Papers by Ralf Ohlemuller
Abstract The application of niche-based modelling techniques to plant species has not been explor... more Abstract The application of niche-based modelling techniques to plant species has not been explored for the majority of taxa in Europe, primarily due to the lack of adequate distributional data. However, it is of crucial importance for conservation adaptation decisions to assess and quantify the likely pool of species capable of colonising a particular region under altered future climate conditions. We here present a novel method that combines the species pool concept and information about shifts in analogous multidimensional climate ...
Ecography, 2007
Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey da... more Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species' distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing
Plant Ecology, 2010
The application of niche-based modelling techniques to plant species has not been explored for th... more The application of niche-based modelling techniques to plant species has not been explored for the majority of taxa in Europe, primarily due to the lack of adequate distributional data. However, it is of crucial importance for conservation adaptation decisions to assess and quantify the likely pool of species capable of colonising a particular region under altered future climate conditions. We here present a novel method that combines the species pool concept and information about shifts in analogous multidimensional climate space. This allows us to identify regions in Europe with a current climate which is similar to that projected for future time periods in Germany. We compared the extent and spatial location of climatically analogous European regions for three projected greenhouse gas emission scenarios in Germany for the time period 2071–2080 (+2.4°C, +3.3°C, +4.5°C average increase in mean annual temperature) to those of the recent past in Europe (1961–90). Across all three scenarios, European land areas which are characterised by climatic conditions analogue to those found in Germany decreased from 14% in 1961–1990 to ca. 10% in 2071–2080. All scenarios show disappearing current climate types in Germany, which can mainly be explained with a general northwards shift of climatically analogous regions. We estimated the size of the potential species pool of these analogous regions using floristic inventory data for the Iberian Peninsula as 2,354 plant species. The identified species pool in Germany indicates a change towards warmth and drought adapted southern species. About one-third of the species from the Iberian analogous regions are currently already present in Germany. Depending on the scenario used, 1,372 (+2.4°C average change of mean annual temperature), 1,399 (+3.3°C) and 1,444 (+4.5°C) species currently not found in Germany, occur in Iberian regions which are climatically analogous to German 2071–80 climate types. We believe that our study presents a useful approach to illustrate and quantify the potential size and spatial distribution of a pool of species potentially colonising new areas under changing climatic conditions.
Science, 2011
The distributions of many terrestrial organisms are currently shifting in latitude or elevation i... more The distributions of many terrestrial organisms are currently shifting in latitude or elevation in response to changing climate. Using a meta-analysis, we estimated that the distributions of species have recently shifted to higher elevations at a median rate of 11.0 meters per decade, and to higher latitudes at a median rate of 16.9 kilometers per decade. These rates are approximately two and three times faster than previously reported. The distances moved by species are greatest in studies showing the highest levels of warming, with average latitudinal shifts being generally sufficient to track temperature changes. However, individual species vary greatly in their rates of change, suggesting that the range shift of each species depends on multiple internal species traits and external drivers of change. Rapid average shifts derive from a wide diversity of responses by individual species.
Global Ecology and Biogeography, 2006
Aim Climate is an important determinant of species distributions. We assess different aspects of ... more Aim Climate is an important determinant of species distributions. We assess different aspects of risk arising from future climate change by quantifying changes in the spatial distribution of future climatic conditions compared with the recent past.
Biology Letters, 2008
Why do areas with high numbers of small-range species occur where they do? We found that, for but... more Why do areas with high numbers of small-range species occur where they do? We found that, for butterfly and plant species in Europe, and for bird species in the Western Hemisphere, such areas coincide with regions that have rare climates, and are higher and colder areas than surrounding regions. Species with small range sizes also tend to occur in climatically diverse regions, where species are likely to have been buffered from extinction in the past. We suggest that the centres of high smallrange species richness we examined predominantly represent interglacial relict areas where cold-adapted species have been able to survive unusually warm periods in the last ca 10 000 years. We show that the rare climates that occur in current centres of species rarity will shrink disproportionately under future climate change, potentially leading to high vulnerability for many of the species they contain.
Science, 2006
Despite widespread concern about declines in pollination services, little is known about the patt... more Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre- versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.
Global Change Biology, 2006
Estimates of species extinction risk under climate change are generally based on differences in p... more Estimates of species extinction risk under climate change are generally based on differences in present and future climatically suitable areas. However, the locations of potentially suitable future environments (affecting establishment success), and the degree of climatic suitability in already occupied and new locations (affecting population viability) may be equally important determinants of risk. A species considered to be at low risk because its future distribution is predicted to be large, may actually be at high risk if these areas are out of reach, given the species' dispersal and migration rates or if all future suitable locations are only marginally suitable and the species is unlikely to build viable populations in competition with other species. Using bioclimatic models of 17 representative European woody species, we expand on current ways of risk assessment and suggest additional measures based on (a) the distance between presently occupied areas and areas predicted to be climatically suitable in the future and (b) the degree of change in climatic suitability in presently occupied and unoccupied locations. Species of boreal and temperate deciduous forests are predicted to face higher risk from loss of climatically suitable area than species from warmer and drier parts of Europe by 2095 using both the moderate B1 and the severe A1FI emission scenario. However, the average distance from currently occupied locations to areas predicted suitable in the future is generally shorter for boreal species than for southern species. Areas currently occupied will become more suitable for boreal and temperate species than for Mediterranean species whereas new suitable areas outside a species' current range are expected to show greater increases in suitability for Mediterranean species than for boreal and temperate species. Such additional risk measures can be easily derived and should give a more comprehensive picture of the risk species are likely to face under climate change.
Ecology, 2007
Many factors, including climate, resource availability, and habitat diversity, have been proposed... more Many factors, including climate, resource availability, and habitat diversity, have been proposed as determinants of global diversity, but the links among them have rarely been studied. Using structural equation modeling (SEM), we investigated direct and indirect effects of climate variables, host-plant richness, and habitat diversity on butterfly species richness across Britain, at 20-km grid resolution. These factors were all important determinants of butterfly diversity, but their relative contributions differed between habitat generalists and specialists, and whether the effects were direct or indirect. Climate variables had strong effects on habitat generalists, whereas host-plant richness and habitat diversity contributed relatively more for habitat specialists. Considering total effects (direct and indirect together), climate variables had the strongest link to butterfly species richness for all groups of species. The results suggest that different mechanistic hypotheses to explain species richness may be more appropriate for habitat generalists and specialists, with generalists hypothesized to show direct physiological limitations and specialists additionally being constrained by trophic interactions (climate affecting host-plant richness).
Uploads
Papers by Ralf Ohlemuller