Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Dec 13 2022 08:12:58
%S 1,0,2,0,1,4,0,2,6,8,0,6,19,24,16,0,24,80,110,80,32,0,120,418,615,500,
%T 240,64,0,720,2604,4046,3570,1960,672,128,0,5040,18828,30604,28777,
%U 17360,6944,1792,256,0,40320,154944,261656,259056,167874,74592,22848,4608,512
%N T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k). Triangle read by rows, T(n, k) for 0 <= k <= n.
%H Özmen, N., Erkuş-Duman, E. (2019). <a href="https://doi.org/10.1007/978-3-030-04459-6_5">On the Generalized Sylvester Polynomials</a>. In: Lindahl, K., Lindström, T., Rodino, L., Toft, J., Wahlberg, P. (eds) Analysis, Probability, Applications, and Computation. Trends in Mathematics. Birkhäuser, Cham. See page 48.
%F Sum_{k=0..n-1} T(n, k) = Sum_{k=0..n} binomial(n, k)*(k! - 1) = A097204(n).
%F E.g.f. for row polynomials: P(x, z) := Sum_{k>=0} T(n, k) * x^n * z^k/k! = e^(x*z) / (1 - z)^x = 1 + (2*x) * z + (x + 4*x^2) * z^2/2! + ... - _Michael Somos_, Nov 23 2022
%F From _Peter Luschny_, Nov 24 2022: (Start)
%F T(n, k) = [x^k] (x^n)*hypergeom([-n, x], [], -1/x).
%F T(n, k) = [x^k] (-1)^n * n! * L(n, -x - n, x), where L(n, a, x) is the n-th generalized Laguerre polynomial. (End)
%e Triangle starts:
%e n\k 0 1 2 3 4 5 6 7 8 ...
%e 0: 1
%e 1: 0 2
%e 2: 0 1 4
%e 3: 0 2 6 8
%e 4: 0 6 19 24 16
%e 5: 0 24 80 110 80 32
%e 6: 0 120 418 615 500 240 64
%e 7: 0 720 2604 4046 3570 1960 672 128
%e 8: 0 5040 18828 30604 28777 17360 6944 1792 256
%p T := (n, k) -> add(binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k), j=0..k):
%p seq(print(seq(T(n,k), k = 0..n)), n = 0..9);
%p # Alternative:
%p SP := (n, x) -> (x^n)*hypergeom([-n, x], [], -1/x):
%p row := n -> seq(coeff(simplify(SP(n, x)), x, k), k = 0..n):
%p for n from 0 to 8 do row(n) od; # _Peter Luschny_, Nov 23 2022
%t T[ n_, k_] := If[ n<0, 0, n! * Coefficient[ SeriesCoefficient[ E^(x * z) / (1 - z)^x, {z, 0, n}], x, k]]; (* _Michael Somos_, Nov 23 2022 *)
%o (PARI) T(n, k) = sum(j=0, k, binomial(n, k-j)*stirling(n-k+j, j, 1)*(-1)^(n-k)); \\ _Michel Marcus_, Feb 11 2021
%o (PARI) {T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( exp(x*y) / (1 - x + x * O(x^n))^y, n), k))}; /* _Michael Somos_, Nov 23 2022 */
%o (Python)
%o from math import factorial
%o from sympy import Symbol, Poly
%o x = Symbol("x")
%o def Coeffs(p) -> list[int]:
%o return list(reversed(Poly(p, x).all_coeffs()))
%o def L(n, m, x):
%o if n == 0:
%o return 1
%o if n == 1:
%o return 1 - m - 2*x
%o return ((2 * (n - x) - m - 1) * L(n - 1, m, x) / n
%o - (n - x - m - 1) * L(n - 2, m, x) / n)
%o def Sylvester(n):
%o return (-1)**n * factorial(n) * L(n, n, x)
%o for n in range(7):
%o print(Coeffs(Sylvester(n))) # _Peter Luschny_, Dec 13 2022
%Y Alternating row sums: (-1)^n*(n+1) = A181983(n+1).
%Y Cf. A000522 (row sums), A097204 (row sums - 2^n), A002627 (row sums - n!).
%Y Cf. A000166, A340264.
%K nonn,tabl
%O 0,3
%A _Peter Luschny_, Feb 09 2021