
avant-propos

This is a small excerpt from Swing, divide and conquer the factorial, a
manuscript I wrote around 2008, for use on my website Fast Factorial
Functions.

I would like to thank Bernardo Meurer who inquired some more infor-
mation about the swing-algorithm and then encouraged me to translate
the relevant sections (which were written in German) to English. I also
thank Bernardo Meurer and Sander Hartkamp for their help in the trans-
lation.

Peter Luschny

C O N T E N T S

1 a new kind of factorial function 2

1.1 A decomposition of the factorial function 2

1.2 The prime factors of the swinging factorial. 3

1.3 The dsc–algorithm for computing n! 5

1.4 Swing-time: the time complexity of no. 6

1.5 Factorial-time: The time complexity of n! 7

1.6 A recurrence for no 8

1.7 Implementation of the dsc-factorial 8

2 appendix : listings 9

2.1 dsc-factorial with prime factorization (pseudo code) 9

2.2 dsc-factorial with recursion (SageMath) 10

2.3 dsc-factorial with prime factorization (SageMath) 11

1

http://www.luschny.de/math/factorial/FastFactorialFunctions.htm
http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

1 A N E W K I N D O F FA C T O R I A L F U N C T I O N

1.1 a decomposition of the factorial function

„Unfortunately, we can’t compute factorials efficiently” Graham, Knuth and
Patashnik deplore in their standard reference Concrete Mathematics [3,
p.133]. But how good can we be? Arnold Schönhage even mentions
a competition to calculate the factorial faster and faster [5]. Here we
will give a divide-and-conquer recurrence for n!, which, by making use of
prime factorization, can be turned into a fast algorithm. We will investi-
gate its time complexity and provide example implementations.

0

10

20

30

40

4 8 12 16
x

log(x!)

log(x!/xo)

log(xo)

Figure 1 – The dragon’s mouth: A decomposition of the factorial

Starting point is the dragon-representation of the factorial function, a
multiplicative decomposition of the factorial into two oscillating func-
tions, the name of which derives from their graphical presentation (fig.
1). We start by exploring the lower ‘row of teeth’ in the picture, the
swinging factorial xo.

2

n 0 1 2 3 4 5 6 7 8 9 10 11

no 1 1 2 6 6 30 20 140 70 630 252 2772

Table 1 – The swinging factorial

1.2 the prime factors of the swinging factorial .

The plot in figure 1 leaps ahead of our development. We start with the
discrete case. Let n ∈ N = {0, 1, 2, . . .} be a natural number. By the
(monotonic) factorial n we understand the product n! = 1 · 2 · . . . ·n and by
the swinging factorial of n we understand the ratio of n! to bn/2c!2 and
denote it by

no = n!
bn/2c!2

(n > 0) . (1.1)

bxc is the floor-function giving the largest integer not greater than x. The
first few values of no are displayed in table 1.

We write
(n
k

)
= n!/(k!(n− k)!) for the binomial coefficient. Let µn =(n

bn/2c
)

denote the middle binomial coefficient. Then no = µn if n is even,
otherwise no = µn((n+ 1)/2). Thus no is always an integer.

Equivalently the swinging factorial can be defined as a trinomial coeffi-
cient.

no =
(

n

bn/2c, [n odd] , bn/2c

)
(1.2)

Here we make use of the Iverson brackets [·] defined as [b] = 1 if the
statement b is true and 0 otherwise. Thus [n odd] is 1 if n is odd and 0
if n is even.

The starting point of our considerations is the prime factorization of no.
We make use of the mod-operation defined by x mod m = x−m bx/mc
for m 6= 0, x otherwise.

Theorem 1 Let `p(no) denote the exponent of the prime p in the prime factor-
ization of no . Then

`p(no) =
∑
k>1

⌊
n

pk

⌋
mod 2 . (1.3)

3

In consequence `p(no) 6 logp(n) and p`p(no) 6 n. If p is an odd prime then
`pp

ao = a. Special cases of (1.3) are:

(a) bn/2c < p 6 n ⇒ `p(no) = 1

(b) bn/3c < p 6 bn/2c ⇒ `p(no) = 0

(c)
√
n < p 6 bn/3c ⇒ `p(no) = bn/pc mod 2

(d) 2 < p 6
√
n ⇒ `p(no) < log2(n)

(e) p = 2 ⇒ `p(no) = σ2(bn/2c)

Here σ2(n) is the number of 1’s in the binary representation of n.
Proof: From Legendre’s theorem on the prime factorization of n! (see

[3, 4.4]) we get

`p(n!/bn/2c!2) = `p(n!) − 2`p(bn/2c!)

=
∑
k>1

bn/pkc− 2
∑
k>1

bbn/2c/pkc (1.4)

=
∑
k>1

(
bn/pkc− 2bbn/pkc/2c

)

Since j− 2bj/2c = j mod 2 by definition (1.3) follows. In the case of (a),
(b) and (c) the summation range reduces to k = 1. In case (a) we have
bn/pc = 1, in case (b) bn/pc = 2. Thus these three cases are implied by
(1.3). (d) is a consequence of logb(n) < log2(n) for 2 < b and (e) follows
from (1.4) and from the identities `2(n!) = n− σ2(n) and σ2 (bn/2c) =

σ2(n) −n mod 2. Finally for p an odd prime

`p(p
ao) =

∑
k>1

bpa/pkc mod 2 =
∑

16k6a

pa−k mod 2 =
∑

16k6a

1 = a .

The properties of no described in theorem 1 show that no is a hybrid
between the factorial function and the binomial coefficient. And they
put the swinging factorial in the kernel of a divide-and-conquer algorithm
for the computation of the monotone factorial.

In consequence of theorem (1) the logarithm of the swinging factorial
can be written as

log (no) =
∑
k>1

∑
p prim

[⌊
n

pk

⌋
odd

]
logp . (1.5)

4

This is a finite sum with k 6 log2 n and p 6 n. Note that we use here
again the Iverson brackets. The simplicity of the representation (1.5) let
us expect interesting number theoretical properties of no.

1.3 the dsc–algorithm for computing n!

Let us return to the question posed at the beginning: how to calculate
the factorial of n! efficiently. We now know that the factorial can be
calculated by means of the square recurrence n! = bn/2c!2 no with base
case 0! = 1. It is important to understand that the swinging factorial
no will be determined by prime factorization. By theorem 1 the prime
factors of no can be computed easily and found quickly using the sieve
of Eratosthenes (or any other prime number sieve).

Let’s call this algorithm the dscFactorial (dsc is formed from divide,
swing and conquer). As an example we show the calculation of 62!.

3o = 2 · 3

7o = 22 · 5 · 7

15o = 23 · 32 · 5 · 11 · 13

31o = 24 · 32 · 5 · 17 · 19 · 23 · 29 · 31

62o = 25 · 7 · 11 · 17 · 19 · 37 · 41 · 43 · 47 · 53 · 59 · 61

62! = (((((1o)2 3o)2 7o)2 15o)2 31o)2 62o

First one determines the prime exponents of bn/2kco for k > 0. In
doing so one takes advantage of the relation bbn/2c/pkc = bbn/pkc/2c
which allows one to determine these exponents using only simple shift
operations on bn/pkc.

Computationally valuable is also the relation pep(no) 6 n as it allows
to calculate the part of no which is based on p in a computer register as
long as n fits into the register. In this case no book–keeping of the prime
exponents is needed.

After putting all prime parts of bn/2kc on the k-th of log2 n lists a
divide-and-conquer product is applied to these lists. Assuming that this
product, in turn, is building on a divide-and-conquer multiplication algo-
rithm, say that of Karatsuba, the calculation passes through three lev-
els of divide-and-conquer strategies before actually a multiplication is per-
formed.

5

Finally we take advantage of the fact that multiplication by powers
of 2 on binary computers is very fast. We therefore calculate only the
odd part of the swinging factorial and then multiply the result of the
recurrence with 2n−σ2(n) where σ2(n) is the number of digits of n in
the binary base.

One of the first questions that arise in the implementation of the dsc-
Factorial is how much memory for the lists of factors must be allocated.
This is equivalent to ask for the number of prime factors of no. Helpful
for practical applications are the following simple bounds on the number
of all prime factors of the swinging factorial Ω(no). The bounds were veri-
fied numerically in the specified range. We conjecture that they hold for
all n > 25.

In the range 25 6 n 6 106 the following bounds hold:

⌊
n

log2(n/2)
+n1/6

⌋
6 Ω(no) 6

⌊
n

log2(n/2)
+n1/2

⌋

1.4 swing-time : the time complexity of no .

Let us consider now how much time the calculation of the product of
these prime factor lists takes when using the recursive divide-and-conquer
method. We understand this as the calculation of no using the recurrence
no = P(1 ,Ω(no)) and

P(k , n) = P(k , l) · P(l + 1 , n) , (k < n , l = b(k + n)/2c)

with P(n , n) = P(n), where P(n) is the n-th prime factor from the
list, which we will denote by F(no). Since the bit length of no is asymp-
totically n the recursion traverses log n stages, where in the last stage
two factors of bit length n/2 are multiplied which were recovered from
4 factors with the bit length n/4, and so on. Now assume that we
have two binary integers with bit length n which we can multiply in
Masy(n) = βn log(αn)(1 + log log(αn)) (α , β > 0) time units (this
is asymptotically achieved with the Schönhage-Strassen multiplication
[5, S.208,6.1.33]), then we arrive at the asymptotic estimate of the time
complexity of the product:

6

TprodF(no) ' βn log log(n)
∑

16i6blg nc
log(αn2−i)

' α

β
n (log n)2 log log n

If one uses the Sieve of Eratosthenes to create the prime factor lists it
can be shown that for sufficiently large n the time TprimF(no) for deter-
mining the prime factors of no can be neglected compared with the time
to compute the product (see for instance [1, S. 297]). Thus we come to
the conclusion that the time Tswing(n) for the calculation of the swinging
factorial of n is asymptotically limited by the order n(log n)2 log log n.

Tswing(n) = TprodF(no) + TprimF(no) = O(n(log n)2 log log n)

1.5 factorial-time : the time complexity of n!

Let Tmult(n ,m) the time a multiplication of two factors with bit lengths
n and m respectively requires, and Tquad(k) the time the squaring of a
number with bit length k requires. Since the bit length of n ! asymptoti-
cally is n log n we can estimate the time Tdsc(n) for calculating n ! using
the dsc-algorithm for big n as follows: With λn = blog2 (n)c

Tdsc ∼
∑

06l<λn

Tmult(2bn/2l+1c logbn/2l+1c , bn/2lc)

+
∑

06l<λn

Tquad(bn/2l+1c logbn/2l+1c)

+
∑

06l<λn

Tswing(bn/2lc) .

If we insert in Tmult(n , n) and Tquad(n) the asymptotic time complexity
of the Schönhage-Strassen multiplication Masy(n) it is easily seen that
the first two sums are limited by the asymptotic order n(log n)2 log log n.

Next the sum of calculation times of the swinging factorials can be
estimated by a constant multiple of Tswing(n). Therefore, from the result
of the last section, we conclude that

Tdsc(n) = O(n(log n)2 log log n) .

Thus the time complexity of the dscFactorial is asymptotically limited by
the same order as the multiplication of binary numbers of the length

7

log(n !). The fastest previously known algorithm for calculation of n !
is based on the prime factorization of n ! which is evaluated with the
method of nested squaring. So described by A. Schönhage et alia [5,
S.225] (and in a similar form by P. B. Borwein [2]). Based on the compu-
tational model of a multi-band Turing machine Schönhage gives for the
time complexity of his algorithm the same asymptotic order as we have
found for Tdsc.

1.6 a recurrence for no

The idea of calculating the factorial with the help of the swinging facto-
rial can also be implemented without using prime factorization. In this
scenario the swinging factorial is calculated using a recurrence. This
leads to an efficient algorithm which we give in the appendix as an
Sage-Python implementation. Benchmarks indicate that this might be
the fastest known algorithm in this category [4].

The most surprising feature of this algorithm is that strong use of
division is made – something that does not come to one’s mind when
approaching the factorial function naively.

1.7 implementation of the dsc-factorial

Implementations of dscFactorial exist in various programming languages.
They can be found for instance on the web-page Fast Factorial Functions
[4] where a total of 21 different algorithms for the computation of the
factorial are showcased and compared to each other; besides the dscFac-
torial also the methods of Arnold Schönhage, Peter Borwein and Ilan
Vardi.

A greatly simplified implementation (compared to the description given
in the last section) written in pseudo-code is given in the listing below. It
consists of the three functions Factorial, PrimeSwing and Product. Note
that we assume that the smallest index of a list is 0 and that index is
a global variable. An optimized implementation with the computer al-
gebra system SageMath can be found at the end of this chapter. These
implementations are written in the Python dialect of SageMath. Algo-
rithm 2 uses the Python library function bisect_left and the SageMath
function prime_range.

8

2A P P E N D I X : L I S T I N G S

2.1 dsc-factorial with prime factorization (pseudo code)

Factorial(n)
if n < 2 then return(1) end_if

return(Factorial(bn/2c)2 PrimeSwing(n))

PrimeSwing(n)
count ← 0

for prime in Primes(2 . . . n) do
q ← n ; p ← 1

repeat
q ← bq/primec
if q is odd then p ← p · prime end_if

until q = 0

if p > 1 then FactorList[count++] ← p end_if
end_for
index ← 0

return(Product(FactorList, count))

Product(list, len)
if len = 0 then return(1) end_if
if len = 1 then return(list[index++]) end_if
hlen ← blen/2c
return(Product(list, len − hlen) · Product(list, hlen))

9

2.2 dsc-factorial with recursion (sagemath)

def factorial(n):

def product(m, len):
if len == 1: return m
if len == 2: return m * (m - 2)
hlen = len >> 1
return product(m-hlen*2, len-hlen) * product(m, hlen)

def odd_factorial(n):
if n < 5:

oddFact = [1,1,1,3,3][n]
sqrOddFact = [1,1,1,3,3][n//2]

else:
sqrOddFact, oldOddFact = odd_factorial(n//2)
len = (n - 1) // 4
if (n % 4) != 2: len += 1
high = n - ((n + 1) & 1)
oddSwing = product(high, len) // oldOddFact
oddFact = (sqrOddFact**2) * oddSwing

return (oddFact, sqrOddFact)

def eval(n):
if n < 10: return mul(range(2,n+1))
bits = n - sum(n.digits(2))
return odd_factorial(n)[0] * 2**bits

return eval(n)

10

2.3 dsc-factorial with prime factorization (sagemath)

def factorial(n):

def product(s, n, m):
if n > m: return 1
if n == m: return s[n]
k = (n + m) // 2
return product(s, n, k) * product(s, k + 1, m)

def swing(m, primes):
if m < 4: return [1,1,1,3][m]

s = bisect_left(primes, 1 + isqrt(m))
d = bisect_left(primes, 1 + m // 3)
e = bisect_left(primes, 1 + m // 2)
g = bisect_left(primes, 1 + m)

factors = primes[e:g]
factors += filter(lambda x: (m//x)&1 == 1, primes[s:d])
for prime in primes[1:s]:

p, q = 1, m
while True:

q //= prime
if q == 0: break
if q & 1 == 1:

p *= prime
if p > 1: factors.append(p)

return product(factors, 0, len(factors) - 1)

def odd_factorial(n, primes):
if n < 2: return 1
return (odd_factorial(n//2,primes)**2)*swing(n,primes)

def eval(n):
if n < 10: return product(range(2, n + 1), 0, n-2)
bits = n - sum(n.digits(2))
primes = prime_range(2, n + 1)
return odd_factorial(n, primes) * 2**bits

return eval(n)

11

B I B L I O G R A P H Y

[1] E. Bach and J. Shallit. Algorithmic Number Theory. MIT Press, 1996.
(Cited on page 7.)

[2] P. B. Borwein. On the complexity of calculating factorials. Journal of
Algorithms, 6:376–380, 1985. (Cited on page 8.)

[3] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics:
A Foundation for Computer Science. Addison-Wesley, 1989. (Cited on
pages 2 and 4.)

[4] Peter Luschny. The homepage of factorial algorithms. http:

//www.luschny.de/math/factorial/FastFactorialFunctions.htm,
2002. (Cited on page 8.)

[5] A. Schönhage, A. F. W. Grotefeld, and E. Vetter. Fast Algorithms, A
Multitape Turing Machine Implementation. BI Wissenschaftsverlag, 1994.
(Cited on pages 2, 6, and 8.)

12

http://www.luschny.de/math/factorial/FastFactorialFunctions.htm
http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

	1 A new kind of factorial function
	1.1 A decomposition of the factorial function
	1.2 The prime factors of the swinging factorial.
	1.3 The dsc–algorithm for computing n!
	1.4 Swing-time: the time complexity of swing(n).
	1.5 Factorial-time: The time complexity of n!
	1.6 A recurrence for swingn
	1.7 Implementation of the dsc-factorial

	2 Appendix: Listings
	2.1 dsc-factorial with prime factorization (pseudo code)
	2.2 dsc-factorial with recursion (SageMath)
	2.3 dsc-factorial with prime factorization (SageMath)

