8

Tournaments (n \leq 6)

Tournaments are just what they look like. Team X beats team Y, indicated by an arrow directed from X to Y. All matches are one-on-one, every team plays every other team, and there are no draws.

The degree sequence for a tournament is an inventory of wins. For example the transitive 3-tournament has sequence 210, meaning the players have 2 wins, 1 win, and no wins. Degree sequences are far from unique.

The proper (or Condorcet) winner of a tournament beats all other players (with degree n-1), but the existence of a proper winner is unlikely. By examining all possible states of the arrows, we can assign a probability to a tournament class as a random outcome (listed up to $\mathbf{n} = 5$). From these we can find the probability of a proper winner for \mathbf{n} players (see Table 8.1).

Converse tournaments (connected by the sign ~) are related by reversing all of their arrows. Those tournaments not paired with a converse are self-converse.

n = 5

Table 8.1 Numbers of Tournaments

n	T(n)	*self- converse	#Hamil- tonian	Condorcet probability n/2 ⁿ⁻¹
1	1	1	1	1
1	ı	I	I	1
2	1	1	0	1
3	2	2	1	3/4
4	4	2	1	1/2
5	12	8	6	5/16
6	56	12	35	3/16
7	456	88	353	7/64
8	6 880	176	6 008	1/16
9	191 536	2752	178 133	9/256
10	9 733 056	8784	9 355 949	5/256

^{*}Alistair Farrugia, Univ of Malta

#A Hamiltonian tournament has at least one n-cycle. Equivalently, every node is reachable from every node.

Table 8.2 Converse pairs for n = 6

1 sc	21 sc	39 sc
2 ~ 3	22 sc	40 ~ 41
3 ~ 2	23 ~ 25	43 sc
4 sc	24 sc	44 ~ 48
5 ~ 13	26 ~ 29	45 ~ 49
6 ~ 14	27 ~ 30	46 ~ 50
7 ~ 15 8 ~ 16 9 ~ 17 10 ~ 18 11 ~ 19 12 ~ 20	28 ~ 31 32 sc 33 ~ 37 34 ~ 38 35 sc 36 ~ 42	47 ~ 51 52 sc 53 ~ 54 55 sc 56 sc