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It’s all so unimportant. That’s what makes it so very interesting.

Agatha Christie: The Murder of Roger Ackroyd.

Cayley [8, 9] introduced a permutation problem he called Mousetrap which is loosely
based on the card game Treize. Suppose that the numbers 1,2, ..., n are written on cards, one

to a card. After shuffling (permuting) the cards, start counting the deck from the top card

; down. If the number on the card does not equal the count, transfer the card to the bottom of
the deck and continue counting. If the two are equal then set the card aside and start counting

again from 1. The game is won if all the cards have been set aside.

Table 1 gives all the permutations on 4 cards and the order in which they are set aside.

The game is won on just 6 occasions out of the 24.

Table 1. Six winning games in four-card Mousetrap.

permutation 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431

cards set aside 1 1342 12 1 1234 1423 3214

3142

permutation 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

cards set aside 4 21 23

Cayley proposed two questions.

1. For each n find all the winning permutations of 1,2,...,n.

2134 2

2. For each n find the number of permutations that eliminate precisely ¢ cards for each 1,

1 << n.

An answer for question 2 would give an answer for question 1, but very little is known
about either. In this paper, we give some results for question 2 and raise some other questions.



In [9], Cayley lists all the possible outcomes for n = 4. Steen [46] notes that Cayley made
some errors. He goes on to calculate, for any n, the number of permutations that have i,
1 <@ < n, as the first card set aside. This number he denotes by a,; and he used bnji (¢ny)
to denote the number of permutations that have 1 (respectively 2) as the first hit and ¢ as the
second. He obtained the recurrence relations

Apni = Qni-1 — AQpn-1,i-1, bn,i = an-1,i—-1

. i—2 (i1 —k
i = e = (= Dewg + (-1 H)

k=2
and used them to show that for 0 <7 < n,

Cn—ky1 forn>i+1

n
ap,0 = Ndp-1,0 —+ (—1) y Qo0 = 1

Unyi = i(—l)k (2) (n—1—k)!

k=0

bn,i = 0p-1,i-1 = Qp_2:i-2 — Ap-3:;-2

Cnji = :cz::(—l)k“-l@(n —i+ k=)= (G =1)(n—3)+ (n—-2)

Steen denoted the sums of the a,; b, cn; taken over 0 < ¢ < n (but omitting: =0,7 =1,
1 = 2 respectively) by a, b, ¢, and further showed that

Qp = NGn_1 + (_1)n+1 bn = ap-1

and deduced a complicated expression for ¢, from his formula for ¢,; which unfortunately
holds for neither : = n nor ¢ = n — 1. We will give formulas for ¢, and ¢, -1 and will see
that

cn=(n—2)(n-2)! - [[% ((n—1!'=(n—2)!—2(n—3)N],
where [z] is the nearest integer to z.

Table 2 lists the numbers of permutations of n, 1 < n <9 which set aside exactly 7 cards,
0<<n.
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Table 2.‘

Y

Numbers of permutations eliminating just 7 cards.

nlfz= 0 1 2 3 4 5 6 7 8 9
1 0 1

2 1 0 1

3 2 2 0 2

4 9 6 3 0 6

5) 44 31 19 11 0 15

6 265 180 105 54 32 0 84

7 1854 1255 771 411 281 138 0 330

8| 14833 9949 6052 3583 2057 1366 668 0 1812

9

If : = 0, so that no card is set aside then the permutation is a derangement ([44], sequence
766), that is, card j is in place j for no value of j. Sloane [44] also contains some related
sequences. For example, sequences 1166, 706, 1189, 1450 and 1637 are given by the recurrence
an = nanp_1 + (n — k)a,—o with & = 1, 2, 3, 4 and 5 respectively, and are concerned with
the not unrelated problem of counting permutations containing given numbers of consecutive
members([2, 3, 17, 19, 50]). Sequences 1423 and 1186 are Steen’s a, and c, respectively. The
first edition of [44] cited Steen’s sometimes erroneous values of ¢, for 3 < n < 10. They have
been corrected in the forthcoming second edition. They can be calculated from the formula
above, and for 1 < n < 20 are

0, 0, 1, 3, 13, 65, 397, 2819, 22831, 207605, 2094121, 23205383, 280224451,
3662810249, 51523391965, 776082247979,  12463259986087,  212573743211549,
3837628837381201,  73108996989052175.

There is a considerable literature on permutations with restricted position [41, 12], which
include derangements or the probléme des rencontres [18, 21, 38], Lucas’s probléme des ménages
(28, 4, 5, 7, 14, 24, 27, 29, 40, 42] or Tait’s earlier version of it [10, 11, 33, 34, 35, 47], and
the more general enumeration of Jatin rectangles [6, 15, 20, 25, 26, 29, 32, 36, 37, 39, 52, 53,
54, 55, 56]. The first explicit solution of the probléme des ménages was given by Touchard[48]
(see also [49]), the simplest by Kaplansky [22], while Wyman & Moser [51] gave an interesting
solution using an exponential generating function. Tait [47] and Gilbert [16] were interested
in the possible connexion with knot theory.

But here we restrict ourselves to Mousetrap. The top diagonal, : = n, of Table 2 gives
answers to Cayley’s first question. No sequence beginning in this way appears in [44], although
we may be in time to appear in the second edition. Since it is impossible to leave just one
card, it follows that the second diagonal, : = n — 1, consists of zeros. The row sums are n!

133496 89162 55340 32135 19026 12685 6743 4305 0 9978\ .
970

J
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Notice that the number of permutations which eliminate at least one card is the nearest
integer to n!(1 — 2). This is the special case j = n — 1 of a more general problem [43]: find
the minimum number of permutations of 1,2,...,n which contain all permutations of a given
j-element subset.

We also considered the case where just one card is set aside. In Table 3 the kth column
gives the number of permutations in which just the card k is set aside so that the row sums
correspond to the column 7 = 1 of Table 2.

Table 3. Numbers of permutations eliminating just card k.

nlk= 1 2 3 4 5 6 7 8 9 10
1 1

2 0 0

3 1 0 1

4 2 1 1 2

5 9 5 5 3 9

6 44 31 25 20 16 44

7 265 203 167 142 117 96 265

8| 1854 1501 1267 1075 932 791 675 1854

9| 14833 12449 10745 9311 8241 7132 6205 5413 14833

10 | 133496 114955 101005 88993 78607 70340 62141 55004 48800 133496

Derangement numbers appear in the column k£ = 1 and on the diagonal k = n. It is easy
to verify that|there is b good reason for this. The inclusion-exclusion method used in [22] can
help to ﬁnd{ %matio formulas for the other entries of the table. Let EF = (n — k)!/n!

PAEY'

Theorem 1 The probability that only the card k is set aside is given by
E(1 — Ey"?*1(1 —3E)(1 — 3E + E*)*?

if 1 <k <n/2; by

Bl - <2p+1)E+ <2p>E2+---(—1)"(2p“.”1)Ei+...(—1)”(”>E”]’°

1 2 ) P

ifnf2 <k<nandp=(k—1)/(n—k) is an integer; and otherwise by



- <2p+4)E+...(—1)i(2p_,i+5)Ei+..‘(—1)”+2(p+3)E”+2]><

1 ; p+2

- (2p1+ 3)E . ..(-1)1‘(219 _; +4> E .. (=1 (Z 1 z) EPHIp2
B[ — (zf’)E+...(—1)f(2p _z_” 1>E"+...(—1)”(p: 1)E”]><

- (2";“ 1)E Fo (1) (2” _; + 2) Ef 4... (1) (z i 1) EPr1)-i

where p is now [(k — 1)/(n — k)|, and 3 = k —p(n — k) > 1, except that for k = n it is
asymptotically 1/nc.

Proof. Let p;; be the probability that the permutation puts 7 in the jth place. In what
follows p;;jpr is interpreted as meaning the probability of both events happening (so that
piipik = 0 = pjipki if j # k).

The probability that just card 1 is set aside is p11(1 — p23)(1 — pz4) - - - (1 = Prn—1.2)(1 — Pr2)-
All the terms are independent so this reduces to E(1 — E)™ 1.

If k is in the first half of the range, 1 < k < |n/2], then the expression is
TGS (1 = pig) X pr X TESH(L = piers) X TS = prsioiss)

The terms can be put into k groups: the ¢th group, : < k, contains the terms corresponding
to the restrictions on the :th card and the k + 7th card. Specifically,

(1=p11)(1 = Prks1,1)(1 = prgga)(1 = Pajgsr) and (1= pi)(1 = pucirii) (1 — pikss)

for 2 S 1 < k and, for 1 = k, pk’kH::lk(l — pk+i,2k+i)-
For example take k = 4. We display the groups in columns.

(1 = pn)x (1 — p22) X (1 — p33)x Paa[(1 — pse) ... (1 — Pa—an)] X
(1 =pr-31)x (I =pnog2)x (1= pn-13)X

(1 = pns) ¥

(1 = pis)x (1 — p26) X (1 — pa7)

The terms in each of these groups except the last are not pairwise independent but any
two terms from different groups are independent. The first group reduces to 1 — 4F + 3E2.
Groups 2 through k — 1 each reduce to 1 — 3E + E? and the last to E(1 — E)"~%. In general
then, for £ < n/2 the probability that only k is set aside is given by

S



E(1— E)"™ (1 —4E +3E%)(1 = 3E + E*)*? = E(1 — E)"""!(1 = 3E)(1 - 3E + E*)*?

In the second half of the range, n/2 < k < n — 1, the dependence pattern becomes more
complicated. We give two examples.

(a)n=14,k=9:

D99 X 1 — P14,10 1 — P1,10 1— D1 1 - Ds,1 1-— P66 1-— D11
1 — D211 1-— DP2,2 1 — D7,2 11— D77 1 - P12,7
l—p312 1—p3s3s 1—pgs 1—psg 1—piag
l —ps13 1—pga 1—pogy
1 - D514 1— Pss 1 — P1o,5
(b)n=13,k=09:
pooX l—pizio l—pryo 1—p1g 1—psi 1—pss 1—pos
l—p2ax 1—p22 1—ps2 1—pes 1—piog
1 — D312 1- D33 1 - P13 11— P77 1— DP11,7
l —pags 1 —psa 1—psa 1—pss 1—piag
Note that the entries in each line are not pairwise independent, but any two entries on
different lines are independent. Specifically, the groups are

Prk(l = Pak+1)(1 = pra+1)(1 = P11)(1 — Pr—tet1m—t+1)(1 — Pnkt1,1)(1 — Prkt1,2n—2k+1)

and, for 2 < ¢ <k, (1 — pig+i (1 = Piii) (1 — Pr—itiin—kti)(1 = Pr—kti,i)(1 — Pn—ktizn—2k+4i), Where

any term that is not defined is taken to be zero. Let p = L—’E}; . There are two cases.

One, suppose p = (k — 1)/(n — k) ther all but one group is of length 2p + 1 and the other
includes the term 1 — py 2k—n which when multiplied by pk, reduces to pin,. The expression is
therefore ’

2p+1 2 (2p—1+1\ .
E[l - ( P+ )E+ ( p>E2+...(—1)t( p-it )E’Jr...(—1)?(1’)151’]’c
1 2 ? P
Two, suppose that p < (k—1)/(n—k). Let j = k—|(k—1)/(n —k)|(n — k) so that 7 > 1.
There are 3 group sizes, but again, one line includes the term 1 — pg2x—,. This latter term
multiplied by p, reduces to pi,. The whole expression is therefore



- (2p1+4>E+...(—1)1'(2”_.”5)15" b (—1p (p+3)E”“]><

2 p+2
2 3 (2p —1 . ‘
= ( Pt )E+...(—1)'( P _z+4)E’+...(—1)”+2(p+2>E”+2]3‘2x
1 2 p+2
2 (2p—14+ 1Y . 1
E[1-(f)15:+...(_1)'(” Z_““ )E’+...(—1)P(”; )E”]x
2p+1 (2p—214+ 2\ . p+1 s
1 - E+4...(-1) _ E' 4 ... (—1)P* e
(o (o ()
If K =n —1, then there is only one group, which gives ( )»ﬁ,-]
; "f""(

. s +H)
- (s (P e (D))

If £ = n, then we are back to derangements. This completes the proof of the theorem.
The methods of the theorem can also be used to find corrected versions of Steen’s formulas:

Canot = nf(—l)k (” R 3) (n—k—2)!

k=0

s o () s

k=0

The probability that only the card 2 is set aside is

3 g LB BT EL LR

? n!

With help from MAPLE we found that this has a closed form. Indeed, the number of permu-
tations which set aside just the card k, n > 2k — 1, is



b=1: (-1

F=2: [[%((n——1)!—(n—2)!—2(n—3)!)]}

E=3:  [L((n—1)!=2(n—2)— 2n —3)! 4 3(n — &)l + 2(n — 5))]

k=4: [%((n—l)!—B(n—Q)!—(n—3)!+7(n—4)!+(n—5)1—5(n—6)!—2(n—7)!)]]
F=5: [[%((n— 1)! = 4(n — 2)! + (n — 3)! + 11(n — 4)! — 5(n — 5)! — 13(n — 6)!4
2n — 7))+ 7(n — 8)! + 2(n — 9))]
and more generally there is an expression of the form
[E((n = 1)1 = (k= 1)(n — 2)! + (K? — 5k +2)(n = 3)! + ...+
(—1)*1(2k = 3)(n = 2k + 2)! + (=1)¥'2(n — 2k + 1)1)]].

For purposes of calculation, it may be more convenient to write these as the product of a
factorial and a polynomial, e.g., for k = 2, [3(n — 3)/(n? — 4n + 2)], and more generally

[=(n — 2k + 1)! (0™~ — 2h(k — )2~ 1. )],

€

In this way we obtain the following extension to Table 3.

n | k= 1 2 3 4 5

11 1334961 1171799 1044395 932645 834341
12 14684570 13082617 11795863 10650463 9628825
13 176214841 158860349 144605933 131765675 120182567
14 2290792932 2085208951 1913265985 1756864189 1614448051

15 32071101049 29427878435 27183809135 25125937217 23237307353
16 481066515734 444413828821 412900741435 383803666315 356920864909
17 | 76970642511745 7151855533913 6678013826657 6237929276087 5828999672555

f

A third question arose durinl our investigations about which we also know very little.
Consider a permutation for whicli every number is set aside. The list of numbers in the order
that they were set aside is anothpr permutation. Any permutation obtained in this way we
call a reformed permutation.

z%gﬂ



3. Characterize the reformed permutations.

Not all permutations are reformed permutations. For example, permutations on n objects
are not reformed permutations if they start with n; or with z,n—1,y where y # n # z; or with
k,j,n—(k+j+1),s where : < k and k < n— 1. On the other hand, the identity permutation
is always a reformed permutation; the permutations yielding this are 1, 12, 132, 1423, 13254,
142563, 1527436, 16245378, 142863795, ... .

The permutation 4213 is a reformed permutation which gives rise to the permutation 2134;
this in turn gives 3214 which is not a reformed permutation.

4. For a given n, what is the longest sequence of reformed permutations?

For n = 3 there are 132 — 123 and 321 — 213 : of length 1. For n = 4 there are
4212 — 2134 — 3214 and 1432 — 1423 — 1234 of length 2. An example of length 3§ is
165342 — 132564 — 125346 — 136524. Of course, longer sequences contain shorter ones.
Table 4, whose column sums are rn!, gives the numbers of permutations yielding sequences of

length 1.

Table 4. Numbers of sequences of reformed permutations.

4 5 6 7 8 9 ’]7//

2 3
1 1 4 18 105 636 4710 38508 352902

1 2 4 14 72 316 1730 9728 ——
2 1 11 14 81 242

T

Are there sequences of arbitrary length? Are there any cycles other than

N = O ~
|

l1-1—-1—-1... and 12-12-512-512...7

Modular Mousetrap. We can play Mousetrap, but instead of counting n, n +1, ...,
we can start again, ..., n, 1, 2, ... . Now at least as many cards get set aside. In fact if
n 1s prime, then either the initial deck is a derangement, or all cards get set aside, so every
sequence cycles or terminates in a derangement. The identity permutation 123...n will always
form a 1-cycle and now there are also examples of nontrivial cycles.

Forn=2,12 512 — 12 — ... cycles and 21 terminates.
Forn = 3,132 — 123 — 123 — ... cycle, while 321 — 213 — 312 and 231 terminate.

If n is composite, the number of cards set aside may be strictly between 0 and n. As before,
exactly n — 1 cards cannot be set aside; and it’s easy to see that neither can just one card. For

9



example, with n = 4 there are 9 derangements with the permutations 2431 & 4132 at distance
1 from two of them; 7 permutations which set aside just 2 cards and 4213 at distance 1 from
one of them; and the 1-cycle 1234 with two permutations at distance 1 from it and 1243 &
1432 at distance 2.

For n = 5 there is the 1-cycle, 12345; nine permutations at distance 1 from it; eight at
distance 2; four at distance 3; and two (12354 & 15432) at distance 4. There is a 2-cycle,
21345 & 32145; six permutations at distance 1 from it; and two (41352 & 43215) at distance
2. There are, of course, 44 derangements; and there are 23 permutations at distance 1 from
some of these; 12 at distance 2; six at distance 3; and a path of length 4:

94321 — 34215 — 52143 — 21435 — 51423.

For n = 6, the 5! permutations starting with 1, and which thus set aside 1, consist of the
l-cycle 123456, thirteen permutations which feed into it, the longest sequence of which is

125436 — 132645 — 124653 — 134562 — 123456,

10 permutations which set aside just one other card (2, 4 or 6), 37 which set aside just three
cards, 17 which set aside just 4 cards, and 42 which set aside the whole deck, the longest
sequences of which begin with 126534, 153642 and 165342.

Are there k-cycles for every k 7 What is the least value of n which yields a k-cycle?

We are grateful to Sherwood Washburn for bringing Mousetrap to our attention and for
supplying copies of the early literature.
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