Outline

e Three-way interactions

Interaction between 2 categorical predictors

Two-way interaction between X; (k; levels, think gender) and X,
(k2 levels, think food type): when the mean response (Y or log
odds) differences between X, levels depend on the level of X,.

@ With no interaction, there are constraints on group means.
X; requires k; — 1 extra coefficients (other than intercept),
X5 requires k, — 1 extra coefficients.

@ In R, X1 * X, is a shortcut for X; + X, + X1 : Xo.
@ The interaction X; : X5 requires (k3 — 1) x (k; — 1) df, i.e.
extra coefficients.

@ With interaction, total # of coefficients (including intercept)
= total # of groups, ki * ko: No constraints on groups
means.

Degrees of freedom

For model Y ~ X; * X5 :

source df
intercept 1
X1 ki —1
X5 ko — 1
Xl . X2 (k1 — 1)(k2 — 1)
total # coefs ki * ko
residual n —Kkiko

where n is the number of observations (rows) in the data.

Interactions between 3 categorical predictors
Two-way interactions between Xy, X, and X3 (k3 levels, think
preterm):

@ X; : X, is the 2-way interaction between X; and X, when
X3 = 0 or reference level.

@ Xy : Xz is the 2-way interaction between X; and X3 when
Xo = 0 or reference level.

@ X, : X3 is the 2-way interaction between X, and X3 when
X1 = 0 or reference level.

There is a three-way interaction X; : X, : X3 if the interaction
coefficient(s) X1 : X, depend on the level of X3, or, equivalently,
if the X, : X3 interaction coefficient(s) depend on the level of X,

or if the X4 : X3 interaction coefficient(s) depends on the level of
Xs.

@ With the 3-way interaction and all 2-way interactions, the
total # of coefficients (including intercept) equals the total #
of groups, ki * ky x k3: No constraints on groups means.

Degrees of freedom

ForY ~ Xi % X % X3!

source df
intercept 1
X1 ki —1
X5 ko — 1
Xl . X2 (kl —)(kz — 1)
Xl . X3 (kl —)(kg — 1)
X2 X3 (k2 —1)(ks — 1)
Xl . Xz . X3 (kl — 1)(k2 -)(k3 - 1)
total # coef ki x ko x ks
residual n — kikoks

where n is the number of observations (rows) in the data.

mean Y or log odds

mean Y or log odds

X1+ X3 X1+X2+X3 X1*X2 + X3
- - x3=1 « x1=1
— x3=0 o x1=0
n n
3 3
o o e
----------------- g oo 2 R
= T~ = -
S * T~ S *
> s~ >
b1 < | b1 \ < | b
0 m m m mm o m o m = ° [o~ M o o~
b3l . Eb3t‘ -l e 1
b2] T, b2] -
0 (no) x2cat 1 (yes) 0 (no) x2cat 1 (yes) 0 (no) x2cat 1 (yes)
X1*X2 + X3 + X1:X3 X1*X2+ X3 +X1:X3 +X2:X3 X1*X2*X3
----------------- gl -7 gl oo
=} =}
g g
I ° I ° I
. 5 . 5 .
> >
b oy . o gloy . o
O [~ O [~
bafls T -~ E [baf[® E |baf[®
b2] -l bz]\ bz]\
0 (no) x2cat 1 (yes) 0 (no) x2cat 1 (yes) 0 (no) x2cat 1 (yes)

Notations in R

(and many other programs)

These are equivalent notations for model formulas:

@ (X1 + X3)? and Xy * X, and Xy + Xo + Xq: Xo.

@ Main effects and one 2-way interaction: X; * X, + X3 and
X1+ Xo 4+ Xz + X1: X5

@ Mains effects and two 2-way interactions:
X1 % Xo + Xz 4+ Xo: Xgand X; + Xo + Xz + X1:Xo + Xo: X3
and X1 + Xo * X3 4+ X1 : Xo

@ Main effects and all 2-way interactions:
X1 % Xo + X3 + Xa: X3 4+ X1 : Xz and (Xg + Xz + X3)?

@ All: Xy %Xy x Xz and Xg + Xo + X3+ X1 : X + X1 : X3+ X5: X3
and (X1 + X, + X3)3 (and many others).

Hierarchy principle

Include all lower-level interactions.
@ If we include X, : X5, then we must also include X; and X,.

If we allow X; to have an effect that depends on the level of
X, it makes little sense to assume that X; has no effect
when X, = 0 or reference level.

@ If we include X7 :X;: X3 then we must also include all three
2-way interactions (X1 :Xo, X1 : X3, X2:X3) and all three
main effects (X1, X5, X3).

@ A predictor X, is said to have an effect as soon as one
interaction with X, is present.

Hierarchy principle

Example: if breastfeeding (X;) has no effect except on preterm
baby girls, and if the reference levels are bottle feeding, boys,
full term, then we may find

source df coef p-value
breast 1 0.01 .92
girl 1
preterm 1
breast:qirl 1 0.02 .85
breast:preterm 1 0.01 .87
girl:preterm 1

breast:girl:preterm 1 1.5 < 1075 % xx

Then there is evidence that breastfeeding has an effect.

Interpretation

When we find complex interactions, we often break down the
data into smaller data sets, for ease of interpretation.

If there is evidence that breastfeeding affects the probability of
respiratory disease differently in boys/girls and in preterm/full
term babies, then we may break down the data into 2 sets of
data: preterm babies only, and full term babies only.

@ cons: not one, but 2 analyses are required.

@ pros: no need to consider 3-way interactions and simpler
interpretation: only two-way interaction (breast/girl) in each
analysis.

Outline

9 Overdispersion in logistic regression

Dispersion

The binomial distribution assumes that
var(Y;) = nipi(1 — p;)

In real situations, the variance could differ from n;p;(1 — p;) if
the n; individuals from observation i are not independent (all
from the same inoculation batch? all from the same plate? etc.)

Could it be that
var(Y;) = anip;(1 — p;) for some o2 77

violating the binomial assumption? o2 is called the dispersion.
@ 02 < 1: underdispersion (rare)
@ 02 = 1: binomial okay: not violated
@ o2 > 1: overdispersion

Dispersion
We can estimate the dispersion in two (non-equivalent) ways.
@ from the Pearson residuals, used in summary and anova :

52 disg (rip)2

n—k

Most appropriate because the Pearson residuals were
standardized based on their estimated SD:

P Yi— iy
'Aipi(1 -)
@ from the deviance residuals, used in dropl , technically

easier: ,
A2 Z{Ll (riD) resisual D
op = = :

D n—k residual df

@ often, these two estimates are very similar.

If the data truly follow a Binomial distribution: the dispersion
should be ~ 1.

Bush lupine seedling survival

Do entomopathogenic nematodes protect plants indirectly, by
killing root-feeding ghost moth caterpillars? (Strong et al, 1999).
Field experiment with 120 bush lupine seedlings, randomly

assigned to treatments (15 per treatment): with O or up to 32
hatchlings of ghost moth caterpillars, and with/without

nematodes.

> dat = read.table("lupine.txt", header=T)
> dat$n = 15

> dat

caterpillars nematodes lupine n

1 0 absent 15 15
2 0 present 14 15
3 8 absent 11 15
4 8 present 14 15
5 16 absent 8 15
6 16 present 13 15
7 32 absent 5 15
8 32 present 13 15

Bush lupine seedling survival

> fit = glm(lupine/n “caterpillars+tnematodes, family=binomial,
weights=n, data=dat)
> summary(fit)

Deviance Residuals:

1 2 3 4 5 6 7 8
2.191 -0.773 -0.248 -0.291 -0.826 -0.606 -0.131 0.999
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.75137 0.45567 3.844 0.000121 kk
caterpillars -0.07417 0.02142 -3.463 0.000535 *ohk
nematodespresent 1.79561 0.55082 3.260 0.001115 *k

(Dispersion parameter for binomial family taken to be 1)
Residual deviance: 7.6087 on 5 degrees of freedom

> resP = residuals(fit, type="pearson")
> resP

1 2 3 4 5 6 7 8
1.613 -0.908 -0.251 -0.305 -0.840 -0.650 -0.130 0.938

Bush lupine seedling survival

> sum(resP"2)/(8-3)

[1] 1.121281 # based on Pearson’s residuals: better
> sum(residuals(fit, type="deviance")"2)/5
[1] 1.521735 # based on deviance

> fitbdeviance
[1] 7.608677
> fit$df.residual

1] 5
> fitbdeviance / fitddf.residual # easier way to estimate the
[1] 1.521735 # dispersion based on deviance residuals

Here, the dispersion parameter is estimated to be 1.12, more
than 1: slight overdispersion. Can this difference be due to
chance alone?

Bush lupine seedling survival

Is overdispersion significant?

@ Test for lack of fit: compare the residual deviance to a x?
distribution with df = df residual. But many other reasons
can result in a lack of fit.

> pchisq(7.608677, df=5, lower.tail=F)
[1] 0.1791618

Here: no significant lack of fit, interpreted as no significant
overdispersion.

@ With a simulation —more later.

If we really need to, how to account for over-dispersion?

Quasi-Binomial analysis

We can account for overdispersion (or underdispersion) using a
quasi-binomial analysis.

> fitQuasi = glm(lupine/n ~ caterpillars+nematodes,
family=quasibinomial, weights=n, data=dat)
> summary(fitQuasi)

Deviance Residuals:

1 2 3 4 5 6 7 8
2.191 -0.773 -0.248 -0.291 -0.826 -0.606 -0.131 0.999
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.75137 0.48251 3.630 0.0151 *
caterpillars -0.07417 0.02268 -3.270 0.0222 *
nematodespresent 1.79561 0.58327 3.079 0.0275 *

(Dispersion parameter for quasibinomial family taken to
be 1.121281)
Null deviance: 32.4825 on 7 degrees of freedom
Residual deviance: 7.6087 on 5 degrees of freedom

Quasi-Binomial analysis

> summary(fity # was standard logistic regression

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.75137 0.45567 3.844 0.000121 Hokk
caterpillars -0.07417 0.02142 -3.463 0.000535 *okk
nematodespresent 1.79561 0.55082 3.260 0.001115 *k
> 0.45567 =+ sqrt(1.121281)

[1] 0.48251

> pt(3.630, df=5, lower.tail=F) * 2

[1] 0.01506

Compared with the standard binomial (logistic) regression:

@ Same deviance residuals, same null/residual deviance,
same df’s.

@ Same estimated coefficients
@ Different SE for coefficients: there were multiplied by &

@ Wald z-tests in logistic regression become t-tests in
guasi-binomial regression, on df=residual df.

Model comparison

Analysis of Deviance in logistic regression (which uses the y2
distribution) becomes ANOVA in a quasi-binomial analysis:
uses the F distribution as in standard regression, where Sums

of Squares are replaced by deviances and MSError = 2 is
replaced by the dispersion.

> anova(fitQuasi, test="F")
Terms added sequentially (first to last)

Df Deviance Resid.Df Resid.Dev F Pr;F)
NULL 7 32.482
caterpillars 1 12.183 6 20.300 10.865 0.02156
nematodes 1 12.691 5 7.609 11.318 0.02001
> (32.482-20.300)/(7-6) / 1.12128
[1] 10.86437
> pf(10.865, dfl=1, df2=5, lower.tail=F) # dfl=7-6=1
[1] 0.02156
> (20.300-7.609)/(6-5) / 1.12128
[1] 11.31831

> pf(11.318, dfi=1, df2=5, lower.tail=F)
[1] 0.02001

Outline

e Simulation for inference

Why use simulations?

to assess uncertainty in predictions, in estimated regression
coefficients, etc. This is in contrast to deriving formulas for
standard errors.

pros:
@ we do not need to learn how to derive formulas.

@ we can use simulations even when formulas are only
approximations

@ we can assess uncertainty in quantities for which there are
not formulas.

cons:
@ we will learn how to write small programs in R.
@ we will do ‘parametric bootstrapping’.

Recall runoff data

We explained runoff events with total amount of precipition
(inches) and maximum intensity at 10 minutes (in/min).
We used logistic regression (why?)

> fit2 = glm(RunoffEvent Precip+MaxIntensity10,
family=binomial, data=runoff)
> summary(fit2)

Residual deviance: 116.11 on 228 degrees of freedom

> fit2$df.residual

[1] 228

> fit2$deviance

[1] 116.10591 # seems too low

> pchisq(116.11, df=228) # P(X2 < 116.11)

[1] 5.765843e-11

> curve(dchisq(x,df=228), from=100,t0=300, xlab="x2")
> points(116.11, 0, col="red", pch=16)

Is there real underdispersion?

0.q10 0.q15

0.905

O.QOO

100 150 200 250 300
X2
Why is the deviance so low? Also, 62 = 0.65. Underdispersion?

> sum(residuals(fit2, type="pearson")"2)/228
[1] 0.6524366

Simulating the distribution of the residual deviance

“Formula”: When sample sizes are large and if the model is
correct, then the residual deviance is approximately y?
distributed, on residual df.

Here: deviance= 116.11 on df= 228. The “formula” gives us a
very low p-value and suggests underdispersion. But what can
we trust?

To see what the deviance is “just by chance”, we will

@ simulate new data sets under our hypothesized model: use
our estimated model and repeat many experiments in
silico. Our model will be correct (Hg true) for these in silico
experiments.

@ apply the treatment we applied to our original data set,
@ calculate the deviance of each of these new data sets,
@ repeat many times, summarize the deviances

Simulating one new data set

> dim(runoff) # 231 11
> mu=predict(fit2, type="response") # estimated probabilities
> mu # of runoff events for each storm
1 2 3 4 5 6 7 8 9 10
0.140 0.026 0.018 0.028 0.018 0.051 0.021 0.249 0.025 0.927 0.547 0.172

222 223 224 225 226 227 228 229 230 231
0.675 0.638 0.099 0.031 0.763 0.689 0.899 1.000 0.257 0.993

> sim.events = rbinom(231, size=1, prob=mu) # One experiment

> sim.events # was simulated
[1]0O0OC0O00000100000000000110110 ..
[381101000010010000100000000000 ..

2231 100111111

> sim.data = data.frame(

+ Precip = runoff$Precip,

+ MaxIntensityl0 = runoff$MaxIntensity10,
+ RunoffEvent = sim.events
+

Simulating one new data set

> sim.data # just to check the new data set
Precip MaxIntensityl0 RunoffEvent

1 0.47 0.96 0
2 0.34 0.18 0
3 0.16 0.24 0
186 0.11 0.18 1
187 0.16 0.48 0
228 1.07 2.22 1
229 241 3.12 1
230 0.58 1.20 1
231 1.75 2.70 1

now apply the same treatment

> sim.fit = gim(RunoffEvent ~ Precip + MaxIntensity10,
+ data=sim.data, family=quasibinomial)
> sim.fitdeviance

[1] 141.73432 # this is random: from one experiment.

We got this 141.7 deviance ’just by chance’: the model
(binomial, Precip + MaxIntensity10) was true.

Simulating many new data sets

First define a function to make and analyze a single data set:

> simulate.deviance = function(){

+ sim.data = data.frame(

+ Precip = runoff$Precip,

+ MaxIntensityl0 = runoff$MaxIntensity10,

+ RunoffEvent = rbinom(231, size=1, prob=mu)
+)

+ sim.fit = gim(RunoffEvent ~ Precip + MaxIntensity10,
+ data=sim.data, family=binomial)

+ return(sim.fitfdeviance)

+}

> simulate.deviance() # check that this function works

[1] 87.839458 # this is random
> simulate.deviance()
[1] 111.6603 # new random deviance from new expt

> simulate.deviance()
[1] 102.7747 # from another new experiment

Simulating many new data sets

We replicate this simulation many times (1000 usually enough).

replicate(n,
a function

> sim1000 =

> sim1000
[1] 109.1
[13] 102.9
[25] 141.9

[961] 114.4
[973] 99.3
[985] 111.6
[997] 109.1

function) : needs a number n of times and

to be repeated.

replicate(1000, simulate.deviance())

102.3 94.1 108.8 73.3 94.9 115.1
102.5 105.9 135.1 120.0 150.1 131.5
109.7 103.8 128.4 113.0 1485 925

117.6 108.0 91.6 103.5 129.5 110.0
116.7 109.9 109.5 112.5 107.9 133.3

99.2 114.9 118.9 100.1
93.7 100.3 118.3 123.3
72.4 106.6 114.9 1414

96.8 100.6 92.3 111.3
945 117.4 1349 127.1

107.6 108.7 135.0 114.4 127.7 100.8 106.2 112.5 129.1 125.3

122.4 105.6 143.3

Summarizing simulated deviances

Now we summarize the 1000 deviance values, which were
obtained “by chance” under our hypothesized model:

> hist(sim100)

Overlay the the simulated distribution with the theoretical x?
distribution... which we know is a bad approximation because
all sample sizes are 1.

> hist(sim1000, xlim=c(70,300))
> curve(1000 =*10+dchisq(x,df=228), add=T)
| used 1000 =* 10 * chi-square_density in order to match
the area under the curve (1000 * 10 * 1) with
the area of the histogram: 1000 points * width 10 of each bin
> text("X2 distribution on 228 df', x=228, y=200)
> points(116.11, 0, col="red", pch=16)

Summarizing simulated deviances
Histogram of sim1000

X2 distribution on 228 df

100 150 200
|

Frequency

50
I

S

I T T T 1
100 150 200 250 300
sim1000

No sign of lack of fit: so far, it looks like our binomial model is
adequate.

Testing lack of fit with simulations

Conclusions:

@ In the runoff experiment, the distribution of the deviance
under Hy: “our model is correct” is very far from a 2
distribution on df=residual df.

@ In this case (all nj = 1) we should not trust the p-value
obtained from comparing the residual deviance to the 2
distribution on residual df (was 5.10~11).

@ Instead, we should test Hy: “the model is correct” versus
lack of fit with simulations.

@ How often is the deviance even lower than 116.11 ‘just by
chance’? We obtain p-value = 0.57: No lack of fit, No
evidence of underdispersion.

Testing lack of fit with simulations

> sim1000 < 116.11
[1] TRUE TRUE
[13] TRUE TRUE

[985] TRUE TRUE
[997] TRUE FALSE

TRUE TRUE TRUE TRUE TRUE TRUE TRL
TRUE FALSE FALSE FALSE FALSE TRUE TRUE

TRUE FALSE TRUE FALSE TRUE TRUE TRUI
TRUE FALSE

> sum((sim1000 < 116.11))
true=1 false=0, so the 'sum’ of the true/false values

will be the number of ’true’s.

[1] 573

> sum((sim1000 < 116.11)) / 1000

[1] 0.573

p-value = 0.57 = probability of observing a deviance of 116.11
or smaller, when the model is really true. Obtained by
parametric boostrapping.

Simulation to test for overdispersion: lupine seedlings

We found a dispersion of 1.12, slighly over 1. Is this
overdispersion?

> fit = gim(lupine/15 ~ caterpillars+nematodes,
weight=size, data=lup, family=binomial)
> fitddf.residual
[1] 5
> sum(residuals(fit, type="pearson”)’2) / 5
[1] 1.121281 # this is the estimated dispersion, sigma2 hat.

We will simulate many in silico new data sets, for which the
model with caterpillars + nematodes and the binomial
distribution will be true. Then see what is the distribution of the
estimated dispersion until this null hypothesis.

Simulation to test for overdispersion: lupine seedlings
First, write a function to simulate one new experiment, analyze
the data, and extract the estimated dispersion.

fitted(fit) # estimated probs of lupine survival
predict(fit, type="response") # equivalent

probs
probs

simulate.dispersion = function(){
sim.data = data.frame(
caterpillars = lup$caterpillars,

nematodes = lup$nematodes,
size = lup$size,
lupine = rbinom(8, size=15, prob=probs)

sim.fit = gim(lupine/15 ~ caterpillars+nematodes,

weight=size, data=sim.data, family=binomial)
sim.s2 = sum(residuals(sim.fit, type="pearson")'2)/5
return(sim.s2)

Simulate many new 42 under Hog: no overdispersion

Now apply the function, a few times to check that it works, then
replicate many times (and save the values):

> simulate.dispersion()

[1] 0.7293403

> simulate.dispersion()

[1] 0.4849162

> simulate.dispersion()

[1] 0.4526491

> simulate.dispersion()

[1] 1.440982

> sim1000s2 = replicate(1000, simulate.dispersion())
> sim1000s2

[1] 0.611 0.482 0.355 0.639 1.181 0.727 1.612 1.683 1.088 0.940 0.744

[985] 1.068 2.313 0.986 1.028 0.906 1.108 2.506 0.534 1.130 0.726 0.421
[997] 1.545 0.679 2.502 2.242

Summarize the simulated dispersion values

The null distribution of the estimated dispersion is skewed left:

> summary(sim1000s2)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.09192 0.57320 0.90550 1.02300 1.32800 6.36700
> hist(sim1000s2, breaks=30)

| asked for © 30 breakpoints in the histogram
> points(x=1.121281, y=0, col="red", pch=16)

placed a point at the dispersion for the original data
> text("1.1212", x=1.121281, y=10)

> sum(sim1000s2 > 1.121281) / 1000
[1] 0.357 # proportion of simulated s2 that are > 1.121281

p-value = 0.36 to test the null hypothesis that our model is
correct with no overdispersion. We accept it.

Visualize the simulated dispersion values

Histogram of sim1000s2

1?0

1(|)0
|

5|O

141

LA}

0 1 2 3 4 5 6
sim1000s2

	Three-way interactions
	Overdispersion in logistic regression
	Dispersion
	Bush lupine survival
	Quasi-Binomial family

	Simulation for inference
	Why simulations
	Testing model fit: simulating the deviance's distribution
	Testing overdispersion: simulating the dispersion's distribution

