login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304202
a(n) = (2*n-3)*4^(n-1) - 2*binomial(2*n, n-1).
0
18, 208, 1372, 7632, 39050, 190112, 895524, 4120528, 18629652, 83088096, 366560568, 1602837280, 6956911962, 30007067456, 128736063316, 549740689872, 2338025684540, 9907917740128, 41853370268424, 176294674155104, 740683257681988, 3104678088923328, 12986226585328232
OFFSET
3,1
LINKS
Sihuang Hu and Gabriele Nebe, Strongly perfect lattices sandwiched between Barnes-Wall lattices, arXiv:1805.01196 [math.NT], 2018. See p. 21.
FORMULA
E.g.f.: (3 + 12*x + 8*x^2 - 3*exp(4*x) + 8*exp(4*x)*x - 8*exp(2*x)*I_1(2*x) )/4, where I_1(.) is the modified Bessel function of the first kind. - Bruno Berselli, May 08 2018
(n+1)*(2*n^2-7*n+7)*a(n) - 2*n*(4*n-5)*(2*n-3)*a(n-1) + 8*(2*n-3)*(2*n^2-3*n+2)*a(n-2) = 0. - R. J. Mathar, May 08 2018
MATHEMATICA
Table[(2 n - 3) 4^(n - 1) - 2 Binomial[2 n, n - 1], {n, 3, 40}]
PROG
(Magma) [(2*n-3)*4^(n-1)-2*Binomial(2*n, n-1): n in [3..20]];
(PARI) a(n) = (2*n-3)*4^(n-1) - 2*binomial(2*n, n-1) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Sequence in context: A109126 A022742 A055528 * A298988 A025959 A229270
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 08 2018
STATUS
approved