login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076342
a(n) = A076340(A000040(n)), real part of primes mapped as defined in A076340, A076341.
8
2, 4, 4, 8, 12, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 60, 60, 68, 72, 72, 80, 84, 88, 96, 100, 104, 108, 108, 112, 128, 132, 136, 140, 148, 152, 156, 164, 168, 172, 180, 180, 192, 192, 196, 200, 212, 224, 228, 228, 232, 240, 240, 252, 256, 264, 268, 272
OFFSET
1,1
COMMENTS
By definition of the map defined in A076340, A076341: 2->(2,0) and p->((floor(p/4)+floor((p mod 4)/2))*4,2-(p mod 4)) for odd primes p.
Number of solutions to x^2 + y^2 = 1 (mod p). - Lekraj Beedassy, Oct 22 2004
LINKS
FORMULA
a(n) = p-(-1/p) = p+(-1)^{(p+1)/2} for an odd prime p. {(a/b) stands for the value of the Legendre symbol}. - Lekraj Beedassy, Oct 22 2004
From Amiram Eldar, Dec 24 2022: (Start)
a(n) = A000040(n) - A070750(n).
a(n) = A100484(n) - A082542(n).
Product_{n>=1} a(n)/prime(n) = 4/Pi (A088538). (End)
EXAMPLE
A000040(11)=31=(32-1) -> (32,-1), therefore a(11)=32 and A070750(11)=-1.
MAPLE
f:= proc(n) local p;
p:= ithprime(n);
if p mod 4 = 1 then p-1 elif p mod 4 = 3 then p+1 else 2 fi
end proc:
map(f, [$1..100]); # Robert Israel, Dec 26 2016
MATHEMATICA
a[1] = 2; a[n_] := With[{p = Prime[n]}, p - JacobiSymbol[-1, p]]; Array[a, 60] (* Jean-François Alcover, Feb 01 2018, after Lekraj Beedassy *)
a[n_] := Prime[n] - 2 + Mod[Prime[n], 4]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 08 2002
STATUS
approved