login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100051
A Chebyshev transform of 1,1,1,...
13
1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1
OFFSET
0,4
COMMENTS
1, followed by period 6: repeat [1, -1, -2, -1, 1, 2]. - Joerg Arndt, Aug 28 2024
A Chebyshev transform of 1/(1-x): if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)).
Transform of 1/(1+x) under the mapping g(x)->((1+x)/(1-x))g(x/(1-x)^2). - Paul Barry, Dec 01 2004
Multiplicative with a(p^e) = -1 if p = 2; -2 if p = 3; 1 otherwise. - David W. Wilson, Jun 10 2005
FORMULA
From Paul Barry, Dec 01 2004: (Start)
G.f.: (1-x^2)/(1-x+x^2).
a(n) = a(n-1) - a(n-2), n>2.
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)/(n-k).
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*(2n/(n+k))*(-1)^k, n>1. (End)
Moebius transform is length 6 sequence [1, -2, -3, 0, 0, 6].
Euler transform of length 6 sequence [1, -2, -1, 0, 0, 1].
a(n) = a(-n). a(n) = c_6(n) if n>1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011
a(n) = A087204(n), n>0. - R. J. Mathar, Sep 02 2008
a(n) = A057079(n+1), n>0. Dirichlet g.f. zeta(s) *(1-2^(1-s)-3^(1-s)+6^(1-s)). - R. J. Mathar, Apr 11 2011
EXAMPLE
G.f. = 1 + x - x^2 - 2*x^3 - x^4 + x^5 + 2*x^6 + x^7 - x^8 - 2*x^9 - x^10 + ...
MATHEMATICA
CoefficientList[Series[(1 - x^2)/(1 - x + x^2), {x, 0, 50}], x] (* G. C. Greubel, May 03 2017 *)
LinearRecurrence[{1, -1}, {1, 1, -1}, 80] (* Harvey P. Dale, Mar 25 2019 *)
PROG
(PARI) {a(n) = - (n == 0) + [2, 1, -1, -2, -1, 1][n%6 + 1]}; /* Michael Somos, Mar 21 2011 */
CROSSREFS
Row sums of array A127677.
Sequence in context: A205375 A016010 A099837 * A281727 A122876 A131713
KEYWORD
easy,sign,mult
AUTHOR
Paul Barry, Oct 31 2004
STATUS
approved