OFFSET
1,1
COMMENTS
Sum_{k>=1} 1/phi(k)^m is convergent iff m > 1 (reference Monier). - Bernard Schott, Jan 14 2021
REFERENCES
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21, pp. 281 and 294.
LINKS
Eric Weisstein's World of Mathematics, Totient Function.
Eric Weisstein's World of Mathematics, Totient Summatory Function.
Wikipedia, Euler's totient function.
FORMULA
Equals Product_{primes p} (1 + 1/((1 - 1/p)^3 * (p^3 - 1))).
EXAMPLE
2.476194748165025794326855444125145160045456856355284384345707879150949...
MATHEMATICA
$MaxExtraPrecision = 1000; f[p_] := (1 + 1/((1 - 1/p)^s * (p^s - 1))) /. s -> 3; Do[cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 120]]], {m, 100, 1000, 100}]
PROG
(PARI) prodeulerrat(1 + 1/((1 - 1/p)^3 * (p^3 - 1))) \\ Amiram Eldar, Mar 15 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jun 25 2020
STATUS
approved