login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069099
Centered heptagonal numbers.
63
1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953, 1072, 1198, 1331, 1471, 1618, 1772, 1933, 2101, 2276, 2458, 2647, 2843, 3046, 3256, 3473, 3697, 3928, 4166, 4411, 4663, 4922, 5188, 5461, 5741, 6028, 6322, 6623, 6931, 7246
OFFSET
1,2
COMMENTS
Equals the triangular numbers convolved with [ 1, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
Number of ordered pairs of integers (x,y) with abs(x) < n, abs(y) < n and abs(x + y) < n, counting twice pairs of equal numbers. - Reinhard Zumkeller, Jan 23 2012; corrected and extended by Mauro Fiorentini, Jan 01 2018
The number of pairs without repetitions is a(n) - 2n + 3 for n > 1. For example, there are 19 such pairs for n = 3: (-2, 0), (-2, 1), (-2, 2), (-1, -1), (-1, 0), (-1, 1), (-1, 2), (0, -2), (0, -1), (0, 0), (0, 1), (0, 2), (1, -2), (1, -1), (1, 0), (1, 1), (2, -2), (2, -1), (2, 0). - Mauro Fiorentini, Jan 01 2018
FORMULA
a(n) = (7*n^2 - 7*n + 2)/2.
a(n) = 1 + Sum_{k=1..n} 7*k. - Xavier Acloque, Oct 26 2003
Binomial transform of [1, 7, 7, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 7, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 7*n + a(n-1) - 7 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1+5*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=8, a(2)=22. - Harvey P. Dale, Jun 04 2011
a(n) = A024966(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = 2*a(n-1) - a(n-2) + 7. - Ant King, Jun 17 2012
From Ant King, Jun 17 2012: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi/sqrt(7)*tanh(Pi/(2*sqrt(7))) = 1.264723171685652...
a(n) == 1 (mod 7) for all n.
The sequence of digital roots of the a(n) is period 9: repeat [1, 8, 4, 7, 8, 7, 4, 8, 1] (the period is a palindrome).
The sequence of a(n) mod 10 is period 20: repeat [1, 8, 2, 3, 1, 6, 8, 7, 3, 6, 6, 3, 7, 8, 6, 1, 3, 2, 8, 1] (the period is a palindrome).
(End)
E.g.f.: -1 + (2 + 7*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = A101321(7,n-1). - R. J. Mathar, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 9*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 9/(2*e) - 1. (End)
a(n) = A003215(n-1) + A000217(n-1). - Leo Tavares, Jul 19 2022
EXAMPLE
a(5) = 71 because 71 = (7*5^2 - 7*5 + 2)/2 = (175 - 35 + 2)/2 = 142/2.
From Bruno Berselli, Oct 27 2017: (Start)
1 = -(0) + (1).
8 = -(0+1) + (2+3+4).
22 = -(0+1+2) + (3+4+5+6+7).
43 = -(0+1+2+3) + (4+5+6+7+8+9+10).
71 = -(0+1+2+3+4) + (5+6+7+8+9+10+11+12+13). (End)
MATHEMATICA
FoldList[#1 + #2 &, 1, 7 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 8, 22}, 50] (* Harvey P. Dale, Jun 04 2011 *)
PROG
(Haskell)
a069099 n = length
[(x, y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n - 1]
-- Reinhard Zumkeller, Jan 23 2012
(PARI) a(n)=(7*n^2-7*n+2)/2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A000566 (heptagonal numbers).
Sequence in context: A058508 A134783 A211529 * A172473 A145067 A112684
KEYWORD
nonn,easy,nice
AUTHOR
Terrel Trotter, Jr., Apr 05 2002
STATUS
approved