OFFSET
0,2
COMMENTS
Sqrt(37) = 6.08276253... = 12/2 + 12/145 + 12/(145*21169) + 12/(21169*3090529) + ... - Gary W. Adamson, Jun 13 2008
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 12's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,12} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 02 2023: (Start)
Also called the 12-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 12 kinds of squares available. (End)
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..500
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Tanya Khovanova, Recursive Sequences
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
Index entries for linear recurrences with constant coefficients, signature (12,1).
FORMULA
a(n) = F(n, 12), the n-th Fibonacci polynomial evaluated at x=12. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 12*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=12.
G.f.: 1/(1 - 12*x - x^2). (End)
a(n) = ((6+sqrt(37))^(n+1) - (6-sqrt(37))^(n+1))/(2*sqrt(37)). - Rolf Pleisch, May 14 2011
MATHEMATICA
Denominator[Convergents[Sqrt[37], 30]] (* or *) LinearRecurrence[{12, 1}, {1, 12}, 30] (* Harvey P. Dale, May 26 2014 *)
PROG
(Sage) [lucas_number1(n, 12, -1) for n in range(1, 18)] # Zerinvary Lajos, Apr 28 2009
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved