login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232879
The y-axis intercept of the line y = n*x + b tangent to the curve y = prime(k), k = 1, 2, 3, ....
1
1, -1, -5, -13, -37, -83, -194, -469, -1111, -2743, -6698, -16379, -40543, -101251, -254053, -640483, -1622840, -4133371, -10578367, -27130829, -69814219
OFFSET
1,3
COMMENTS
This sequence contains the y intercepts for lines with integer slopes, such that all primes fall at or above the line. Verified for primes less than 2*10^9.
The first 15 tangent lines intercept prime(k) at the following primes: 2, 3, 5, 7, 13, 19, 23, 31, 43, 47, 113, 283, 1129, 2803, 7043, 24137, 59753, 59797, 155893, 445033, 1195247, 3278837.
FORMULA
n*k + a(n) <= prime(k), where n is the slope, and a(n) is the y intercept.
EXAMPLE
The 2nd tangent line, a(2)+2*k tangent line intercepts p(k) at 3,5,7.
a(n)+n*k = ...
a(2)+2*2 = -1+2*2 = 3 = p(2).
a(2)+2*3 = -1+2*3 = 5 = p(3).
a(2)+2*4 = -1+2*4 = 7 = p(4).
But other primes fall above the 2nd tangent line.
a(2)+2*1 = -1+2*1 = 1 < 2=p(1).
a(2)+2*5 = -1+2*5 = 9 < 11=p(5).
a(2)+2*6 = -1+2*6 = 11 < 13=p(6).
For the 11th tangent line...
a(11)+11*6041 = -6698+6041*11 = 59753 = p(6041).
a(11)+11*6045 = -6698+6045*11 = 59797 = p(6045).
But other primes fall above the 11th tangent line...
a(11)+11*6040 = -6698+6040*11 = 59742 < 59747 = p(6040)
a(11)+11*6042 = -6698+6042*11 = 59764 < 59771 = p(6042)
a(11)+11*6043 = -6698+6043*11 = 59765 < 59779 = p(6043)
a(11)+11*6044 = -6698+6044*11 = 59776 < 59791 = p(6044)
a(11)+11*6046 = -6698+6046*11 = 59798 < 59809 = p(6046)
MATHEMATICA
nn = 10^6; pt = Table[Prime[k], {k, nn}]; Table[r = n*Range[nn] - pt;
mx = Max[r]; Print[{-mx, Flatten[Prime[Position[r, mx]]]}]; -mx, {n, 16}] (* T. D. Noe, Dec 04 2013 *)
PROG
(Java) public class Itp {private static long LIMIT = 10000000; private static long[] a = new long[100]; private static long[] p = new long[100]; public static void main(String[] args) {for (int n = 1; n < a.length; n++) {a[n] = Integer.MAX_VALUE; } long k = 1; for (int i = 2; i < LIMIT; i++) {if (isPrime(i)) {for (int n = 1; n < a.length; n++) {long l = i - n * k; if (l < a[n]) {a[n] = l; p[n] = i; }} k++; }} for (int n = 1; p[n] < LIMIT / 2; n++) {System.out.print(a[n] + ", "); } System.out.println(""); } private static boolean isPrime(int i) {if (i < 2) {return false; } int m = (int) Math.sqrt(i); for (int j = 2; j <= m; j++) {if (i % j == 0) {return false; }} return true; }}
CROSSREFS
Sequence in context: A111057 A019268 A083413 * A269803 A298417 A193642
KEYWORD
sign,hard
AUTHOR
John R Phelan, Dec 01 2013
EXTENSIONS
a(16)-a(21) from T. D. Noe, Dec 04 2013
STATUS
approved