login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341102
T(n, k) = [n, k] - {n, k}, where [n, k] are the (unsigned) Stirling cycle numbers and {n, k} the Stirling set numbers. Table T(n, k) read by rows, for n >= 3 and 1 <= k <= n-2.
0
1, 5, 4, 23, 35, 10, 119, 243, 135, 20, 719, 1701, 1323, 385, 35, 5039, 12941, 12166, 5068, 910, 56, 40319, 109329, 115099, 59514, 15498, 1890, 84, 362879, 1026065, 1163370, 689575, 226800, 40446, 3570, 120, 3628799, 10627617, 12725075, 8263750, 3170200, 722568, 93786, 6270, 165
OFFSET
3,2
FORMULA
T(n, k) = Sum_{j=0..k} (binomial(n+j-1, 2*k) - binomial(n+k-j, 2*k))*A340556(k, j).
E.g.f.: (1 - z)^(-x) - exp(x*(exp(z) - 1)) (unrestricted rows and n >= 0).
EXAMPLE
Triangle starts:
[ 3] [1]
[ 4] [5, 4]
[ 5] [23, 35, 10]
[ 6] [119, 243, 135, 20]
[ 7] [719, 1701, 1323, 385, 35]
[ 8] [5039, 12941, 12166, 5068, 910, 56]
[ 9] [40319, 109329, 115099, 59514, 15498, 1890, 84]
[10] [362879, 1026065, 1163370, 689575, 226800, 40446, 3570, 120]
MAPLE
# Giving full rows for n >= 0:
gf := (1 - z)^(-x) - exp(x*(exp(z) - 1));
ser := series(gf, z, 20): coeffz := n -> coeff(ser, z, n):
A341102row := n -> seq(n!*coeff(coeffz(n), x, k), k=0..n):
for n from 0 to 9 do A341102row(n) od;
PROG
(SageMath)
for n in (3..11):
print([stirling_number1(n, k) - stirling_number2(n, k) for k in (1..n-2)])
(PARI) T(n, k) = abs(stirling(n, k, 1)) - stirling(n, k, 2); \\ Michel Marcus, Feb 24 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 24 2021
STATUS
approved