OFFSET
1,4
COMMENTS
For n > 1: if A023961(n)=0 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.
EXAMPLE
a(10) = 3, a(100) = 15, a(1000) = 118, a(10000) = 1050.
MATHEMATICA
zd[n_]:=Module[{c=RealDigits[Sqrt[n], 10, 10], f}, f=Last[c]+1; If[First[c][[f]]==0, 1, 0]]; Accumulate[Array[zd, 90]] (* Harvey P. Dale, Feb 01 2012 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Aug 20 2005
STATUS
approved