login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085939
Horadam sequence (0,1,6,4).
16
0, 1, 4, 22, 112, 580, 2992, 15448, 79744, 411664, 2125120, 10970464, 56632576, 292353088, 1509207808, 7790949760, 40219045888, 207621882112, 1071801803776, 5532938507776, 28562564853760
OFFSET
0,3
COMMENTS
a(n) / a(n-1) converges to sqrt(10) + 2 as n approaches infinity; sqrt(10) + 2 can also be written as sqrt(2) * (sqrt(2) + sqrt(5)), 2 * sqrt(2) * Phi - sqrt(2) + 2 and lim_{n->infinity} sqrt(2) * (sqrt(2) + (L(n) / F(n))), where L(n) is the n-th Lucas number and F(n) is the n-th Fibonacci number.
LINKS
Eric Weisstein, Lucas Number
Eric Weisstein, Lucas Sequence
Eric Weisstein, Horadam Sequence
Eric Weisstein, Fibonacci Number
Eric Weisstein, Pell Number
FORMULA
a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 4, r = 6.
a(n) = ((2+sqrt(10))^n - (2-sqrt(10))^n)/(2*sqrt(10)). - Rolf Pleisch, Jul 06 2009
G.f.: x/(1-4*x-6*x^2). - Colin Barker, Jan 10 2012
EXAMPLE
a(4) = 112 because a(3) = 22, a(2) = 4, s = 4, r = 6 and (4 * 22) + (6 * 4) = 112.
MATHEMATICA
Join[{a=0, b=1}, Table[c=4*b+6*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{4, 6}, {0, 1}, 30] (* Harvey P. Dale, Jul 20 2016 *)
PROG
(Sage) [lucas_number1(n, 4, -6) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-6*x^2))) \\ G. C. Greubel, Jan 16 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ross La Haye, Aug 16 2003
STATUS
approved