. A thorough introduction, including applications to
the area of constraint satisfaction problems (including CSPs with infinite do-
mains) can be found in [CJ06]. In the next section we recall some of the relevant
definitions and state, as facts, some of the required results in this area. One of
the contributions of this paper is to point out that, in order to obtain a complete
classification of constraint satisfaction problems (up to ACP isomorphism) it is
necessary to go beyond the partition of constraint satisfaction problems given
by their polymorphisms, and examine the constraints themselves in more detail.

2 Preliminaries

We assume that the reader is familiar with the standard complexity classes
NP, P,NL, L, and AC; detailed definitions and background material on these
classes can be found in [Vol99,HO02]. The class @®L is perhaps less familiar; it
contains decision problems that can be solved by nondeterministic logspace ma-
chines, where an instance is accepted if the number of accepting paths of the ma-
chine is even. The very small complexity class AC? consists of all languages that
are accepted by alternating Turing machines running in logarithmic time and
making O(1) alternations; this is the class that is called ATIME-ALT(logn, 1) in
the text by Vollmer [Vol99]. ACY also can be defined as the class of languages ac-
cepted by uniform polynomial-size constant-depth families of unbounded fan-in
AND and OR gates. Alternatively, in the framework of finite model theory, AC®
is equivalent in expressive power to first-order logic, and thus AC® is sometimes
denoted by FO. In particular, AC® reductions are also known as FO-translations.
See the text by Immerman [Imm99] for more on the connection between first-
order logic and AC®. The smallest complexity class to which we will refer is
coNLOGTIME, a small subclass of AC®. coNLOGTIME consists of the comple-
ments of all languages accepted by nondeterministic Turing machines (having
random access to their input tape) that run for time O(logn) on inputs of length
n.

An n-ary Boolean relation is a subset of {0,1}™. For a set V of variables, a
constraint application C' is an application of an n-ary Boolean relation R to an
n-tuple of variables (z1,...,x,) from V. An assignment I: V — {0,1} satisfies
the constraint application R(z1,...,z,) if and only if (I(z1),...,I(z,)) € R.
We may use a propositional formula, ¥ (z1,...,x,), to define the relation R, =
{(a17~~'7an) ‘ 1/1(0417-~70¢n) = 1}

A constraint language is a finite set of nonempty Boolean relations. The
Boolean Constraint Satisfaction Problem over a constraint language I" (CSP(I"))
is the question of whether a given set ¢ of Boolean constraint applications using
relations from I is simultaneously satisfiable, i.e., if there exists an assignment
I:V — {0,1}, such that I satisfies every C' € . It is easy to see that the Boolean
CSP over some language I is the same as satisfiability of conjunctive I'-formulas.
For example, consider 3SAT: a well-known restriction of the general satisfiability
problem. 3SAT can be seen to be the CSP over the language I'ssat = {(z1 V
xo Vag), (TTVaa Vas),(TIVITVas), (T VI VE3)}.

We now summarize some of the results concerning the very useful connection
between the complexity of the CSP and universal algebra, referring the reader
to [Pip97,BCRV03,BCRV04] for details.

A class of Boolean functions is a clone, if it contains all projection functions
and is closed under composition. [B] denotes the smallest clone containing the
set of Boolean functions B. Equivalently, [B] is the set of Boolean functions that
can be calculated by Boolean circuits using only gates for functions from B.

The set of clones forms a lattice with [B]M[C] = [B] N [C] and [B] U [C] =
[BUC]. Emil Post [Pos20,Pos41] identified all clones and their inclusion struc-
ture (Figure 1). A description of the clones and a list of bases for each one can

be found in Table 1. For a description of the properties of the clones arising here,
see, e.g., [BCRV03].

Recall that we are interested in studying the complexity of CSP(I") for var-
ious sets of Boolean relations, I'. The following definition connects such a set of
Boolean relations, I, to the clone, Pol(I).

Definition 2.1. A k-ary relation R is closed or invariant under an n-ary
Boolean function f, and f is a polymorphism of R, if and only if for all
T1,...,Tn € R with x; = (z;[1], z:[2], ..., x5[k]), we have

(f(xi[1], .. zn1]), f(z1]2], .-y 2n[2]), . .o, fai[R], - .., 20]K])) € R.

We denote the set of all polymorphisms of R by Pol(R), and for a set I' of
Boolean relations we define Pol(I") = {f | f € Pol(R) for every R € I'}. For a
set B of Boolean functions, Inv(B) = {R | B C Pol(R)} is the set of invariants
of B.

Recall that a conjunctive query over I is a relation of the form
R(z1,...,xzn) = Fy1,--YmPRi(z115 5 20m) A - ARK(Zk15 -+, Zhon)

where R; € I" and z; j € {1,...,Zn,Y1,...,Ym}. Define COQ(I") to be the set
of all conjunctive queries over I'. Define the co-clone generated by I': (I') =
COQ(I'U{=}). In other words, (I") is the set of relations that can be expressed
as a primitive positive formula with clauses from I

For any set of relations, I', every projection is a polymorphism of I, and the
composition of two polymorphisms is a polymorphism. Thus Pol(I") is a clone.
It is similarly not hard to see that Inv(B) is always a co-clone. The following
fact summarizes the properties of the Galois connection between the lattices of
clones and co-clones, see, e.g., [Gei68]. It first has been applied in the context of
constraint satisfaction problems by Jeavons, Cohen, and Gyssens in [JCG97].

Fact 2.2 For any sets of Boolean functions, B, B', and Boolean relations, S, S’,
the following hold:

1. Inv(Pol(S)) = (S)
2. Pol(Inv(B)) = (B)
3. 85CS = Pol(S) CPol(S)
J. BCB = Iuw(B)Cuv(B)

The concept of relations closed under certain Boolean functions is interest-
ing, because many properties of Boolean relations can be equivalently formulated
using this terminology. For example, a set of relations can be expressed by Horn-
formulas if and only if every relation in the set is closed under the binary AND
function. Horn is one of the properties that ensures the corresponding satisfi-
ability problem to be tractable. More generally, tractability of formulas over a
given set of relations only depends on the set of its polymorphisms.

Name||Definition Base
BF ||All Boolean functions {V, A, -}
Ro {f € BF | f is O-reproducing } {N, @}
Ri {f € BF | f is l-reproducing } {V, <}
Ro Ri1iNRo {\/,a;/\(y<—>z)}
M {f € BF | f is monotonic } {V,A,0,1}
M; |[MNR; {V,A, 1}
Moy [[MNRo {V,A,0}
Mz |IMNRs {V,A}
o {f € BF | f is O-separating of degree n} {—,dual(h,)}
So {f € BF | f is O-separating } {—=}
T {f € BF | f is 1-separating of degree n} {x AT, hn}
S1 {f € BF | f is 1-separating } {z N7}
Stz ||So NRa {zV (y AZ),dual(h,)}
So2 So NRe {zV(ynz)}
S61 |[S6 N M {dual(h,),1}
So1 SoN'M {x\/(y/\z), }
S0 |[Sc NR2N'M {zV (y A z),dual(h,)}
Soo SoNRaNM {x\/(y/\z)}
o |IST N Rz {x AN (yVz),hnt
Si2 S1 NRe {zA(yVZ)}
T ST NM {hn,0}
S11 SiNM {x/\(y\/z),O}
To |ISTNR2NM {z A (yVz2),hn}
S10 SiNRanNM {fL’/\(y\/Z)}
D {f | f is self-dual} {zy V 2z V 3z}
D, DNRs {zy V 2z V yz}
D, DNM {zy VyzVaz}
L {f | f is linear} {®,1}
Lo LNRo {@}
L1 L N Rl {H}
Lo LNR {rdyd =z}
L3 LND {rPy®2zd1}
A% {f | f is constant or a n-ary OR function} [|{V,0,1}
Vo {V}]U[{0} {Vv,0}
\Y! {VHU[{1} {Vv,1}
Vo [[Vl] %
E {f | f is constant or a n-ary AND function}|[{A,0,1}
Eo |[{A}U{0}] {n, 0}
Er J[{AN UL {A 1}
Eo {n} {n}
N {= U0} u[{1}] {= 1}
No |[{~}] {=}
I {id}JU [{0} U [{1}] {id, 0,1}
To {id}] U [{0} {id, 0}
L [{id}] U [{1}] {id, 1}
Iz [{id}] {id}

Table 1: List of all closed classes of Boolean functions, and their bases
TANTi—1 NTigp1 Ao

hn(azl, - 7~Tn+l) = \/7L+11 1 N T2 N -

6

N Tn41

Corollary 2.3. Let Iy and Iy be sets of Boolean relations such that I is finite
Proof. Since Pol(I) C Pol(I7), we know from Fact 2.2 (parts 1 and 4) and from
the definition of co-clone, that I'T C COQ(I3 U {=}). Thus, in polynomial time,
we can translate any element of CSP(I7) to an equivalent element of CSP(I%).
(The equality constraints can be removed in polynomial time by choosing one
representative variable for those variables constrained to be equal to it.)

The most general constraint language, I', is such that Pol(I") is the minimal
clone, i.e., the clone containing only projection functions. In this case, (I') is
the set of all Boolean relations. For any such I', CSP(I") is NP-complete. For
example, it can be shown that Pol(I'3sar) contains only the projections, and
hence 3SAT is NP-complete.

As we have seen in the above corollary, the complexity of the CSP for a
given constraint language is determined by the set of its polymorphisms. At
least this is the case when considering gross classifications of complexity (such
as whether a problem is in P or is NP-complete). However, when we examine
finer complexity classifications, such as determining the circuit complexity of a
constraint satisfaction problem, then the set of polymorphisms of a constraint
language I' does not completely determine the complexity of CSP(I"), as can
easily be seen in the following important example:

Ezample 2.4. Let It = {Z,z}, Iy = I U{=}. It is obvious that Pol(I}) =
Pol(I%); the set of polymorphisms is the clone Ry. Formulas over I'; only contain
clauses of the form x or T for some variable x, whereas in I'5, we additionally have
the binary equality predicate. We will now see that CSP(I7) has very different
complexity than CSP([%).

Satisfiability of a I'j-formula ¢ can be decided in coNLOGTIME. (Such a
formula is unsatisfiable if and only if for some variable x, both x and T are
clauses.)

In contrast, CSP(I%) is complete for L under Sﬁco reductions: The comple-
ment of the graph accessibility problem (GAP) for undirected graphs, which is
known to be complete for L [Rei05], can be reduced to CSP(I%). Let G = (V, E)
be a finite, undirected graph, and s, ¢ vertices in V. For every edge (v1,v2) € E,
add a constraint v; = vy. Also add 5 and ¢. It is obvious that there exists a path
in G from s to t if and only if the resulting formula is not satisfiable. In fact, it
is easy to see that CSP(I%) is not only hard for L, but it also lies within L so it
is complete for L under §‘fnco reductions.

The lesson to learn from this example is that the usual reduction amon
constraint satisfaction problems arising from the same co-clone is not an <€
reduction. The following lemma summarizes the main relationships.

Lemma 2.5. Let Iy and I3 be sets of relationso over a finite set, where I 1is
finite and Pol(I;) C Pol(I). Then CSP(I)<AC CSP(Ih U {=})<°eCSP(I}).

Proof. Since the local replacement from Corollary 2.3 can be computed in ACY,
this establishes the first reducibility relation (note that variables are implicitly
existentially quantified and therefore the quantifiers do not need to be written).

For the second reduction, we need to eliminate all of the =-constraints. We
do this by identifying variables z;, and x;, if there is an =-path from z;, to z;,
in the formula. By [Rei05], this can be computed in logspace. a

3 Classification

The following is our main result on the complexity of the Boolean constraint
satisfaction problem.

Theorem 3.1. Let I be a finite set of Boolean relations.

— If Iy C Pol(I') or I; C Pol(I"), then every constraint formula over I is

satisfiable, and therefore CSP(I") is trivial.

If Pol(I') € {I, Ny}, then CSP(I') is <AC°-complete for NP.

— IfPol(I") € {Vy, By}, then CSP(I') is <A’ _complete for P.

If Pol(T") € {La, L3}, then CSP(I') is <AC"-complete for GL.

If Soo € Pol(I") € S3, or S19 € Pol(I') C S}, or Pol(I") € {Da, My}, then
CSP(I') is S,‘}Lco—complete for NL.

If Pol(I') € {Dy,D}, then CSP(I') is <AC"-complete for L.

If So2 € Pol(I') € Ry or S;2 C Pol(I") C Raq, then either CSP(I') is in
coNLOGTIME, or CSP(I") is complete for L under §/2LCO. There is an al-
gorithm deciding which case occurs.

Theorem 3.1 is a refinement of Theorem 5.1 from [Sch78] and Theorem 6.5
from [CKSO01]. It is immediate from a look at Figure 1 that this covers all cases.
The proof follows from the lemmas in the following subsections. First, we mention
a corollary:

Corollary 3.2. For any set of relations I', CSP(I") is AC-isomorphic either to
0X™* or to the standard complete set for one of the following complexity classes:
NP, P, L, NL, L.

Proof. Tt is immediate from Theorem 3.1 that if CSP(I") is not in AC?, then it
is complete for one of NP, P, NL, L, or ®L under gﬁlco reductions. By [Agr01]
each of these problems is AC%-isomorphic to the standard complete set for its
class. On the other hand, if CSP(I) is solvable in AC®, then it is an easy matter
to reduce any problem A4 € ACY to CSP(I') via a length-squaring, invertible
ACY reduction (by first checking if x € A, and then using standard padding
techniques to map x to a long satisfiable instance if z € A, and mapping = to
a long syntactically incorrect input if ¢ A). AC® isomorphism to 0X* now
follows, since any two sets that are reducible to each other via length-squaring,
invertible ACY reductions are AC’-isomorphic [ABI97]. O

3.1 Upper Bounds: Algorithms

First, we state results that are well known; see, e.g., [Sch78, BCRV04]:

Fact 3.3 Let I' be a Boolean constraint language.

If Pol(I") € {I5,No}, then CSP(I") is NP-complete. Otherwise, CSP(I") € P.
Ly C Pol(I') implies every relation in I is affine, thus CSP(I") € ®L.

Dy C Pol(I) implies every relation in I' is bijunctive, thus CSP(I") € NL.
Io € Pol(I') or I; C Pol(I') implies every instance of CSP(I") is satisfiable
by the all-0 or the all-1 tuple, and therefore CSP(I") is trivial.

T e~

Lemma 3.4. Let I' be a constraint language.

1. If SOQ Q POI(F) or 812 Q POl(F), then CSP(F) € L.
2. If SOO Q POI(F) or SlO Q POl(F), then CSP(F) € NL.

Proof. First we consider the cases Sgp and Sp2. The following algorithm is based
on the proof for Theorem 6.5 in [CKS01]. Observe that there is no finite set I"
such that Pol(I") = Sog (Pol(I") = Sz, resp.). Therefore, Pol(I") D Sk (Pol(I") D
St,, resp.) for some k > 2. Note that Pol({OR",z,Z,—,=}) = Sk, (OR*
refers to the k-ary OR relation) and Pol({OR",z,Z,=}) = S, ([BRSV03]),
and therefore by Lemma 2.5 we can assume w.lo.g. I' = {OR* z, 7, —, =}
(I' = {OR*, 2,7, =}, resp.).

Now the algorithm works as follows: For a given formula ¢ over the relations
mentioned above, consider every positive clause x;; V --- V x;, . The clause is
satisfiable if and only if there is one variable in {z;,,...,x; } which can be set
to 1 without violating any of the T and & — y clauses (without violating any of
the Z, resp.). For a variable y € {z;,,...,%;,}, this can be checked as follows:

For each clause T, check if there is an —-=-path (=-path, resp.) from y to
x, by which we mean a sequence yR121,21R222,. .., 2m—1Rnz for R; € {—,=}
(R; € {=}, resp.). (This is just an instance of the GAP problem on directed
graphs (undirected graphs, resp.), which is the standard complete problem for
NL (L, resp.).) If one of these is the case, then y cannot be set to 1. Otherwise, we
can set y to 1, and the clause is satisfiable. If a clause is shown to be unsatisfiable,
reject. If no clause is shown to be unsatisfiable in this way, accept.

The S1p- and Syo-case are analogous; in these cases we have NAND instead
of OR. a

Our final upper bound in this section is combined with a hardness result, and
thus serves as a bridge to the next two sections. Note that the problems occurring
here are essentially variants of determining whether a graph is 2-colorable.
Lemma 3.5. Let I" be a constraint language. If Pol(I") € {Dy, D}, then CSP(I")

18 anco—complete for L.

10

Proof. Note that Pol({®}) = D and Pol({R}) = Dy, where R = 21 A (z2 @ 3).
Thus by Lemmas 2.5 and 3.7, and Proposition 3.6, we can restrict ourselves to
the cases where I" consists of these relations only. The satisfiability problem for
formulas that are conjunctions of clauses of the form x or y @ z is complete
for L by Problem 4.1 in Section 7 of [AGO00], which proves completeness for the
case Pol(I") = Dy and thus proves membership in L for the case Pol(I") = D.
It suffices to prove hardness in the case Pol(I") = D, by providing a reduction
from CSP({z1 A (2 ® x3)}).

This can easily be shown: For every clause z, introduce x & f for a new
variable f, so now every clause is of the form x & y. If the original formula is
satisfiable, then the new one holds with the same assignment plus f = 0. If the
new formula ¢’ is satisfiable, then there is some I such that I = ¢’. We know
that I |= ¢’ as well, because @ is closed under negation. Therefore, without loss
of generality, I(f) = 0. Then I \ {f = 0} = ¢. Thus, the problem for formulas
allowing z-clauses can be reduced to one not allowing them. Therefore, both
cases are L-complete.

3.2 Removing the Equality Relation

Lemma 2.5 reveals that polymorphisms completely determine the complexity of a
given constraint satisfaction problem only if the equality relation is contained in
the corresponding constraint language. In Example 2.4 we saw that this question
does lead to different complexity results. We now show that for most constraint
languages, we can get equality “for free” and therefore the question of whether
we have equality directly or not does not make a difference.

We say a constraint language I' can express the relation R(zq,...,x,) if
there is a formula Ry(2{,...,25) A+ A Ri(z},..., 2L), where R; € I' and
z; € {y1,- -, Yn,w1,...,wy} (the z;-’s need not be distinct) such that for each
assignment of values (ci,...,¢,) to the variables yi,...,yn, R(c1,...,c,) evalu-
ates to TRUE if and only if there is an assignment of values to the variables
wy, ..., w, such that all R;-clauses, with y; replaced by ¢;, evaluate to TRUE.

The following proposition is immediate.

Proposition 3.6. Let I' be a congstmint language. If I' can express the equality
relation, then CSP(I" U {=}) <AC" CSP(I).

Lemma 3.7. Let I' be a finite set of Boolean relations where Pol(I') C My,
Pol(I') C L, or Pol(I') C D. Then I' can express the equality relation.

Proof. The relation “z — g” is invariant under Ms. Thus given any such I,
by Corollary 2.3 we can construct “z — y” with the help of new existentially
quantified variables that do not appear anywhere else in the formula. Equality
clauses between the variables x and y do not appear, since * = y does not
hold for every element of the relation (equality involving existentially quantified
variables does not appear in the construction given in Corollary 2.3). Hence I’
can express r =y with x - y Ay — z.

11

For the L-case, apply an analogous argument for the relation R, , which
consists of all 4-tuples with an even number of 1’s. Note that x = y is expressed
by R .. (2,2, 7,5). If Pol(I') C D, then we can express @y, and thus we express

even

equality by z =y <= (z®2) A (zDy). O

As noted in Example 2.4, for some classes, the question of whether equality
is contained in the constraint language or not does lead to different complexities,
namely complete for L or contained in coNLOGTIME. We now show that there
are no intermediate complexity classes arising in these cases. As we saw in the
lemmas above, this only concerns constraint languages I" such that Pol(I") D Sg;,
or Pol(I") 2 S5 holds for some m > 2.

Lemma 3.8. Let R be a relation such that Pol(R) 2 S{; (Pol(R) O ST,
resp.). Let S = OR™ (S = NAND™, resp.). Then either CSP({x,Z, S, R}) €
coNLOGTIME or R can express equality (in which case CSP({z,=,S, R}) is
hard for L under AC° reductions). There is an algorithm deciding which of the
cases occurs.

Proof. Since Pol({z,z,OR™}) = S{3 ([BRSV05]), we know from Fact 2.2 that
R(z1,...,x,) can be expressed using equality, positive and negative literals, and
the m-ary OR predicate. Let ¢ be a representation of R in this form. We simplify
¢ as follows (without loss of generality, assume that R is not the empty relation):

0. Repeat steps 1 — 3 as long as changes occur:

1. For any clause x1 = x5 where there is a clause consisting only of a single
literal x1, zo, T1, or T3, remove the clause x1 = x5 and insert the corre-
sponding literal for the other variable as well. Repeat until no such clause
remains.

2. Remove variables from OR-clauses which appear as negative literals.

3. For an OR-clause containing variables connected with a path of equality
clauses, remove all of them except one.

Note that this does not change the relation represented by the formula. After
steps 1 — 3 are executed, the simplified formula might now contain some literals
that did not appear before, since an OR-clause can be reduced to a literal in
step 2. Thus these steps need to be repeated. Each time the process is repeated,
the number of literals increases or the arity of OR statements decreases. Thus
the procedure will terminate after a finite number of repetitions. If no =-clause
remains, then R can be expressed using only OR and literals and therefore leads
to a CSP solvable in coNLOGTIME (a CSP-formula using only these relations
is unsatisfiable if and only if there appear two contradictory variables or an
OR-clause containing only variables which also appear as a negative literal).

Otherwise, let 1 = x2 be a remaining clause. We existentially quantify all
variables in R except x1 and x2, and call the resulting relation R’. We claim
that R’ is the equality relation. Let (z1,22) € R’. Since 21 = x5 appears in the
defining formula, x1 = z2 holds. For the other direction, let x1 = x5. We assign
the value 0 to every existentially quantified variable that appears as a negative

12

literal, the same value as x; to every variable connected to x; via an =-path, and
the value 1 to all others. Obviously, all literals are satisfied this way: Remember
x1 and x5 do not appear as literals due to step 1, and there are no contradictory
literals since R is nonempty. All equality clauses are satisfied because none of
the variables appearing here also appear as literals. Let (z; V --- V ;) be a
clause. None of these variables appear as negative literals due to step 2, and at
most one of them can be =-connected to xz; and x5 due to step 3. Therefore,
the assignment constructed above assigns 1 to at least one of the occurring
variables, thus satisfying the formula. Hardness for L now follows with the same
construction as in Example 2.4.

It is decidable which of these cases occurs: Since the only way to obtain
equality is by existentially quantifying all variables except two, there is a finite
number of combinations which can be easily verified by an algorithm. An anal-
ogous argument can be applied to the dual case Pol(R) O S74. a

Note that as in the proof of Lemma 3.4, if Pol(I") D Sz, then it follows
that Pol(I") D Sg for some m > 2. Hence the above result yields the following
corollary:

Corollary 3.9. Let I' be a constraint language such that Spe C Pol(I") C Ro
or S12 C Pol(I') C Ry. Then either CSP(I") € coNLOGTIME, or CSP(I") is
complete for L under AC°-reductions. There is an algorithm deciding which of
these cases occurs.

In the period since these results were first announced [ABIT05], a deeper
understanding of this corollary has emerged, that is relevant for non-Boolean
domains. Those I' in Corollary 3.9 for which CSP(I") € coNLOGTIME have
what is known as the “finite duality” property [At05,R0s05]. It has been shown
by Larose and Tesson [LT07] that CSPs that do not have finite duality are hard
for L, while it is immediate that any CSP with finite duality is in coNLOGTIME.
In addition, there is an algorithm to determine if I" has the finite duality property
larose.loten.tardif.

3.3 Lower Bounds: Hardness Results

One technique of proving hardness for constraint satisfaction problems is to re-
duce certain problems related to Boolean circuits to CSPs. In [Rei0l], many
decision problems regarding circuits were discussed. In particular, the “Satisfia-
bility Problem for B Circuits” (SAT(B)) is very useful for our purposes here.
SATC(B) is the problem of determining if a given Boolean circuit with gates
from B has an input vector on which it computes output “1”.

Lemma 3.10. Let I' be a constraint language such that Pol(I') € {Es, Va}.
Then CSP(I) is S?nco -hard for P.

Proof. Assume without loss of generality that I" contains =. The proof of the
general case then follows from Lemmas 2.5 and 3.7, and Proposition 3.6.

13

A relation can be expressed by a Horn (dual Horn, resp.) formula if and
only if it is invariant under Eo (Va, resp.). It is well known that the satisfiability
problems for Horn and anti-Horn formulas are P-complete under <& reductions.
We give a proof for the anti-Horn case showing hardness under Sf‘nco reductions.
(Membership in P follows directly from Schaefer’s work.) The proof uses the stan-
dard idea of simulating each gate in a Boolean circuit with Boolean constraints
expressing the function of each gate. We show SATY(S;;) gﬁco CSP(I'). The
result then follows from [Rei01] plus the observation that his hardness result
holds under §A90. Let C be a {(z A (y V 2), co}-circuit. For each gate g € C,
introduce a new variable z4. Now, introduce constraint clauses as follows:

1. Let g be a co-gate. Then add a constraint Z, (i.e., 4 = 0).

2. Let g be an z V (y A z)-gate, and let g, gy, g be the predecessor gates of g.
Then introduce a constraint x, — (x4, A(2g, Vg,)) (this can be expressed as
a conjunction of two anti-Horn clauses as follows: (T4Vzy,)A(TgVry, Va,,)).

3. For the output-gate g, add a constraint z,.

By construction, the resulting constraint ¢ is an anti-Horn-formula. Thus all
relations are closed under V5.
We claim C' € SATY if and only if ¢ € CSP(I").

Let C € SATC. Now, assign to all variables in the constraint the value the
corresponding gate in the circuit has when given the satisfying assignment to
the input gates. That is, we are assuming that C(aq,...,a,) = 1. Assign to
any x4 in ¢ the value valy(aq,...,a,) (which is the value of the gate g when
(a1,...,ay) is given as input for C'). Obviously, all introduced constraint clauses
are satisfied with this variable assignment.

Let ¢ € CSP(I"). Assign to all input gates of the circuit the corresponding
value of the satisfying assignment for ¢. It can easily be shown that for all g € C,
val(g) > x4 holds. Since this is true for the output gate as well, and the clause
x4 (for g € C the output-gate of the circuit) exists in ¢, the circuit value is 1.
For the Horn case, a dual argument can be applied.

Lemma 3.11. Let I' be a constraint language such that Pol(I") € {La,Ls}.
Then CSP(I) is §§ICO -hard for &L.

Proof. Assume without loss of generality that I" contains =. The proof of the
general case then follows from Lemmas 2.5 and 3.7, and Proposition 3.6. For the
Ls-case, hardness can be shown in a straightforward manner similar to the proof
of Lemma 3.10. (We show SAT® (L) gﬁ?” CSP(I) for a constraint language I
with Pol(I") = Ly. The result then follows with [Rei01]. Since we can express
Tout and x1 = xo @ w3 as Lo-invariant relations, we can directly reproduce the
given Lg-circuit.)

This does not work for Lg, since we cannot express x or T in L3. However,
since L3 is basically Ly plus negation, we can “extend” a given relation from
Inv(Ls) so that it is invariant under negation, by simply doubling the truth-table.

14

More precisely, given a constraint language I" such that Pol(I") = Ls, we show
that there is a constraint language I'"” such that Pol(I"") = L3 and CSP(I") SQLCO
CSP(I"). For an n-ary relation R € I', let R = {(Z1,...,Zn) | (z1,...,2,) € R},
and let R’ be the (n + 1)-ary relation R’ = ({0} x R) U ({1} x R). It is obvious
that R’ is closed under N5 and under Lo, and hence under Ls. Let ¢ be an

instance of CSP(I"). Let I" = {R' | R € I'}. Let ¢ = /\ R (%, @i,). We

=1

set ¢ = /\ Ry (t, iy, ..., 2,) for a new variable ¢.
i=1
Let ¢ € CSP(I') and I |= . Then ITU {t =0} | ¢'.
Let ¢ € CSP(I") and I' = '. Without loss of generality, let I'(t) = 0
(otherwise, observe I’ = ¢’ holds as well), therefore I'{t = 0} | ¢, and thus

CSP(I') <AC° CSP(I") holds. O

With the same technique as in Example 2.4, we can examine the complexity
of CSPs invariant under My—the constraint satisfaction problems covered in
this result are closely related to 2SAT, and hence NL-completeness is a natural
result.

Lemma 3.12. Let I' be a constraint language such that Pol(I") C My. Then
CSP(I) is Saco-hard for NL.

Proof. Since Pol(I') € Ms, we know z — y, x, and T can be expressed with
I'. Therefore, the graph accessibility problem for directed graphs easily reduces
to CSP(I"): Let G be a directed graph and s,t¢ vertices in G. For every vertex,
introduce a variable, and for every edge (v1,v2), a constraint v; — wvg. Add
constraints s and t. It is clear that the constraint formula is satisfiable if and only
if there is no path from s to ¢ in G. Since NL is closed under complement [Imm88],
[Sze88], the lemma follows with Lemmas 2.5 and 3.7, and Proposition 3.6. O

4 Quantified Constraint Satisfaction Problems

The problems CSP(I") that have been considered in the earlier sections of this
paper consist of satisfiable formulas that are constructed using relations from
I'. Equivalently, we may consider all of the variables to be existentially quanti-
fied, and we are asking if the resulting sentence is true over the Boolean domain
{0,1}. The Quantified Constraint Satisfaction Problem QCSP(I") is the corre-
sponding problem, where arbitrary combinations of universal and existential
quantifiers are allowed. Thus each problem QCSP(I") is a special case of the
standard PSPACE-complete problem QBF.

There is a long history of investigations of QCSP(I") problems, starting with
Schaefer [Sch78], and continuing through the next quarter-century, with papers
that eventually established Schaefer’s claimed complexity characterization of
QCSP(I") into polynomial-time solvable and PSPACE-complete [APT79,KKF95,CKS01].

15

A nice discussion of this history is presented by Chen [Che08], who also presents
a unified treatment of the tractable cases of QCSP(I").

A variant of QCSP(I") is the problem QCSP (I") where in addition to vari-
ables, also the constants 0 and 1 may appear in the clauses. It is easy to see that
QCSP,(I') is virtually the same problem as QCSP(I"U{{(0)},{(1)}}), where we
are allowed to use clauses that force variables to take the Boolean values 0 or
1, respectively. A problem CSP.(I") is defined analogously. The constraint lan-
guages I that can express these clauses are, (this easily follows from Fact 2.2),
exactly those for which Pol(I") C Ry is true. We thank Edith Hemaspaandra for
pointing out that our Theorem 3.1, when combined with the techniques of Chen
[Che08], yield the following classification of QCSP . (I).

Theorem 4.1. Let I' be a constraint language.finite set of Boolean relations
such that Pol(I") C Ra, and let I'" = T'U {{(0)},{(1)}}. The following classifi-
cation holds:

— If Pol(I'") = 1a, then QCSP(I") is S,‘}Lco-complete for PSPACE.

If Pol(I) € {V3,Ey}, then QUSP,(I') is <AC"-complete for P.

— IfPol(I") = Ly, then QCSP (I') is <AC"-complete for ®L.

If Soo € Pol(I") C S3, or Sip C Pol(I”) C S3, or Pol(I") € {Dy, My}, then

QCSP,(I') is <AC"_complete for NL.

— IfPol(I") = Dy, then QCSP,(I') is <AC°-complete for L.

— IfSo2 C Pol(I') or S12 C Pol(I"), then either QCSP(I) is in coNLOGTIME,
or QCSP (I") is complete for L under S%CO. There is an algorithm deciding
which case occurs.

Note that since Pol(I") = Pol(I") N Ry is always a subset of Ry, the above
is a complete case distinction. Also, due to the above considerations, in these
cases we have that QCSP (") and QCSP_(I"") are almost identical problems, in

particular, they have the same complexity up to <A€”

<;»~ -reductions.

Proof. The PSPACE-hardness results follow via the standard reduction from
QBF. For all of the other I, CSP(I") and therefore (since I" can express the
“constant relations”) CSP.(I") is in P. It then follows from Theorems 4.3, 4.6,
and 4.9 of Chen [Che08], together with his Proposition 3.12, that QCSP_(I)
is reducible in polynomial time to CSP.(I"), which can be seen to be the same
problem as CSP(I" U {{(0)},{(1)}}), which is the same as CSP(I"), since I'
already can express these relations.

Examination of the proof of [Che08, Proposition 3.12] reveals that this reduc-
tion is in fact an <AC” reduction, so that QCSP(I") and CSP(I") are equivalent
under §§ncg reductions. The result now follows immediately from Theorem 3.1.

O

We remark that, if we restrict the quantifier prefix to have a constant number
of alternations, then a similar classification holds, where “PSPACE” is replaced
by the appropriate level of the polynomial hierarchy.

16

Note that a direct variation of the above proof cannot be used to obtain a full
classification of QCSP(I")—there are cases where CSP(I") is solvable in AC?, but
QCSP(I") is PSPACE-complete. As an example, consider the case that Pol(I") =
Iy, then every I'-formula is satisfiable by the constant 1-assignment, and hence
CSP(I") is trivial. However, this knowledge does not help us in deciding whether
a formula involving universal quantification is true, and in fact, it can be shown
that in this case, QCSP(I") is PSPACE-complete (see e.g., [CKS01]).

5 Conclusion and Further Research

We have obtained a complete classification for constraint satisfaction problems
under AC? isomorphisms, and identified six isomorphism types corresponding
to the complexity classes NP, P,NL, &L, L, and AC°. One can also show that
all constraint satisfaction problems in AC? are either trivial or are complete for
coNLOGTIME (under logtime-uniform projections).

In a seminal paper, Feder and Vardi [FV99] conjectured that each CSP(I")
either lies in P or is NP-complete. This so-called dichotomy conjecture is the
natural extension to non-Boolean domains of Schaefer’s result. Even today, the
dichotomy conjecture is only known to hold for domain size two [Sch78] and three
[Bul02]. One natural question for further research concerns constraint satisfac-
tion problems over non-Boolean domains. In particular, it would be interesting
to see if the dichotomy theorem of Bulatov [Bul02] over three-element domains
can be refined to obtain a complete classification up to AC’-isomorphism. Build-
ing on the work presented here, Larose and Tesson [LT07] consider a refinement
of the dichotomy conjecture and present algebraic conditions on constraint lan-
guages I that ensure the hardness of the corresponding constraint satisfaction
problem for complexity classes L, NL, Mod, L, P, and NP.

Acknowledgments

The first and third authors thank Denis Thérien for organizing a workshop at
Bellairs research institute where Phokion Kolaitis lectured at length about con-
straint satisfiability problems. We thank Phokion Kolaitis for his lectures and
for stimulating discussions, and in particular, for telling us that it was open
whether there are more than five CSPs up to logspace reducibility. The first
author thanks Edith Hemaspaandra and Hubie Chen for conversations held at
the AIM Workshop on Applications of Universal Algebra and Logic to the Con-
straint Satisfaction Problem, which led to the results of Section 4. We also thank
Nadia Creignou for helpful hints. We thank the anonymous referee for useful sug-
gestions.

References

[ABI97] E. Allender, J. Balcazar, and N. Immerman. A first-order isomorphism
theorem. SIAM Journal on Computing, 26:557-567, 1997.

17

[ABI*05] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The

[AG00]

[Agr01]

[APT79]

[At05]

complexity of satisfiability problems: refining Schaefer’s theorem. In Proc.
Mathematical Foundations of Computer Science (MFCS): 30th International
Symposium, Lecture Notes in Computer Science 3618, pages 71-82, Berlin
Heidelberg, 2005. Springer Verlag.

C. Alvarez and R. Greenlaw. A compendium of problems complete for sym-
metric logarithmic space. Computational Complezity, 9(2):123-145, 2000.
M. Agrawal. The first-order isomorphism theorem. In Proc. Foundations
of Software Technology and Theoretical Computer Science (FSTTCS): 21st
Conference, Lecture Notes in Computer Science 2245, pages 58-69, Berlin
Heidelberg, 2001. Springer Verlag.

B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithm for testing
the truth of certain quantified Boolean formulas. Information Processing
Letters, 8:121-123, 1979.

Albert Atserias. On Digraph Coloring Problems and Treewidth Duality. In
Proc. 20th IEEE Symposium on Logic in Computer Science (LICS), pages
106-115, 2005.

[BCRV03] E. Bohler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean

blocks, part I: Post’s lattice with applications to complexity theory. SIGACT
News, 34(4):38-52, 2003.

[BCRV04] E. Bohler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean

blocks, part II: Constraint satisfaction problems. SIGACT News, 35(1):22—
35, 2004.

[BRSVO05] E. Bohler, S. Reith, H. Schnoor, and H. Vollmer. Simple bases forBoolean

[Bul02]

[Che08]

[CJ06]

[CKS01]

[Dal05]

[FV99]

[Gei68]
[HO02]
[Imm8s]
[Tmm99)]

[1CG9T)

co-clones. Information Processing Letters, 96:59—66, 2005.

A. Bulatov. A dichotomy theorem for constraints on a three-element set.
In Proceedings 43rd Symposium on Foundations of Computer Science, pages
649-658. IEEE Computer Society Press, 2002.

H. Chen. The Complexity of Quantified Constraint Satisfaction: Collapsi-
bility, Sink Algebras, and the Three-Element Case. SIAM Journal on Com-
puting, 37:1674-1701, 2008.

D.A. Cohen and P.G. Jeavons. The complexity of constraint languages. In
Handbook of Constraint Programming, Elsevier, 2006.

N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. Monographs on Discrete Applied
Mathematics. STAM, 2001.

V. Dalmau. Linear Datalog and bounded path duality of relational struc-
tures. Logical Methods in Computer Science, 1(1), 2005.

T. Feder and M. Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through Datalog and
group theory. SIAM J. on Computing, 28(1):57-104, 1999.

D. Geiger. Closed systems of functions and predicates. Pac. J. Math,
27(1):95-100, 1968.

L. Hemaspaandra and M. Ogihara. The complexity theory companion.
Springer-Verlag New York, Inc., New York, NY, USA, 2002.

N. Immerman. Nondeterministic space is closed under complementation.
SIAM Journal on Computing, 17:935-938, 1988.

N. Immerman. Descriptive Complexity. Springer Graduate Texts in Com-
puter Science, Springer-Verlag New York, Inc., New York, NY, USA, 1999.
P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of con-
straints. Journal of the ACM, 44(4):527-548, 1997.

18

[KKF95] H. Kleine Biining, M. Karpinski, and A. Flogel. Resolution for quantified

[LLTO7]

[LTO7]

[Lau06]

[Pip97]
[Pos20]
[Pos4l]
[Rei01]

[Rei05]

[Ros05]

[Sch78]
[Sze88|

[Vol99]

Boolean formulas. Information and Computation, 117:12-18, 1995.

B. Larose, C. Loten, and C. Tardif. A Characterisation of first-order con-
straint satisfaction problems. Logical Methods in Computer Science 3(4),
2007.

B. Larose and P. Tesson. Universal algebra and hardness results for con-
straint satisfaction problems. In Proc. Automata, Languages and Program-
ming: 34th International Colloguium (ICALP), Lecture Notes in Computer
Science 4596, pages 267278, Berlin Heidelberg, 2007. Springer Verlag.
Lau, D., 2006. Function Algebras on Finite Sets: Basic Course on Many-
Valued Logic and Clone Theory (Springer Monographs in Mathematics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

N. Pippenger. Theories of Computability. Cambridge University Press, Cam-
bridge, 1997.

E. L. Post. Determination of all closed systems of truth tables. Bulletin of
the AMS, 26:437, 1920.

E. L. Post. The two-valued iterative systems of mathematical logic. Annals
of Mathematical Studies, 5:1-122, 1941.

S. Reith. Generalized Satisfiability Problems. PhD thesis, Fachbereich Math-
ematik und Informatik, Universitdt Wiirzburg, 2001.

O. Reingold. Undirected st-connectivity in log-space. In Proceedings 37th
Symposium on Foundations of Computer Science, pages 376-385. IEEE
Computer Society Press, 2005.

B. Rossman. Existential Positive Types and Preservation under Homomor-
phisisms. In Proc. 20th IEEE Symposium on Logic in Computer Science
(LICS), pages 467-476, 2005.

T. J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th
Symposium on Theory of Computing, pages 216-226. ACM Press, 1978.

R. Szelepcsényi. The method of forced enumeration for nondeterministic
automata. Acta Informatica, 26:279-284, 1988.

H. Vollmer. Introduction to Circuit Complexity — A Uniform Approach.
Texts in Theoretical Computer Science. Springer Verlag, Berlin Heidelberg,
1999.

19

