login
A054602
a(n) = Sum_{d|3} phi(d)*n^(3/d).
16
0, 3, 12, 33, 72, 135, 228, 357, 528, 747, 1020, 1353, 1752, 2223, 2772, 3405, 4128, 4947, 5868, 6897, 8040, 9303, 10692, 12213, 13872, 15675, 17628, 19737, 22008, 24447, 27060, 29853, 32832, 36003, 39372, 42945, 46728, 50727, 54948
OFFSET
0,2
COMMENTS
Every term is the product plus the sum of 3 consecutive numbers. - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Continued fraction [n,n,n] = (n^2+1)/(n^3+2n) = (n^2+1)/a(n); e.g., [7,7,7] = 50/357. - Gary W. Adamson, Jul 15 2010
LINKS
Thomas Oléron Evans, Queues of Cubes, Mathistopheles, August 22 2015.
Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
FORMULA
a(n) = n^3 + 2n = A073133(n, 3). - Henry Bottomley, Jul 16 2002
G.f.: 3*x*(x^2+1)/(x-1)^4. - Colin Barker, Dec 21 2012
a(n) = ((n-1)^3 + n^3 + (n+1)^3) / 3. - David Morales Marciel, Aug 28 2015
From Bernard Schott, Nov 28 2021: (Start)
a(n) = A007531(n+1) + A008585(n) (see 1st comment).
a(n) = 3*A006527(n). (End)
MATHEMATICA
nterms=100; Table[n^3+2n, {n, 0, nterms}] (* Paolo Xausa, Nov 25 2021 *)
PROG
(PARI) a(n)=n^3+2*n \\ Charles R Greathouse IV, Sep 01 2015
CROSSREFS
Row n=3 of A185651.
Sequence in context: A288605 A268768 A174963 * A083725 A192972 A159228
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 16 2000
STATUS
approved