login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080360
a(n) is the largest positive integer x such that the number of unitary-prime-divisors of x! equals n. Same as the largest positive integer x such that the number of primes in (x/2,x] equals n.
6
10, 16, 28, 40, 46, 58, 66, 70, 96, 100, 106, 126, 148, 150, 166, 178, 180, 226, 228, 232, 238, 240, 262, 268, 280, 306, 310, 346, 348, 366, 372, 400, 408, 418, 430, 432, 438, 460, 486, 490, 502, 568, 570, 586, 592, 598, 600, 606, 640, 642, 646, 652, 658, 676
OFFSET
1,1
REFERENCES
S. Ramanujan, Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson), Amer. Math. Soc., Providence, 2000, pp. 208-209.
LINKS
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635; arXiv:0907.5232 [math.NT], 2009-2010.
Wikipedia, Ramanujan prime
FORMULA
a(n) = Max{x; Pi[x]-Pi[x/2]=n} = Max{x; A056171(x)=n} = Max{x; A056169(n!)=n}; where Pi()=A000720().
a(n) = A104272(n+1) - 1. [Jonathan Sondow, Aug 11 2008]
EXAMPLE
n=5: in 46! five unitary-prime-divisors[UPD] appear: {29,31,37,41,43}. In larger factorials number of UPD is not more equal 5. Thus a(5)=46.
MATHEMATICA
nn = 60; R = Table[0, {nn}]; s = 0;
Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s+1]] = k], {k, Prime[3*nn]}];
Rest[R] (* Jean-François Alcover, Dec 02 2018, after T. D. Noe in A104272 *)
CROSSREFS
Cf. A104272 (Ramanujan primes).
Sequence in context: A155151 A104788 A249720 * A026320 A144206 A335675
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 21 2003
EXTENSIONS
Definition corrected by Jonathan Sondow, Aug 10 2008
STATUS
approved