login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007086
Next term is uniquely the sum of 3 earlier terms.
(Formerly M0756)
10
1, 2, 3, 6, 9, 10, 11, 12, 28, 29, 30, 53, 56, 57, 80, 82, 104, 105, 107, 129, 130, 132, 154, 155, 157, 179, 180, 182, 204, 205, 207, 229, 230, 232, 254, 255, 257, 279, 280, 282, 304, 305, 307, 329, 330, 332, 354, 355, 357, 379, 380, 382, 404, 405, 407, 429
OFFSET
1,2
COMMENTS
a(1)=1, a(2)=2, a(3)=3, for n>3, a(n) = least number which is a unique sum of three distinct earlier terms. Written this way, we see that this is to 3 as Ulam number A002858 is to 2. - Jonathan Vos Post
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. C. Wunderlich, The improbable behavior of Ulam's summation sequence, pp. 249-257 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
FORMULA
G.f.: (22*x^18 -21*x^17 +x^16 -2*x^13 -7*x^12 -15*x^9 +2*x^8 +2*x^7 -2*x^5 -2*x^4 -x^3 -x^2 -x) / (-x^4+x^3+x-1). Conjectured and verified for n<=1100 - Alois P. Heinz, Jan 04 2011
EXAMPLE
13 through 27 are not in the sequence because of nonuniqueness: 1+3+9=1+2+10=13, 1+3+10=2+3+9=14, 1+2+12=2+3+10=15, 1+6+9=2+3+11=16, 1+7+9=2+6+9=17, 3+6+9=1+6+11=18, 1+6+12=2+6+11=19, 1+9+10=2+6+12=20, 1+9+11=2+9+10=21, 1+10+11=2+9+11=22, 2+9+12=3+9+11=23, 1+11+12=3+9+12=24, 3+10+12=6+9+10=25, 3+11+12=6+9+11=26, 6+9+12=6+10+11=27. - Jonathan Vos Post
MATHEMATICA
Clear[a]; a[n_ /; n <= 3] := n; a[n_] := a[n] = (t = Table[a[i]+a[j]+a[k], {i, 1, n-3}, {j, i+1, n-2}, {k, j+1, n-1}] // Flatten; Complement[Select[t // Tally, #[[2]] == 1&][[All, 1]], Array[a, n-1]] // Sort // First); Array[a, 56] (* Jean-François Alcover, Mar 11 2014 *)
CROSSREFS
Cf. A002858.
Sequence in context: A094351 A061910 A344208 * A047404 A133555 A328727
KEYWORD
nonn
STATUS
approved